
Interactive Launch of 16,000 Microsoft Windows
Instances on a Supercomputer

Michael Jones, Jeremy Kepner, Bradley Orchard, Albert Reuther, William Arcand,
David Bestor, Bill Bergeron, Chansup Byun, Vijay Gadepally, Michael Houle,

Matthew Hubbell, Anna Klein, Lauren Milechin, Julia Mullen,
Andrew Prout, Antonio Rosa, Siddharth Samsi, Charles Yee, Peter Michaleas

MIT Lincoln Laboratory, Lexington, MA, U.S.A.

Abstract—Simulation, machine learning, and data analysis
require a wide range of software which can be dependent upon
specific operating systems, such as Microsoft Windows. Running
this software interactively on massively parallel supercomputers
can present many challenges. Traditional methods of scaling
Microsoft Windows applications to run on thousands of pro-
cessors have typically relied on heavyweight virtual machines
that can be inefficient and slow to launch on modern manycore
processors. This paper describes a unique approach using the
Lincoln Laboratory LLMapReduce technology in combination
with the Wine Windows compatibility layer to rapidly and
simultaneously launch and run Microsoft Windows applications
on thousands of cores on a supercomputer. Specifically, this work
demonstrates launching 16,000 Microsoft Windows applications
in 5 minutes running on 16,000 processor cores. This capability
significantly broadens the range of applications that can be run
at large scale on a supercomputer.

Keywords—High Performance Computing, Manycore, Mi-
crosoft Windows, Wine, Windows Emulation, Knight’s Landing

I. INTRODUCTION

With the slowing down of Moore’s Law [1], [2], parallel
processing has become a primary technique for increasing
application performance. Physical simulation, machine learn-
ing, and data analysis are rapidly growing applications that
are utilizing parallel processing to achieve their performance
goals. These applications require a wide range of software
which can be dependent upon specific operating systems,
such as Microsoft Windows. Parallel computing directly in
the Windows platform has a long history [3]–[7]. The largest
supercomputers currently available almost exclusively run the
Linux operating system [8], [9]. Using these Linux powered
supercomputers, it is possible to rapidly launch interactive
applications on thousands of processors in a matter of seconds
[10].

A common way to launch multiple Microsoft Windows
applications on Linux computers is to use virtual machines
(VMs) [11]. Windows VMs replicate the complete operating
system and its virtual memory environment for each instance

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

of the Windows application that is running, which imposes a
great deal of overhead on the applications. Launching many
Windows VMs on a large supercomputer can often take
several seconds per VM [12]–[14]. While this performance is
adequate for interactive applications that may require a handful
of processors, scaling up such applications to the thousands
of processors typically found in a modern supercomputer is
prohibitive.

This paper describes a unique approach using the Lincoln
Laboratory LLMapReduce technology in combination with the
Wine Windows compatibility layer to rapidly launch and run
Microsoft Windows applications on thousands of cores on a
supercomputer. Specifically, this work demonstrates launching
16,000 Microsoft Windows applications in 5 minutes running
on 16,000 processor cores. This capability significantly broad-
ens the range of applications that can be run at large scale on
a supercomputer.

The primary goal of this paper is to illustrate the feasibility
and provide a set of baseline measurements showing the kind
of performance gain that can be realized by scaling a Windows
application in an pleasingly parallel manner on a modern
supercomputer. The organization of the rest of this paper is
as follows. Section II goes into more detail on the various
technologies for running Windows in a Linux environment.
Section III describes the LLMapReduce technology used to
launch thousands of simultaneous Windows instances. Section
IV provides details on the hardware and software environment
used to perform the launch time measurements. Section V
presents the performance results and an overview of the
findings. Section VI summarizes the work, the benefits gained
by this approach, and describes future directions.

II. VIRTUALIZATION, CONTAINERIZATION, AND WINE

As of November 2017, 100% of the world’s Top 500
supercomputers are running on the Linux operating system.
[15] As a result, the vast majority of the modeling and
simulation codes commonly used in science and engineering
either natively run in Linux, or have a dedicated compute
server component that can be separately deployed on a large
number of Linux computers to render tractable the enormous
computational complexity of modern models and simulations.

While the commoditization of the x86 platform and it’s
rapidly expanding hardware capabilities have led to expo-



nential growth in the use of virtualization as a means of
maximizing the efficient use of system resources and allowing
for different operating systems to coexist on a single physical
machine, the overhead of full hardware virtualization - running
an entire completely separate operating system kernel and full
complement of system libraries subordinate to a hypervisor -
is significant. In addition to these resource overhead concerns,
a recent study measured the launch times of a stripped down
Ubuntu Linux image on three of the most popular virtual ma-
chine provisioning systems and found that various overheads
could account for up to 120 seconds of additional processing
time on a modern hardware platform. [14]

Operating system-level virtualization methods such as ch-
root [16], FreeBSD jail [17], OpenVZ [18], User Mode Linux
[19], and Linux Containers as made popular by Docker [20]
are designed to be an improvement in this regard, sacrificing
the security and safety of complete operating system kernel
separation for a greatly diminished footprint, much quicker
launch times and lower management overhead [21].

The large-scale deployment of ’containerized’ applications
on a supercomputer is quite feasible, but for one notable
caveat: the guest application is still using a limited subset of
the interfaces exposed by the host operating system’s kernel,
and thus running a containerized Windows application in this
manner would require a Windows host.

Luckily there exists a third option when it comes to
launching a Windows environment on a Linux based super-
computer. The Wine project [22], [23] is an open source
software compatibility layer designed to translate Windows
semantics into their POSIX equivalents; from system calls
to library APIs, file paths and named pipes to network and
UNIX sockets, Wine seamlessly enables a myriad of Microsoft
Windows applications to run on Linux and FreeBSD systems,
in many cases with near-native performance and equivalent
functionality. Additionally, because Wine is merely translating
one software interface to another, there is very little in the
way of environmental setup to perform prior to launching an
application when compared to an equivalent task in a hardware
virtual machine or with OS-assisted virtualization.

The goal of this approach is to present an unmodified
Windows application with all of the appropriate software
interfaces and a runtime environment that should be virtually
indistinguishable from a real Windows operating system. A
simplified depiction of Wine’s layered architecture is presented
in Figure 1.

III. LLMAPREDUCE: MULTI-LEVEL MAP-REDUCE

The Wine environment provides a potentially efficient
means for running Windows applications on a Linux-based
supercomputer. Interactively launching many simultaneously
Wine environments requires an effective means of coordinating
the launch of thousands of these environments. Recent experi-
ments have shown that the naive, serial job submission perfor-
mance of a modern job scheduler can significantly slow down
processing for jobs with a very large number of tasks [24].
To achieve maximal job launch performance for large HPC

UNIX Device Drivers

UNIX Kernel

System Libraries

WINE Drivers

WINE Executable

NTDLL.DLL

Win32 Subsystem

GDI32 USER32

Windows Libraries

APPLICATION.EXE

Other 
Windows 

Subsystems 
(POSIX)

WINE Server

Fig. 1: Schematic depicting the architecture of a Windows
program (APPLICATION.EXE) run on a UNIX-like system
through the Wine emulator, diagram rendered from an ASCII
version located in the Wine developer’s manual. At the bottom
of the figure is the native UNIX kernel, device drivers and
system libraries of the host operating system. From there,
the Wine UNIX binaries and user-space libraries are loaded,
creating the virtual Windows environment which is then able
to load Wine’s implementation of the basic Win32 function-
ality provided by NTDLL.DLL, KERNEL.DLL, GDI.DLL
and USER.DLL. This emulated Windows environment then
loads the unmodified native Windows application used to
invoke Wine and any Windows userspace libraries it requires.
This environment is supported by the Wine server, depicted
on the right, which provides inter-process communication,
synchronization and process management.

(high performance computing) or HPDA (high performance
data analysis) jobs requires employing a technique known as
multilevel scheduling which involves modifying our analysis
code slightly to be able to process multiple datasets or files
with a single job launch [25].

The map-reduce parallel programming model [26] has be-
come extremely popular in the big data community. The
output of many workloads can increase greatly when run
in an pleasingly parallel manner on a supercomputer. The
LLMapReduce tool developed as part of the MIT SuperCloud
software stack provides access to this familiar map-reduce
programming model via a dramatically simplified interface and
efficiently launches large, multi-level array jobs onto a cluster
often reducing complex parallel scheduling, job submission
and dependency resolution tasks into a single line of code
while simultaneously maximizing job launch performance by



reducing per-task latency [27]. Most importantly, LLMapRe-
duce is not bound to a particular language and works with any
executable, which makes LLMapReduce ideal for launching
many simultaneous Wine instances. A notional illustration
depicting the life cycle of the various components constituting
a scheduler array job as generated by the LLMapReduce tool
is presented in Figure 2.

Fig. 2: Schematic depicting the life cycle of tasks launched
using LLMapReduce (adapted from [27]). LLMapReduce
scans an input directory and, for each file contained within,
generates a job submission script within a scheduler array job
and submits the aggregate batch job to the scheduler. Upon
successful termination of all tasks, a "reduce" job is launched
which can perform post-processing or epilog cleanup tasks.

Supercomputing systems require efficient mechanisms for
managing the operational tasks involved in a program’s life
cycle on a large shared computing infrastructure: rapidly
identifying available computing resources, allocating those
resources to programs, scheduling the execution of those pro-
grams on their allocated resources, launching them, monitoring
their execution and performing epilog clean-up tasks upon
the program’s termination (see Figure 3). The open source
SLURM software provides these services and is independent
of programming language (C, Fortran, Java, Matlab, etc.)
or parallel programming model (message passing, distributed
arrays, threads, map/reduce, etc.), which makes it ideal for
launching Wine instances.

SLURM is an extremely scalable, full-featured Linux job
scheduler with a modern, multi-threaded core scheduling en-
gine and a very high-performance plug-in module architecture.
[28] The combined feature set and serial launch latency of
the SLURM scheduler compares favorably with other HPC
resource managers [25], and it is well suited to managing a
heterogeneous environment like the MIT SuperCloud.

IV. EXPERIMENTAL ENVIRONMENT

The MIT Lincoln Laboratory Supercomputing Center pro-
vides (LLSC) a high-performance computing platform to over
1000 users at MIT, and is heavily focused on highly iterative
interactive supercomputing and rapid prototyping workloads
[29], [30]. A part of the LLSC mission to deliver new and
innovative technologies and methods for enabling scientists
and engineers to quickly ramp up the pace of their research.
By leveraging supercomputing and big data storage assets
the LLSC has built the MIT SuperCloud, a coherent fusion

Div5 Seminar - 10
AIR – 18-Apr-2018

Compute 
Cluster

• Four Primary Tasks
– Job Management
– Resource Management
– Scheduling
– Job Execution

• Most activities executed on 
scheduler server

• Job monitoring and resource 
monitoring daemons run on 
each compute node

HPC & Big Data 
Resource Manager/Scheduler Architecture

Job Lifecycle 
Management

Resource 
Management

Scheduling

U
se

r I
nt

er
fa

ce
(s

)

Job QueuesJob QueuesJob Queues

Job Log Files

Resource 
Allocations

Job 
Assignment

Job Dispatch

Job Retirement

Job 
Monitoring & 

Mgmt

Resource 
Monitoring & 

Mgmt

Resource 
Allocation 
PoliciesQueue 

Management 
Policies

Resource 
Management 
Policies

A
dm

inistrator Interface(s)

Job Execution

Pending 
Job Reqs

Current 
Resource 

States

1Scalable System Scheduling for HPC and Big Data, Reuther et al,
Journal of Parallel and Distributed Computing, January 2018.

Fig. 3: Schematic depicting key components of a canonical
cluster scheduler including job lifecycle management, resource
management, task scheduling and job execution (adapted from
[25]). The SLURM scheduler used on the MIT SuperCloud
systems behaves according to this model.

of the four largest computing ecosystems: supercomputing,
enterprise computing, big data, and traditional databases. The
MIT SuperCloud has spurred the development of a number
of cross-ecosystem innovations in high performance databases
[31], [32], database management [33], data protection [34],
database federation [35], [36], data analytics [37] and system
monitoring [38].

All the experiments described in this paper were performed
on the LLSC TX-Green Supercomputer using the MIT Su-
perCloud environment. The TX-Green supercomputer is a
petascale system that consists of a heterogeneous mix of AMD
Opterton, Intel Xeon, Nvidia, and Intel Xeon Phi processors
connected to a single, non-blocking 10 Gigabit Ethernet Arista
DCS-7508 core switch. All of the compute nodes used to
launch the Windows instances were Intel Xeon Phi 7210
(Knight’s Landing) processors with 64 cores, 192 GB of
system RAM, 16 GB of on-package MCDRAM configured in
’flat’ mode, and 4 TB of local storage. The Lustre [39] central
storage system uses a 10 petabyte Seagate ClusterStor CS9000
storage array that is directly connected to the core switch,
as is each individual cluster node. This architecture provides
high bandwidth to all the nodes and the central storage, and
is depicted in Figure 4.

V. PERFORMANCE RESULTS

Rapid launching of Windows instances is prerequisite for
running Windows applications interactively on a supercom-
puter. The launch times of the Wine environment on the MIT
SuperCloud were obtained by running on a supercomputer
consisting of 648 compute nodes, each with at least 64 Xeon
Phi processing cores, for a total of 41,472 processing cores.
In all cases, a single Windows instance was run on 1, 2, 4,. . . ,
and 256 compute nodes, followed by running 2, 4, . . . , and
64 Windows instances on each of the 256 compute nodes



Fig. 4: Architecture of the MIT SuperCloud system. Users
connect to the system over either a local area network or a
wide area network. At the time of connection, their system
joins the MIT SuperCloud and can act as a compute node in
order to run parallel programs interactively. The centerpiece
of the MIT SuperCloud is several file systems (Seagate, DDN,
Dell, Hadoop, and Amazon S3) running on several different
network fabrics (10 GigE, InfiniBand, OmniPath).

to achieve a maximum of 16,384 simultaneous instances. An
essential step for enabling rapid interactive launch is copying a
typically several MB Windows executable and it’s supporting
environment (e.g. libraries and configuration files) from the
user’s home directory on the central storage to the local storage
on each node. The copy time for this operation is shown
in Figure 5 and is small compared to the launch time. This
short copy time is achievable because the central file system
is capable of a large amount of parallel I/O to the compute
nodes. This parallel I/O rate is attainable when the copy is
initiated from each of the target compute nodes and thus
requires coordination within the overall parallel execution.

The launch times and launch rates of the Windows instances
are shown in Figures 5, 6 and 7 along with data taken from
the literature for launching for Windows instances on Azure
[12] and Linux VM instances using Eucalyptus [14]. These
results show that high launch Windows instance launch rates
are achievable using Wine with LLMapReduce on the MIT Su-
percCloud. Launching over 16,000 instances in approximately
5 minutes directly enables interactive simulation, machine
learning, and data analysis applications that require Windows
executables.

VI. SUMMARY AND FUTURE WORK

Traditional methods of scaling Microsoft Windows applica-
tions to run on thousands of processors have typically relied
on heavyweight platform virtualization software that can be
inefficient and slow to launch on modern manycore processors.
Simulation, machine learning, and data analysis require a wide
range of software which often depends upon specific operating
systems, such as Microsoft Windows. Running this software
interactively on massively parallel supercomputers can present
many challenges. This paper describes a unique approach
using the Lincoln Laboratory LLMapReduce technology in
combination with the Wine Windows compatibility layer to
rapidly launch and run Microsoft Windows applications on
thousands of cores on a supercomputer. Specifically, this work
demonstrates launching 16,000 Microsoft Windows applica-
tions in 5 minutes running on 16,000 processor cores. This

1

10

100

1 10 100 1000 10000 100000

C
op

y 
Ti

m
e 

(s
ec

on
ds

)

Number of Simultaneous Instances

Fig. 5: Copy time of the Windows application from central
storage to the local storage on each compute node versus the
number of simultaneous instances launched.

10

100

1000

1 10 100 1000 10000 100000

La
un

ch
 T

im
e 

(s
ec

on
ds

)

Number of Simultaneous Instances

WINE on
MIT SuperCloud

Linux VM on
Eucalyptus [14]

Windows VM on
Azure [12]

Fig. 6: Launch time of Wine on the MIT SuperCloud versus
the number of simultaneous instances launched. Launch times
for Windows instances on Azure [12] and Linux VM instances
using Eucalyptus [14] are also shown.

capability significantly broadens the range of applications that
can be run at large scale on a supercomputer. Future work will
focus on extending this capability to larger numbers of cores
running more diverse applications.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals
for their contributions: Bob Bond, Alan Edelman, Jack Fleis-
chman, Charles Leiserson, Dave Martinez, and Paul Montic-
ciolo.



0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

R
at

e 
(la

un
ch

es
/s

ec
on

d)

WINE on
MIT SuperCloud

Linux VM on
Eucalyptus [14]

Windows VM on
Azure [12]

Number of Simultaneous Instances

Fig. 7: Launch rate of Wine on the MIT SuperCloud versus
the number of simultaneous instances launched. Launch rates
for Windows instances on Azure [12] and Linux VM instances
using Eucalyptus [14] are also shown.

REFERENCES

[1] G. Yeric, “Moore’s law at 50: Are we planning for retirement?,” in
Electron Devices Meeting (IEDM), 2015 IEEE International, pp. 1–1,
IEEE, 2015.

[2] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new begin-
ning for information technology,” Computing in Science & Engineering,
vol. 19, no. 2, pp. 41–50, 2017.

[3] D. Nicole, K. Takeda, and I. Wolton, “Hpc on dec alphas and windows
nt,” in High-Performance Computing, pp. 551–557, Springer, 1999.

[4] D. A. Lifka, “High performance computing with microsoft windows
2000,” in Proceedings of the 3rd IEEE International Conference on
Cluster Computing, p. 47, IEEE Computer Society, 2001.

[5] Y. Xia, X. Shi, L. Kuang, and J. Xuan, “Parallel geospatial analysis
on windows hpc platform,” in Environmental Science and Information
Application Technology (ESIAT), 2010 International Conference on,
vol. 1, pp. 210–213, IEEE, 2010.

[6] M. Humphrey, Z. Hill, C. Van Ingen, K. Jackson, and Y. Ryu, “Assessing
the value of cloudbursting: A case study of satellite image processing on
windows azure,” in E-Science (e-Science), 2011 IEEE 7th International
Conference on, pp. 126–133, IEEE, 2011.

[7] M. Husejko, I. Agtzidis, P. Baehler, T. Dul, J. Evans, N. Himyr, and
H. Meinhard, “Hpc in a hep lab: lessons learned from setting up cost-
effective hpc clusters,” in Journal of Physics: Conference Series, vol. 664
#9, IOP Publishing, 2015.

[8] L. Torvalds, “Linux: a portable operating system,” Master’s thesis,
University of Helsinki, dept. of Computing Science, 1997.

[9] A. Geist and D. A. Reed, “A survey of high-performance computing
scaling challenges,” The International Journal of High Performance
Computing Applications, vol. 31, no. 1, pp. 104–113, 2017.

[10] A. Reuther, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron,
V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, P. Michaleas,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and J. Kepner,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2018.

[11] C. A. Waldspurger, “Memory resource management in vmware esx
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 181–194, 2002.

[12] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pp. 423–430, IEEE, 2012.

[13] A. Reuther, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, and A. Rosa, “LLSu-
percloud: Sharing HPC systems for diverse rapid prototyping,” in High
Performance Extreme Computing Conference (HPEC), IEEE, 2013.

[14] M. Jones, B. Arcand, B. Bergeron, D. Bestor, C. Byun, L. Milechin,
V. Gadepally, M. Hubbell, J. Kepner, P. Michaleas, J. Mullen, A. Prout,
T. Rosa, S. Samsi, C. Yee, and A. Reuther, “Scalability of VM provi-
sioning systems,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2016.

[15] TOP500 Supercomputer Sites, “Operating System Family / Linux -
Top 500 Supercomputer Sites.” https://www.top500.org/statistics/details/
osfam/1, 2017. [Online; accessed 01-May-2018].

[16] L. M. Pages, “Linux Programmer’s Manual - CHROOT(2) - Change
Root Directory.” http://man7.org/linux/man-pages/man2/chroot.2.html,
2017. [Online; accessed 01-May-2018].

[17] P.-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,” in
Proceedings of the 2nd International SANE Conference, vol. 43, p. 116,
2000.

[18] K. Kolyshkin, “Virtualization in Linux,” White paper, OpenVZ, vol. 3,
p. 39, 2006.

[19] J. Dike, “User-mode linux,” in Annual Linux Showcase & Conference,
2001.

[20] D. Merkel, “Docker: Lightweight Linux containers for consistent de-
velopment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2,
2014.

[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and Linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On, pp. 171–172, IEEE, 2015.

[22] B. Amstadt and M. K. Johnson, “Wine,” Linux Journal, vol. 1994,
no. 4es, p. 3, 1994.

[23] The Wine Project, “WineHQ - Run Windows Applications on Linux,
BSD, Solaris and macOS.” https://www.winehq.org/, 2017. [Online;
accessed 01-May-2018].

[24] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scheduler
technologies in support of high performance data analysis,” in High
Performance Extreme Computing Conference (HPEC), IEEE, 2016.

[25] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scalable
system scheduling for HPC and big data,” Journal of Parallel and
Distributed Computing, vol. 111, pp. 76–92, 2018.

[26] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[27] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa, C. Yee, and
A. Reuther, “Llmapreduce: Multi-level map-reduce for high performance
data analysis,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2016.

[28] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility
for Resource Management,” in Workshop on Job Scheduling Strategies
for Parallel Processing, pp. 44–60, Springer, 2003.

[29] A. Reuther, T. Currie, J. Kepner, H. G. Kim, A. McCabe, M. P. Moore,
and N. Travinin, “LLGrid: Enabling on-demand grid computing with
gridMatlab and pMatlab,” tech. rep., MIT Lincoln Laboratory, 2004.

[30] N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive
grid computing at Lincoln Laboratory,” Lincoln Laboratory Journal,
vol. 16, no. 1, p. 165, 2006.

[31] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner,
A. McCabe, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther,
A. Rosa, and C. Yee, “Driving Big Data with Big Compute,” in High
Performance Extreme Computing Conference (HPEC), IEEE, 2012.

[32] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, and
C. Yee, “Achieving 100,000,000 database inserts per second using accu-
mulo and d4m,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2014.

[33] A. Prout, J. Kepner, P. Michaleas, W. Arcand, D. Bestor, B. Bergeron,
C. Byun, L. Edwards, V. Gadepally, M. Hubbell, J. Mullen, A. Rosa,
C. Yee, and A. Reuther, “Enabling on-demand database computing with
MIT SuperCloud database management system,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2015.



[34] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhi-
movich, and R. K. Cunningham, “Computing on masked data: a high
performance method for improving big data veracity,” in High Perfor-
mance Extreme Computing Conference (HPEC), IEEE, 2014.

[35] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther,
A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high
performance schema for the Accumulo database,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2013.

[36] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
C. Yee, and A. Reuther, “D4M: Bringing associative arrays to database
engines,” in High Performance Extreme Computing Conference (HPEC),
IEEE, 2015.

[37] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic Distributed
Dimensional Data Model (D4M) database and computation system,” in
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5349–5352, IEEE, 2012.

[38] M. Hubbell, A. Moran, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
V. Gadepally, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa,
C. Yee, and J. Kepner, “Big Data strategies for Data Center Infrastruc-
ture management using a 3D gaming platform,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2015.

[39] P. J. Braam, The Lustre Storage Architecture. Cluster File Systems, Inc.,
October 2003.


