
Optimising AI Training Deployments using Graph
Compilers and Containers

Nina Mujkanovic
HPE HPC/AI EMEA Research Lab

Basel, Switzerland
nina.mujkanovic@hpe.com

Karthee Sivalingam
HPE HPC/AI EMEA Research Lab

Bristol, United Kingdom
karthee.sivalingam@hpe.com

Alfio Lazzaro
HPE HPC/AI EMEA Research Lab

Basel, Switzerland
alfio.lazzaro@hpe.com

Abstract—Artificial Intelligence (AI) applications based on
Deep Neural Networks (DNN) or Deep Learning (DL) have
become popular due to their success in solving problems like
image analysis and speech recognition. Training a DNN is
computationally intensive and High Performance Computing
(HPC) has been a key driver in AI growth. Virtualisation and
container technology have led to the convergence of cloud and
HPC infrastructure. These infrastructures with diverse hardware
increase the complexity of deploying and optimising AI training
workloads. AI training deployments in HPC or cloud can be
optimised with target-specific libraries, graph compilers, and
by improving data movement or IO. Graph compilers aim
to optimise the execution of a DNN graph by generating an
optimised code for a target hardware/backend.

As part of SODALITE (a Horizon 2020 project), MODAK
tool is developed to optimise application deployment in software
defined infrastructures. Using input from the data scientist
and performance modelling, MODAK maps optimal application
parameters to a target infrastructure and builds an optimised
container. In this paper, we introduce MODAK and review
container technologies and graph compilers for AI. We illustrate
optimisation of AI training deployments using graph compilers
and Singularity containers. Evaluation using MNIST-CNN and
ResNet50 training workloads shows that custom built optimised
containers outperform the official images from DockerHub. We
also found that the performance of graph compilers depends on
the target hardware and the complexity of the neural network.

Index Terms—MODAK, SODALITE, HPC, cloud, perfor-
mance optimisation, AI training, Singularity container, graph
compilers

I. INTRODUCTION

Increasing availability of data and the computational power
of High Performance Computing (HPC) have driven the
adoption of Artificial Intelligence (AI) in recent years. Deep
Learning (DL), a subset of AI that uses multi-layers of neural
networks to progressively extract higher level features from
raw data, has dramatically improved the state-of-the-art in
domains like speech recognition, visual object recognition, and
many others [1], [2]. This growth started with the success of
the Convolutional Neural Network (CNN) [3] AlexNet [4] in
2012. AlexNet is computationally expensive and used GPUs
to accelerate the training time. Frameworks like TensorFlow
[5], PyTorch [6], MXNet [7], and CNTK [8] simplify the
development and deployment of DL training workloads. Some
frameworks also support a high-level language like Keras [9].

In recent years, DL training networks have grown in
size and complexity. With exponential increase in data and

use cases, AI training workloads are being deployed across
heterogeneous hardware targets like HPC and cloud. The
user experiences in cloud environments and on HPC systems
differ vastly. Cloud environments offer a number of Domain
Specific Language (DSL) based tools such as Terraform [10]
and Cloudify [11] to simplify the management of the entire
application life-cycle, including the deployment, monitoring,
and maintenance of application models. HPC systems on
the other hand require specialist knowledge of the system
and command line tools to manage the application lifecyle.
They are accessed using tools such as Secure Shell (SSH),
and require job submission to compute nodes via workload
managers like SLURM [12] and TORQUE [13]. This can
be a high hurdle for domain scientists interested in running
experiments in HPC systems compared to cloud.

The cross-section of developing, optimising, and deploy-
ing AI applications across heterogeneous infrastructures like
HPC or cloud environments poses a complex problem. EU
projects of the Heterogeneity Alliance [14] like COLA [15],
TANGO [16], HiDALGO [17], Exa2Pro [18], EcoScale [19]
and SODALITE aim to deliver software tools, methods, and
knowledge to enable next-generation applications to use het-
erogeneous hardware. SODALITE [20], a European Horizon
2020 project, aims to solve the problem of deploying work-
loads across heterogeneous environments by providing tools
for software-defined infrastructures. In SODALITE, we have
developed MODAK, a model-based application deployment
optimiser for static optimisation in software defined infras-
tructure. In this paper we introduce MODAK and evaluate
its usage for optimising AI training workloads using graph
compilers and containers.

II. RELATED WORK

Application performance and scalability are important for
HPC users. The optimisation process generally involves man-
ual profiling and tuning of application parameters to suit
target hardware. Furthermore, it is not portable and needs to
be repeated when moving to other HPC systems due to the
diversity of hardware in HPC systems.

The automation of application optimisation on both HPC
and cloud systems requires models that can be used for
performance prediction and to study how different hardware
components affect performance, a task made more complex

ar
X

iv
:2

00
8.

11
67

5v
2 

 [
cs

.D
C

] 
 1

7 
Se

p 
20

20



Fig. 1. MODAK architecture

by the wide variety of cloud offerings available with a wide
variety of hardware. Application profiling and historical data
gathered on HPC and cloud systems were used by [21] to
create a performance model. ParaOpt [22], a tool that auto-
tunes application configurations for different instance types
based on runtime and cost, was evaluated for genomics,
molecular dynamics, and machine learning applications on
multiple public clouds.

A number of works explored the performance of cloud
environments. Exabyte compared cloud targets using the Lin-
pack benchmark [23], and developed a software tool for the
continuous evaluation of various cloud environments [24].
EPCC directly compared the performance of HPC on-premise
systems and the Oracle cloud cluster using the DiRAC ap-
plication benchmarks [25], discovering issues in the usability
and scalability of cloud based clusters.

Many tools are developed to optimise application deploy-
ments that are packaged as containers. ConfAdvisor [26] is a
tuning framework for containers on Kubernetes. AWS compute
optimiser [27] optimises workloads for both cost and per-
formance based on historical utilization metrics. Google [28]
similarly offers optimised containers for AI application de-
ployments on the Google Cloud Platform. HPAI project [29]
studied the feasibility of deploying AI workloads in HPC
systems using Charliecloud [30].

In the next section, we will introduce MODAK, an appli-
cation optimiser for software defined infrastructures like HPC
and cloud.

III. MODAK

In a software defined world, where software rules and
hardware is abstracted, enabling applications to optimally run

on diverse targets gives flexibility and saves money and time.
SODALITE [20], a European Horizon 2020 project, aims to
solve the problem of deploying workloads across heteroge-
neous environments by providing tools for software-defined
infrastructures (SDI) that place the computing infrastructure
under software control, abstracting away hardware depen-
dencies. This simplifies and improves user exploitation of
heterogeneous targets like HPC clusters, cloud environments,
and edge devices.

MODAK is the SODALITE component responsible for
enabling static optimisation of application deployment in a
software defined way. The performance of an application when
deployed in a specific infrastructure can be predicted using
performance models of the application and infrastructure.
The performance models are developed by running standard
benchmarks across different configurations of both the ap-
plication workload and the deployment infrastructure, and
then building a linear statistical model. This model informs
MODAK about how the application parameters, such as the
input data size and format, affect the performance relative
to the performance characteristics of the target infrastructure,
such as peak performance and memory bandwidth. Using this
knowledge, MODAK maps the optimal application parameters
to the infrastructure target and builds an optimised container.

Figure 1 shows the MODAK architecture and its de-
pendencies. Application performance optimisation is highly
dependent on the application, its configuration, and the in-
frastructure. MODAK supports three major application types
for static optimisation - AI training and inference, Big Data
Analytics, and traditional HPC. The data scientist, or AoE,
selects application optimisations using the SODALITE IDE.



Optimisations include changes to the application configura-
tion, the environment, or the runtime. Application runtime
parameters can be further autotuned for improved application
performance.

In order to apply the optimisations, the Application Opti-
miser requires that application code be written in a standard
high-level API, along with the application inputs and con-
figuration. This enables the Optimiser to make performance
decisions based on the available target. The Optimiser uses
the pre-built, optimised containers from the Image Registry
and modifies them to build an optimised container for the
application deployment. The Application optimiser also makes
changes to runtime, deployment, and job scripts for submission
to HPC schedulers. Describing all the components of MODAK
is out of scope of this paper and a detailed description can be
found in [31].

IV. BACKGROUND

This subsection provides a brief contextual overview of the
container solutions, AI frameworks, and graph compilers that
are modelled for AI training optimisation for MODAK.

A. Container technology

Containers are a technology with roots in the Unix chroot
command released in 1979 [32]. Linux containers (LXC), a
precursor to the below listed technologies, use OS-level vir-
tualization to isolate processes and resources in separate user
namespaces [33], a virtualization technique with a far lower
overhead and higher scalability than hypervisor virtualization
[34].

Docker [35] performs virtualization using LXC for kernel-
level namespace isolation and cgroups for resource control.
While it is an industry standard in cloud environments, its
design poses security and performance issues on HPC systems.
In particular, it does not support multi-user HPC systems, and
its use of root daemons to build and run containers enables
users to gain privileged access to the host systems network
filesystem.

Shifter [36] and Charliecloud [30], developed at NERSC
and LANL respectively, were both designed with HPC sys-
tems in mind, making them more suitable to traditional HPC
workflows. Charliecloud, in particular, is a lightweight con-
tainerization technology based on a User Defined Software
Stack (UDSS) and developed around the strict security require-
ments posed by sites. Drawbacks include a high administrative
overhead (Shifter) and a current lack of community uptake
(Charliecloud).

Singularity [37] [38], developed by Berkeley National Lab-
oratories, appears a good compromise between the cloud stan-
dard Docker and the HPC-specific Shifter and Charliecloud.
Built for HPC systems, and offering native support for HPC
components including resource managers (Slurm, Torque, etc.),
job schedulers, and some MPI features, it also offers an
easy containerization workflow for users. Its privilege model
relies on SUID and non-privileged user namespaces to launch
containers as child processes, thus allowing for non-root users

to create and launch containers safely. Singularity can import
and run Docker images directly.

We chose Singularity as the optimal solution container
deployment, with plans to extend to Docker. Further reading
on container technologies can be found in [39], [40].

B. Graph compilers

An approach all AI frameworks have in common is the use
of intermediate representations (IR) to represent the neural net-
work models as computational graphs, with nodes representing
tensor operations and edges the data dependencies between
them. There are typically multiple levels of IR, with high-
level IRs residing in the frameworks’ user-facing front-end,
and low-level IRs residing in the back-end.

A set of framework specific compilers can be used to
perform optimisations on the generated graph IRs. These graph
compilers can be grouped into two types - low-level tensor
compilers, focused on the construction of high-performance
operators for compute intensive operations, and deep learning
compilers, focused on high-level optimisations on the IR
followed by offloading to vendor specific libraries.

XLA (Accelerated Linear Algebra) [41] [42] is a TensorFlow
specific graph compiler that accelerates linear algebra. It
accepts a graph defined in the High Level Optimiser (HLO) IR
and performs target-independent optimisation and analysis on
it, such as operation fusion and buffer analysis. The optimised
HLO IR is then sent to the back-end, which performs further
HLO-level optimisations targeted to the hardware. The final
code is generated using LLVM.

GLOW [43], short for graph lowering, optimises PyTorch
models by lowering the graph into a two-phase IR, with strong
focus on the low-level IR. The high-level IR is then used for
domain-specific optimisations, while the low-level instruction-
based, address-only IR is used to perform memory-related
optimisations. Machine specific code is generated at the lowest
level.

nGraph [44] is a framework independent graph compiler
that can be used by TensorFlow, PyTorch, and a number of
other frameworks. It acts as a bridge, porting the framework
specific graph model to a common, intermediate high-level IR
that is then used to generate code optimised for a specific
back-end via vendor-specific libraries.

V. METHODOLOGY

In this section, we demonstrate the usage of MODAK for
optimising AI training workloads using containers and graph
compilers.

A. MODAK AI Training Example

Figure 2 shows an example usage of MODAK for AI
training application deployment. A data scientist uses the
SODALITE IDE to build the application model with input
data, configuration, and optimisations. The application, written
in a high-level language or API like Keras or ONNX [45], is
then deployed in a Docker or Singularity container with the
selected AI framework, using optimised libraries like MKL



Fig. 2. SODALITE AI example

[46] or cuDNN [47], and compilers like XLA and GLOW.
This optimised, containerised application is then deployed to
an HPC or cloud system.

In the IDE, the data scientist encodes optimisation options
in a json format, which is input to MODAK. Listing 1 shows a
section of an optimisation DSL for a TensorFlow deployment.
Here, custom build optimisations for a selected target (x86
and NVIDIA) and the XLA compiler are enabled. MODAK
prebuilds TensorFlow containers and tags them based on sup-
ported optimisations. Based on the selected optimisations in
the DSL, MODAK selects the optimised container. MODAK
can also build a container during deployment.

Listing 1. Example Optimisation DSL

” o p t i m i s a t i o n ” : {
” e n a b l e o p t b u i l d ” : t r u e ,
” a p p t y p e ” : ” a i t r a i n i n g ” ,
” o p t b u i l d ” : {

” c p u t y p e ” : ” x86 ” ,
” a c c t y p e ” : ” N v i d i a ”} ,

” a i t r a i n i n g ” : {
” t e n s o r f l o w ” : {

” v e r s i o n ” : ” 1 . 1 ” ,
” x l a ” : t r u e }}}

B. Containers for AI frameworks
For MODAK, we created and evaluated AI framework

containers on the SODALITE HPC testbed set up at HLRS, the
research and supercomputing center affiliated to the University
of Stuttgart [48]. The testbed consists of a front-end node
running Torque, and five compute nodes, each hosting an
Nvidia GeForce GTX 1080 Ti GPU, an Intel(R) Xeon(R) CPU
E5-2630 v4 processor, and 125GB of main memory. All nodes
allow access via https.

The container runtime installed on the system is Singularity
version 3.4.1-1. In order to build and run containers, an admin-
istrator has to add additional mappings to the Singularity user

TABLE I
SOURCE OF AI FRAMEWORK CONTAINERS.

AI Framework version Hub pip opt-build
TensorFlow 1.14 X X
TensorFlow 2.1 X X X
PyTorch 1.4 X X X
MXNet 1.6 X
CNTK 2.7 X
XLA 2.1 X X X
GLOW NA X
nGraph 1.14 X

namespace UID and GID files to enable the use of fakeroot,
a feature used to impersonate root without superuser escalation
[49].

We determined which frameworks and graph compilers to
benchmark based on popularity, availability of images, clarity
of build instructions and documentation. Table I lists the
set of AI framework images, graph compilers, versions, and
their source. Official project images were downloaded from
DockerHub (Hub) or packaged as Singularity containers using
the Python package manager (pip) or by following the source
build instructions available on the project websites (opt-build).
We ensured that optimisation libraries were available and
matched across the official and our images (e.g. TensorFlow
XLA, etc.). Note that, while XLA is listed separately in the
table, it is auto-built as part of the TensorFlow framework.
For XLA and nGraph, the supported TensorFlow version is
specified.

The DockerHub containers were retrieved using the Singu-
larity pull command, which directly ports Docker containers
to Singularity .sif files. We chose the images tagged with
the required version and a cpu or gpu target to establish
a baseline for comparison.

To build the remaining containers, we created Singular-
ity definition files. The definition files are composed of a
header that describes the operating system (OS) used within



the container, and multiple sections for pre-build setup, file
importation into container, container environment setup, post
OS installation container commands, etc.

As dependencies differ depending on whether containers
execute CPU or GPU workloads, we developed two base OS
containers to be called on in the definition header and used
by our custom built containers.

C. Containers for CPU
The CPU enabled containers use a custom built Ubuntu

18.04 image as the base OS in the header. The image includes
the packages llvm-8, clang-8, and Python3. The remaining
build instructions are encoded in the post OS installation
section. For the pip based containers, this includes adding
commands that install additional dependencies, followed by
the pip command to install the framework or compiler as per
project instructions.

Similarly, the source build containers have all installation
instructions encoded in the post section and adhere to the
instructions given by the individual projects’ documentation
[50]–[52]. Where applicable, compiler optimisation flags were
set to improve performance on the CPU. TensorFlow, specifi-
cally, uses the build tool Bazel, which accepts compiler flags
via the argument --copt.

D. Containers for GPU
The GPU containers use NVIDIA DockerHub images con-

taining the NVIDIA-kernel, cuda toolkit 10.1, cudNN7, and
Ubuntu 18.04 as the base OS. We chose the NVIDIA base
image to avoid portability issues and ease dissemination, as
it is not possible to retrieve cudNN7 via the command line.
All NVIDIA package paths are then set in the container
environment section to enable their use for source builds.

The remainder of the container build file is similar to
that of the CPU containers. The source build commands are
set in the post section of the file, with changes made to
reflect differences in GPU builds, especially pertaining to the
TensorFlow build.

All containers - CPU and GPU - are then built using the
Singularity build command with the --fakeroot flag set.
Depending on the framework or graph compiler, this build
can take from a couple of minutes to multiple hours. The
built containers can then be run interactively, or launched
to execute specific commands. Note that Singularity places
strong restrictions on GPU containers - the container must have
the nvidia-kernel and any other dependencies such as CUDA
installed, and the nvidia-kernel version must match the host
nvidia-kernel version. This requirement can be circumvented
by using the Singularity NVIDIA flag --nv when launching
containers.

E. Benchmarks
We measured container performance by performing image

classification training and timing the execution of a set number
of epochs. To properly assess the frameworks on both CPU
and GPU, we chose to train on two datasets, MNIST [53] for
the CPU workload, and ImageNet [54] for the GPU workload.

MNIST training is an image classification problem for
handwritten digits [55] [56]. MNIST itself refers to a dataset of
60,000 gray-scale images containing handwritten digits from
0 to 9.

ImageNet is a database that consists of more than 14 million
hand-annotated images in 20,000 categories. The dataset, pub-
lished in 2009, eventually evolved into the annual ImageNet
Large Scale Visual Recognition Competition (ILSVRC) [57],
at which AlexNet [4] achieved a novel 15.3% top-5 error rate
in 2012, setting off a longterm trend of running DL workloads
on GPUs.

The MNIST dataset was trained on a CNN consisting of a
combination of two convolutional layers, two maxpool layers,
two fully connected layers, and a softmax activation function.
For all benchmarks, we used a batch size of 128, image size
of (28,28), and trained the network with 1,199,882 trainable
parameters for 12 epochs.

Fig. 3. Performance of various AI framework containers on CPU MNIST
training workload

For the ImageNet training, we used the ResNet50 [58]
residual network, a fifty-layer deep neural network. Residual
networks use skip connections to pass residual functions,
minimizing the problem of vanishing or exploding gradients
[59] and permitting the use of far deeper networks. For all
ResNet50 benchmarks, we used single precision, a batch size
of 96, and trained for 3 epochs.

We wrote the MNIST and ImageNet workloads using the
DSL of each framework and graph compiler. The workloads
were submitted to one node exclusively per job using a Torque
submission file. The training was not performed to conver-
gence but instead stopped after 12 epochs for MNIST, and 3
epoch for ImageNet. This considerably shortened training time
as we had determined in previous experiments that the main
overhead occurred during the first epoch, while timing results
for all remaining epochs remained stable.

VI. RESULTS

In the section, we discuss initial results generated by our
benchmarks. In all figures, the Y-axis denotes the wallclock
time in seconds required to complete 12 epochs of MNIST
training, or the average time per epoch of ResNet50 training.



Also TFx.x refers to TensorFlow version x.x, src post-fix refers
to the optimal source built container and XLA or NGRAPH
post-fix denotes is that graph compiler is enabled. PyTorch
version 1.4 is used for all comparisons.

Fig. 4. Performance of AI framework containers custom built from source.
Left - MNIST CNN training in CPU only. Right- ResNet50 in GPU.

The results of Figure 3 show the performance of the
DockerHub containers for MNIST CNN training on CPU only.
Graph compilers are not enabled for these results. As can be
seen, TensorFlow 1.14, PyTorch, and MXNet (v1.6) perform
similarly across the board, with the exception of TensorFlow
2.1, which shows a nearly 54% improvement over TensorFlow
1.14, likely due to eager execution being enabled by default
starting from TensorFlow 2.0, while TensorFlow 1.14 uses
graph execution. CNTK (v2.7) is a far outlier due to a lack
of CPU optimisations, as mentioned in the official documen-
tation. Note that MXNet and CNTK were only evaluated for
comparison purposes and no further containers were evaluated
beyond those attained from DockerHub.

Figure 4 (left) compares the training time of MNIST CNN in
custom built containers to that of DockerHub containers. The
TensorFlow custom built container shows little improvement
(4%) compared to the DockerHub container, whereas the
PyTorch container gives a substantial 17% speedup over the
official DockerHub one.

Figure 4 (right) shows the result of ResNet50 training on Im-
ageNet data with a custom built AI framework for the NVIDIA
GPUs. A slight 2% performance improvement is visible for
both TensorFlow and PyTorch source built containers. We see
a similar performance for MXNet containers.

Figure 5 (left) compares the performance of TensorFlow in
combination with XLA and nGraph for MNIST CNN training
on a CPU. XLA is supported in most versions of TensorFlow,
whereas nGraph is not yet supported for TensorFlow 2.x.
We evaluated XLA on the latest standard release version 2.1,
and nGraph on TensorFlow 1.4. A marked performance loss
can be observed when running TensorFlow with XLA on the
CPU. This is likely due to the fact that the XLA team has in
recent years focused exclusively on the optimisation of just
in time compilation on GPUs, and the overhead induced by
the additional graph compilations on a simple network like

MNIST [42]. nGraph, on the other hand, shows speedup with
a 30% improvement.

Fig. 5. Performance of AI framework containers with graph compilers. Left
- MNIST CNN training in CPU only. Right- ResNet50 in GPU.

Figure 5 (right) shows the performance of the TensorFlow
2.1 source build using XLA on the ResNet50 for ImageNet
workload on a GPU. The performance is improved by 9%
using XLA, which is significantly better than the 30% perfor-
mance degradation seen on the CPU.

We are currently evaluating the GLOW graph compiler
container on CPU and GPU, and the nGraph graph compiler
on the GPU. Thus far, the benchmark results show a trend
of custom-built, hardware-targeted containers improving per-
formance. For graph compilers, the optimisation results are
dependent on the neural network and the target hardware.

VII. CONCLUSIONS

Software-defined infrastructures offer flexibility in deploy-
ing AI training workloads across heterogeneous targets. With
diverse hardware, optimising AI workloads with different
configurations and data sets is mandatory. We introduced
MODAK, a novel tool that maps optimal application pa-
rameters to infrastructure using performance modelling and
container technology. We demonstrated the usage of MODAK
by optimising AI training deployments with graph compilers
and Singularity containers. We showed an up to 17% speedup
using custom built optimised containers and up to a 30%
speedup using graph compilers. We also found use cases where
graph compilers slowed the training. These benchmark results
are then used to model the performance and optimise similar
training workloads.

FUTURE WORK

Additional work is required to benchmark GLOW and
nGraph on PyTorch and MXNet, as well as any emerging com-
pilers. We plan to extend our containers to encompass more
HPC specific workloads, such as MPI applications. Finally,
while Singularity containers are the preferred runtime for HPC,
we will port the images to Docker for easier dissemination of
the project.



ACKNOWLEDGMENT

This work has received funding from the European Unions
Horizon 2020 research and innovation program under grant
agreement No 825480. We would like to acknowledge col-
leagues at the HPE HPC/AI EMEA Research lab and SO-
DALITE for their support. We also thank Tim Dykes for proof-
reading this paper and Irene Ferrario and Harvey Richardson
for the support and guidance.

REFERENCES

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The
history began from alexnet: A comprehensive survey on deep learning
approaches,” arXiv preprint arXiv:1803.01164, 2018.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[8] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2016, pp. 2135–2135.

[9] F. Chollet et al., “Keras,” https://keras.io, 2015.
[10] 2020. [Online]. Available: https://www.terraform.io
[11] 2020. [Online]. Available: https://cloudify.co/
[12] M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple linux

utility for resource management,” in In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 2002, pp. 44–60.

[13] D. Klusáček, V. Chlumskỳ, and H. Rudová, “Planning and optimization
in torque resource manager,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing,
2015, pp. 203–206.

[14] 2020. [Online]. Available: http://heterogeneityalliance.eu
[15] 2020. [Online]. Available: https://project-cola.eu
[16] 2020. [Online]. Available: http://www.tango-project.eu
[17] 2020. [Online]. Available: https://hidalgo-project.eu
[18] 2020. [Online]. Available: https://exa2pro.eu
[19] 2020. [Online]. Available: www.ecoscale.eu
[20] Sodalite. https://www.sodalite.eu/, last accessed 10 June 2020.
[21] M. Baughman, R. Chard, L. T. Ward, J. Pitt, K. Chard, and I. T. Foster,

“Profiling and predicting application performance on the cloud.” in UCC,
2018, pp. 21–30.

[22] C. Wu, T. Summer, Z. Li, A. Woodard, R. Chard, M. Baughman,
Y. Babuji, K. Chard, J. Pitt, and I. Foster, “Paraopt: Automated appli-
cation parameterization and optimization for the cloud,” in 2019 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2019, pp. 255–262.

[23] M. Mohammadi and T. Bazhirov, “Comparative benchmarking of cloud
computing vendors with high performance linpack,” in Proceedings of
the 2nd International Conference on High Performance Compilation,
Computing and Communications, 2018, pp. 1–5.

[24] ——, “Continuous evaluation of the performance of cloud infrastructure
for scientific applications,” arXiv preprint arXiv:1812.05257, 2018.

[25] 2020. [Online]. Available: https://www.epcc.ed.ac.uk/blog/2020/06/
benchmarking-oracle-bare-metal-cloud-dirac-hpc-workloads

[26] T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam, “Con-
fadvisor: A performance-centric configuration tuning framework for
containers on kubernetes,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2019, pp. 168–178.

[27] Aws compute optimizer. https://aws.amazon.com/compute-optimizer/,
last accessed 12. June 2020.

[28] S. Krishnan and J. L. U. Gonzalez, “Google compute engine,” in
Building your next big thing with Google cloud platform. Springer,
2015, pp. 53–81.

[29] D. Brayford, S. Vallecorsa, A. Atanasov, F. Baruffa, and W. Riviera,
“Deploying ai frameworks on secure hpc systems with containers.” in
2019 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1–6.

[30] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–10.

[31] K. Sivalingam et al., “Prototype of application and infrastructure
performance models,” in SODALITE Deliverables. EC, 2020.
[Online]. Available: https://www.sodalite.eu/deliverables

[32] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[33] M. Helsley, “Lxc: Linux container tools,” IBM devloperWorks Technical
Library, vol. 11, 2009.

[34] A. M. Joy, “Performance comparison between linux containers and
virtual machines,” in 2015 International Conference on Advances in
Computer Engineering and Applications. IEEE, 2015, pp. 342–346.

[35] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[36] L. Gerhardt, W. Bhimji, M. Fasel, J. Porter, M. Mustafa, D. Jacobsen,
V. Tsulaia, and S. Canon, “Shifter: Containers for hpc,” in J. Phys. Conf.
Ser., vol. 898, 2017, p. 082021.

[37] Singularity. https://sylabs.io/singularity/, last accessed 10. June 2020.
[38] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific

containers for mobility of compute,” PloS one, vol. 12, no. 5, 2017.
[39] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, and

M. Vázquez, “Containers in hpc: A scalability and portability study in
production biological simulations,” in 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 567–
577.

[40] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti, “Sarus: Highly
scalable docker containers for hpc systems,” in International Conference
on High Performance Computing. Springer, 2019, pp. 46–60.

[41] Xla: Optimizing compiler for machine learning : Tensorflow. https://
www.tensorflow.org/xla, last accessed 15. June 2020.

[42] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow Dev
Summit, 2017.

[43] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein et al., “Glow: Graph
lowering compiler techniques for neural networks,” arXiv preprint
arXiv:1805.00907, 2018.

[44] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[45] W.-F. Lin, D.-Y. Tsai, L. Tang, C.-T. Hsieh, C.-Y. Chou, P.-H. Chang, and
L. Hsu, “Onnc: A compilation framework connecting onnx to proprietary
deep learning accelerators,” in 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019, pp.
214–218.

[46] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel® Xeon Phi. Springer, 2014, pp. 167–188.

[47] L. Brown, “Gpu accelerated deep learning with cudnn,” GTC, 2015.
[48] Hlrs - high-performance computing center — stuttgart. https://www.hlrs.

de/home/, last accessed 17. June 2020.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://keras.io
https://www.terraform.io
https://cloudify.co/
http://heterogeneityalliance.eu
https://project-cola.eu
http://www.tango-project.eu
https://hidalgo-project.eu
https://exa2pro.eu
www.ecoscale.eu
https://www.sodalite.eu/
https://www.epcc.ed.ac.uk/blog/2020/06/benchmarking-oracle-bare-metal-cloud-dirac-hpc-workloads
https://www.epcc.ed.ac.uk/blog/2020/06/benchmarking-oracle-bare-metal-cloud-dirac-hpc-workloads
https://aws.amazon.com/compute-optimizer/
https://www.sodalite.eu/deliverables
https://sylabs.io/singularity/
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://www.hlrs.de/home/
https://www.hlrs.de/home/


[49] User namespaces and fakeroot. https://sylabs.io/guides/3.5/admin-guide/
user namespace.html#adding-a-fakeroot-mapping, last accessed 15.
June 2020.

[50] Tensorflow: Build from source. https://www.tensorflow.org/install/
source, last accessed 10. June 2020.

[51] Pytorch: From source. https://github.com/pytorch/pytorch#from-source,
last accessed 10. June 2020.

[52] Glow. https://github.com/pytorch/glow, last accessed 10. June 2020.
[53] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[Online]. Available: http://yann.lecun.com/exdb/mnist/
[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[55] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[57] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[59] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies,”
2001.

https://sylabs.io/guides/3.5/admin-guide/user_namespace.html#adding-a-fakeroot-mapping
https://sylabs.io/guides/3.5/admin-guide/user_namespace.html#adding-a-fakeroot-mapping
https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source
https://github.com/pytorch/pytorch#from-source
https://github.com/pytorch/glow
http://yann.lecun.com/exdb/mnist/

	I Introduction
	II Related Work
	III MODAK
	IV Background
	IV-A Container technology
	IV-B Graph compilers

	V Methodology
	V-A MODAK AI Training Example
	V-B Containers for AI frameworks
	V-C Containers for CPU
	V-D Containers for GPU
	V-E Benchmarks

	VI Results
	VII Conclusions
	References

