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Abstract—Pandemic measures such as social distancing and
contact tracing can be enhanced by rapidly integrating dynamic
location data and demographic data. Projecting billions of longi-
tude and latitude locations onto hundreds of thousands of highly
irregular demographic census block polygons is computationally
challenging in both research and deployment contexts. This
paper describes two approaches labeled “simple” and “fast”. The
simple approach can be implemented in any scripting language
(Matlab/Octave, Python, Julia, R) and is easily integrated and
customized to a variety of research goals. This simple approach
uses a novel combination of hierarchy, sparse bounding boxes,
polygon crossing-number, vectorization, and parallel processing
to achieve 100,000,000+ projections per second on 100 servers.
The simple approach is compact, does not increase data storage
requirements, and is applicable to any country or region. The fast
approach exploits the thread, vector, and memory optimizations
that are possible using a low-level language (C++) and achieves
similar performance on a single server. This paper details these
approaches with the goal of enabling the broader community to
quickly integrate location and demographic data.

I. INTRODUCTION

Pandemics require urgent solutions to a variety of problems
[1]. Teams must rapidly assemble, address a problem, and
broadly communicate their approach. This paper describes a
solution developed by a team of individuals that came together
virtually over a period of days to accelerate integrating location
and demographic data. The availability of devices capable
of registering and transmitting location data has increased
dramatically over the last decade. The billions of locations
produced every day by these devices is a valuable resource for
enabling social distancing, contact tracing, and other pandemic
measures [2], [3].

Location data can be significantly enriched when integrated
with demographic information found in publicly available
United States census data, such as population density and age
distribution. Coupling these data requires rapidly projecting
longitude and latitude locations onto hundreds of thousands of
highly irregular census block polygons. The point-in-polygon
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join problem has been extensively studied (see [4] and ref-
erences therein [5]–[18]). The specific problem of mapping
latitude and longitude points to U.S. census blocks [19], [20]
is available via a variety of services [21], [22]. In addition, our
community offered up a wide range of additional suggestions
[23]–[27].

Context plays an important role in selecting fast mapping
approaches. A researcher prototyping an application may
prefer a simple approach that can be readily integrated into a
high-level rapid prototyping environment. A developer seeking
to maximize performance for a given cost may prefer a more
optimized black-box approach that maximizes throughput for
a given amount of hardware. Ultimately, our work focused
on two approaches labeled “simple” and “fast”. The sim-
ple approach can be implemented in any scripting language
(Matlab/Octave, Python, Julia, R) and is easily integrated
and customized to a variety of research goals. This sim-
ple approach uses a novel combination of hierarchy, sparse
bounding boxes, polygon crossing-number, vectorization, and
parallel processing. The simple approach is compact, does
not increase data storage requirements, and is applicable to
any country or region. The fast approach exploits the thread,
vector, and memory optimizations that are possible using a
low-level language (C++) to achieve optimal performance.
The rest of this paper details these approaches as follows.
A brief description of the location data and the census block
polygon data is provided. The simple mapping approach and
the fast mapping approaches are described. The performance
results as a function number of points, processing threads, and
processing cores are given. Matlab/Octave code for the simple
approach is provided in an Appendix and its inpolygon()
routine is available on GitHub [28]. The code for the fast
approach is also available on GitHub [29].

II. DATA

The location data can be derived from a wide range of
sources. For the purpose of this work, all location data consist
of vectors of longitudes, xpt, and latitudes, ypt, that are
stored in memory as IEEE double-precision floating point
numbers. Demographic boundary data can be any hierarchical
representation of the data from anywhere on the world. The
United States census boundary data consists of 56 states and
territories, 3233 counties, and 219831 census block groups
[30], [31] (which we refer to as “census blocks” for brevity).
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These data consist of names, polygon boundaries (xpoly,
ypoly), bounding boxes (xmin, xmax, ymin, ymax), and Federal
Information Processing Standards (FIPS) codes. The precise
processing goal is to rapidly produce FIPS codes for many
latitude and longitude points. Figure 1 illustrates the polygon
boundary for the Commonwealth of Massachusetts (solid
blue), its bounding box (dashed blue), and the bounding box
of its neighboring states. Polygon boundaries range from a few
points to thousands of points. Similar polygons and bounding
boxes exist for the county and census block group levels in
the census hierarchy.
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Fig. 1. Massachusetts (MA) boundary (solid blue) and bounding box (dashed
blue) along with bounding boxes (red) of the neighboring states: New York
(NY), Connecticut (CT), Rhode Island (RI), Maine (NH), New Hampshire
(NH), and Vermont (VT).

III. SIMPLE MAPPING APPROACH

Determining if a set of points is in a polygon is done
through calls to an inpolygon() function, which has typical
computational complexity per point of O(Npoly log(Npoly)),
where Npoly is the number of vertices of the polygon. Primary
goals of a fast mapping algorithm are minimizing the number
of inpolygon() calls and using the fastest inpolygon()
implementation. Other goals include minimizing the memory
required, minimizing function call overheads, and minimizing
the complexity of the algorithm.

Testing points against bounding boxes is significantly faster
than calling inpolygon(). For example, it is possible
to test all points against state bounding boxes using the
expression

Ain = (xpt > xT
min) & (xpt < xT

max) &

(ypt > yT
min) & (ypt < yT

max)

where

T = transpose operation
& = logical and
> = logical greater-than sparse outer product
< = logical less-than sparse outer product

The resulting Npt×Nstate sparse matrix Ain has the property
that

Ain(i, j) = 1

if point i is in the bounding box of state j. Let 1 be an Nstate×
1 column vector of 1’s. If

Ain(i, :)1 = 1

then point i is only in the bounding box of state j and no
inpolygon() calculations are required. If

Ain(i, :)1 > 1

then inpolygon() only needs to be performed on point i for
only those states j such that Ain(i, j) = 1. Furthermore,
all points that need to be tested against state j can be
determined from the column vector Ain(:, j), allowing many
points to be processed with a single call to inpolygon().
The computation of Ain is dominated by the > and < sparse
outer products. Fortunately, modern sparse matrix libraries that
are readily available in high-level programming environments
allow these sparse outer products to be vectorized so they can
be performed very efficiently on many points at once [32]–
[43].

To minimize the number of inpolygon() calls, the
simple algorithm uses bounding box computations along with
the natural hierarchy provided by the state, county, and block
levels as follows

1) State level
a) Test each point against the state bounding boxes
b) For points in more than one state bounding box,

test with inpolygon()

2) County level
a) Test each point against the county bounding boxes

of its state
b) For points in more than one county bounding box,

test with inpolygon()

3) Block level
a) Test each point against the block bounding boxes

of its county
b) For points in more than one block bounding box,

test with inpolygon()

In the above algorithm, inpolygon() evaluations only need
to be performed on ∼20% of all points (∼0.2 inpolygon()
evaluations per point). Furthermore, the points can be orga-
nized so that many points can be tested against the same
polygon at once. Vectorizing the inpolygon() invocation
to process many locations at once reduces the total number of
inpolygon() calls and minimizes the total call overhead,



which can be significant in high-level programming environ-
ments.

A. Polygon Crossing-Number

inpolygon() returns the inside/outside status for a set
of locations and a general polygon embedded in the two-
dimensional plane (see Figure 2) [28]. General non-convex
and multiply-connected polygonal regions can be handled so
the input can be convex or concave, as long as it is not self-
intersecting. inpolygon() is based on a crossing-number
test (introduced in [44]), counting the number of times a line
extending from each point past the rightmost region of the
polygon intersects with the polygonal boundary. Points with
odd counts are inside the polygon. A simple implementation
requires that each of Npoly edges be checked for each of Npt

points, leading to an overall complexity of

O(NptNpoly)

This implementation seeks to improve these bounds. Query
points are sorted by y-value and candidate intersection sets
are determined via binary search. Given a configuration with
an average point-edge overlap of H , the overall complexity
scales as

O(NpolyH +Npoly log(Npt) +Npt log(Npt))

where O(Npt log(Npt)) operations are required for the initial
sorting, O(Npoly log(Npt)) operations are required for the set
of binary searches, and O(NpolyH) operations are required for
the actual intersection tests. H is typically small on average,
such that H << Npt. Overall, this leads to a fast complexity
for average cases

O((Npt +Npoly) log(Npt))

Likewise, in well-distributed cases where the number of points
overlapping with each edge are on average

H ≈ Npt/Npoly

then the overall expected complexity is

O((Npoly +Npt) log(Npt) +Npt)

B. Data Structure

The simple approach requires rearranging the state, county,
and census block group polygons so that bounding box compu-
tations can be rapidly performed and many points can be tested
simultaneously against the same census block group polygon.
At the top country level, this data structure is called us and
has the following fields containing the state FIPS, bounding
box, polygon points, and a state structure for each of 56 state
entities

us.stateFP: [56x1 double]
us.stateBB: [56x4 double]
us.stateXY: [56x1 struct]
us.state: [1x56 struct]

For the Commonwealth of Massachusetts these values are

Fig. 2. inpolygon() returns the inside (blue dots) or outside status (red
dots) for a set of locations and a general polygon (green) embedded in the
two-dimensional plane.

us.stateFP(8) = 25
us.stateBB(8,:) =

[-73.5081 -69.9284 41.2380 42.8866]
us.stateXY(8).X = [1x2612 double]
us.stateXY(8).Y = [1x2612 double]

The us.state structure contains the corresponding
county FIPS, bounding box, polygon points, and a county
structure for each county in each state entity. For the Com-
monwealth of Massachusetts there are 14 counties

us.state(8).countyFP: [14x1 double]
us.state(8).countyBB: [14x4 double]
us.state(8).countyXY: [14x1 struct]
us.state(8).county: [1x14 struct]

For Middlesex County in the Commonwealth of Massachusetts
the values are

us.state(8).countyFP(5) = 17
us.state(8).countyBB(5) =

[-71.8988 -71.0204 42.1568 42.7366]
us.state(8).countyXY(5).X = [1x508 double]
us.state(8).countyXY(5).Y = [1x508 double]

The us.state.county structure contains the corre-
sponding block FIPS, full FIPS, bounding box, and polygon
points for each census block group in each county. The county
of Middlesex contains 1133 census block groups

us.state(8).county(5).blockFP: [1133x1 double]
us.state(8).county(5).blockFIPS: [1133x12 char]
us.state(8).county(5).blockBB: [1133x4 double]
us.state(8).county(5).blockXY: [1133x1 struct]

For one census block group at MIT in Middlesex County these
values are

us.state(8).county(5).blockFP(488) = 3531012
us.state(8).county(5).blockFIPS(488,:) = 250173531012
us.state(8).county(5).blockBB(488,:) =

[-71.1021 -71.0908 42.3604 42.3660]
us.state(8).county(5).blockXY(488).X = [1x74 double]
us.state(8).county(5).blockXY(488).Y = [1x74 double]

The above structure can be readily computed from standard
census data, does not increase the memory requirements of



the data, and enables rapid execution of the simple approach
to assigning locations to census block group polygons.

IV. FAST MAPPING APPROACH

Traditional point-in-polygon join algorithms [8] follow the
filter and refine approach where polygons are prefiltered,
typically using bounding boxes, and then refined using com-
putationally expensive point-in-polygon (PIP) tests.

Our fast approach is based on recent work on efficient in-
memory point-polygon joins [4], [45] that makes use of a
technique called true hit filtering [6]. Using interior approxi-
mations of polygons, this technique allows the identification of
join partners already in the filter phase and thus skip expensive
refinements in most, if not in all, cases.

Polygons are approximated by using non-overlapping cells
of different sizes with each cell mapping to one or multiple
polygons. A cell either lies fully within a polygon (interior
approximation) or covers its boundary. These approximations
are constructed such that most of the polygons’ area is covered
by interior cells. Figure 3 shows this approximation for the
census block groups in the Boston area. Interior cells are
marked in green and boundary cells are marked in blue. Only
in the unlikely event that a query point falls into a boundary
cell will a PIP test be performed.

Boston

Cambridge

Fig. 3. Cambridge and Boston census polygons. Hierarchical cells correspond
to exactly one polygon (green) and one or more polygons (blue).

Besides exact results, our fast approach can provide error-
bounded approximate results. When a query point hits a
boundary cell in approximate mode, we skip the PIP test
and deem the point to be within the polygon. To control
the maximum error (distance) of false positives from their
assigned polygon, we subdivide boundary cells into smaller
cells such that we guarantee a user-defined precision. For
details on this algorithm, we refer to [45].

While the exact and the approximate mode significantly re-
duce the number of or even completely eliminate PIP tests, the
drawback is much higher build time and memory consumption
compared to our simple approach.

As mentioned before, cells in the polygon approximation do
not overlap. That is, a query point, which is a cell on the most

fine-grained grid level, will have at most one matching cell.
All cells are represented as unsigned 64-bit integers obtained
by mapping latitude/longitude coordinates to a cube encom-
passing the earth. Each cube face is recursively subdivided in
a quadtree fashion (each cell is split into four child cells). For
details on this mapping, we refer to documentation on the S2
Geometry library [46].

To efficiently find the matching cell for a query point, we
index the cells in a radix tree (trie) data structure. Compared to
the O(log n) lookup complexity of a B-tree or a binary search
on a sorted vector, lookups in a trie are in O(k) with k being
the key length (64 in this case). By using a high tree fanout, the
number of node accesses can be further reduced. For example,
in our implementation we index up to four quadtree levels per
trie level. Since it requires two bits to encode a quadtree level,
we consume up to 8 bits per trie level (a trie node fanout of
28 = 256). Another advantage of using a radix tree over a B-
tree is that larger cells are indexed closer to the root. Assuming
that larger cells are also more likely to be hit by query points,
this indexing yields an additional performance benefit.

V. PERFORMANCE

Our team has developed a high-productivity scalable
platform—the MIT SuperCloud—for providing scientists and
engineers the tools they need to analyze large-scale dynamic
data [47], [48]. The MIT SuperCloud provides interactive
analysis capabilities accessible from high-level programming
environments (Python, Julia, Matlab/Octave) that scale to
thousands of processing nodes. Sparse matrices can be ma-
nipulated on the MIT SuperCloud using distributed databases
(SciDB and Apache Accumulo), D4M associative arrays [49]–
[51], and now the SuiteSparse GraphBLAS hypersparse ma-
trix library [52]. The benchmarking was performed on the
MIT SuperCloud TX-GAIA system (Technology eXperiment -
Green Artificial Intelligence Accelerator) consisting of several
hundred nodes each with 40 Intel processing cores and 384 GB
of RAM with access to a multi-petabyte Lustre filesystem [53].
The test location data points were drawn from a representative
set consistent with mobile device locations.

The simple approach was run in parallel on the MIT
SuperCloud using a parallel Matlab library for Matlab/Octave
[54]. The single-core performance as a function of the number
points is shown in Figure 4 and peaks between 106 and 107

points at a rate of 45K location assignments per second (lat-
lon → census blocks). This peak is most likely due to a
balance between the reduced call overhead of using larger
numbers of points being offset by less data fitting into higher-
speed cache memory. The simple algorithm is easy to run in
parallel as different locations can be processed separately on
different processing cores. Figure 5 shows the performance
as a function of the number of cores. The performance on
cores 1, 2, 4, 8, 16, and 32 are on a single node. Running
more than 32 instances on a single node did not improve
performance. The performance increases linearly up to 16
cores on a node. Beyond 32 cores, multiple nodes are used
and the performance scales linearly, achieving 275M location



assignments per second on 256 nodes using 8192 out of 10240
cores.
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Fig. 4. Simple Approach: Single-core rate of location (lat-lon) conversion to
census blocks as a function of the number of location points processed.
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Fig. 5. Simple Approach: Rate of location (lat-lon) conversion to census
blocks as a function of the number of processing cores used.

Both approximate and exact versions of the fast approach
were run in parallel on a single MIT SuperCloud node. F1,
F2, and F4 denote different trie fanouts with one, two, and
four quadtree levels per trie level, respectively. The grid
resolution remains the same across these configurations. That
is, all of them require the same number of PIP tests (zero
in approximate mode). However, with a higher trie fanout,
we accelerate the index lookup by trading memory footprint
for lookup performance. In addition, measurements were also
made using S2ShapeIndex, which is part of the S2 Geometry
library [46]. In contrast to our fast approach, S2ShapeIndex
uses a more coarse-grained grid and uses a B-tree. It provides
exact results and does not offer an approximate mode. The
single-core performance as a function of the number points is
shown in Figure 6 and peaks beyond 106 points at a rate of a

few million location assignments per second (lat-lon→ census
blocks). We observe a higher impact of the fanout (F1, F2,
and F4) in approximate mode than in exact mode. The reason
is that approximate is dominated by index lookups since it
does not perform any PIP tests. The fast algorithm is run in
parallel on a single node by enabling more threads. Figure 7
shows the performance as a function of the number of threads
demonstrating 100M exact location assignments per second.
The performance peaks at 80 threads, which corresponds to
the number of physical threads on the node (each core has two
hardware threads).
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Fig. 6. Fast Approach: Single-core rate of location (lat-lon) conversion to
census blocks as a function of the number of location points processed.
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Table I shows the space consumption of the different
indexes. Our approximate approach consumes almost 90 GiB
in its most query-efficient configuration. If space is an issue,
one can represent the radix tree in a compact manner that
reduces its size to 10% while still yielding 50% of its perfor-
mance [55].



TABLE I
MEMORY SIZE REQUIREMENTS FOR FAST APPROACHES.

Approach Size (GiB)
Approx30-F1 39.97
Approx30-F2 94.52
Approx30-F4 89.37
Exact-F1 1.74
Exact-F2 2.57
Exact-F4 14.59
Google 1.69

VI. CONCLUSION

Social distancing and contact tracing are pandemic mea-
sures that can be made more effective by quickly merging
demographic data with location data. Computing the census
block groups of billions of longitude and latitude locations
is computationally challenging and requires performing point-
in-polygon evaluations with hundreds of thousands of highly
irregular demographic census block group polygons. This
paper offers two approaches for performing these calcula-
tions that are appropriate for different contexts. A simple
approach is described that can be implemented in any high-
level language to enable a variety of research goals. The simple
approach combines hierarchical evaluation, sparse bounding
boxes, polygon crossing-number, vectorization, and parallel
processing to achieve 100,000,000+ projections per second
on 100 servers. The simple approach is compact, does not
increase data storage requirements, and is applicable to any
country or region. A fast approach is also measured that
exploits the thread, vector, and memory optimizations that are
possible using a low-level language (C++). The fast approach
achieves similar performance on a single server. This paper
details these approaches with the goal of enabling the broader
community to quickly integrate location and demographic
data.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals
for their contributions and support: Richard Barnes, Enric
Boix, Taylor Campbell, Klee Dienes, Yevhenii Diomidov, Dan
Feldman, Gregory Galperin, Piotr Indyk, Irwin Jungreis, Ian
Katz, Bradley Kuszmaul, Jayson Lynch, Jelani Nelson, Adam
Polak, Christopher Rackauckas, Olivia Siegel, Gerald Suss-
man, Ilya Shlyakhter, Dan Strawser, Alan Edelman, Charles
Leiserson, Bob Bond, Adam Norige, Dave Martinez, Steve
Rejto, Ed Wack, and Marc Zissman.

REFERENCES

[1] E. Moturi, K. Horton, L. Bell, L. Breakwell, and E. Dueger, “Panstop: a
decade of rapid containment exercises for pandemic preparedness in the
who western pacific region,” Western Pacific Surveillance and Response
Journal: WPSAR, vol. 9, no. 5 Suppl 1, p. 71, 2018.

[2] K. T. Eames and M. J. Keeling, “Contact tracing and disease control,”
Proceedings of the Royal Society of London. Series B: Biological
Sciences, vol. 270, no. 1533, pp. 2565–2571, 2003.

[3] C. J. Wang, C. Y. Ng, and R. H. Brook, “Response to covid-19 in taiwan:
big data analytics, new technology, and proactive testing,” JAMA, 2020.

[4] A. Kipf, H. Lang, V. Pandey, R. A. Persa, C. Anneser, E. T. Zacharatou,
H. Doraiswamy, P. A. Boncz, T. Neumann, and A. Kemper, “Adap-
tive main-memory indexing for high-performance point-polygon joins,”
in Proceedings of the 23nd International Conference on Extending
Database Technology, EDBT 2020, Copenhagen, Denmark, March 30
- April 02, 2020 (A. Bonifati, Y. Zhou, M. A. V. Salles, A. Böhm,
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APPENDIX A
SIMPLE APPROACH: PROGRAM

function ptBlockFIPS = findCensusBlock(us,Xpt,Ypt)
% Assign pionts to census map blocks
Npt = length(Xpt);

Nstate = length(us.stateFP);
Xmin = sparse(us.stateBB(:,1).’);
Xmax = sparse(us.stateBB(:,2).’);
Ymin = sparse(us.stateBB(:,3).’);
Ymax = sparse(us.stateBB(:,4).’);

% Test each point against each state bounding box.
ptStateBB = (Xpt > Xmin) & (Xpt < Xmax) & ...

(Ypt > Ymin) & (Ypt < Ymax);

ptStateMat = ptStateBB;
ptStateBBcheck = ptStateBB;

% Leave points in more than one bounding box.
ptStateBBcheck(sum(ptStateMat,2) == 1,:) = 0;

% Resolve points in more than one state bounding box.
nonEmptyStates = find(sum(ptStateBB,1));
for i=nonEmptyStates
% Find points in the state bounding box.
j = find(ptStateBBcheck(:,i));
inState = 0;
if nnz(j)
inState = inpolygon2(Xpt(j),Ypt(j),us.stateXY(i).X,us.stateXY(i).Y);
if nnz(inState)
ptStateMat(j(inState),:) = 0;
ptStateMat(j(inState),i) = 1;
ptStateBBcheck(j(inState),:) = 0;

end
end

end

% Create state vector for each point.
[ii jj vv] = find(ptStateMat);
ptState = accumarray(ii,jj,[Npt 1],@max);
ptStateFP = ptState;
ptStateFP(ptState > 0) = us.stateFP(ptState(ptState > 0));

% Assign county to each point.
ptCounty = zeros(Npt,1);
ptCountyFP = zeros(Npt,1);
nonEmptyStates = find(sum(ptStateMat,1));

for i=nonEmptyStates

% Get county bounding boxes.
Xmin = sparse(us.state(i).countyBB(:,1).’);
Xmax = sparse(us.state(i).countyBB(:,2).’);
Ymin = sparse(us.state(i).countyBB(:,3).’);
Ymax = sparse(us.state(i).countyBB(:,4).’);

iState = find(ptState == i);

if nnz(iState)
% Test each point against each county bounding box.
ptCountyBB = (Xpt(iState) > Xmin) & (Xpt(iState) < Xmax) & ...

(Ypt(iState) > Ymin) & (Ypt(iState) < Ymax);

ptCountyMat = ptCountyBB;
ptCountyBBcheck = ptCountyBB;

% Leave points in more than one bounding box.
ptCountyBBcheck(sum(ptCountyMat,2) == 1,:) = 0;

Ncounty = length(us.state(i).countyFP);
nonEmptyCounties = find(sum(ptCountyBB,1));

for k=nonEmptyCounties
% Find points in the county bounding box.
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j = find(ptCountyBBcheck(:,k));
inCounty = 0;
if nnz(j)
inCounty = inpolygon2(Xpt(iState(j)),Ypt(iState(j)), ...
us.state(i).countyXY(k).X,us.state(i).countyXY(k).Y);

if nnz(inCounty)
ptCountyMat(j(inCounty),:) = 0;
ptCountyMat(j(inCounty),k) = 1;
ptCountyBBcheck(j(inCounty),:) = 0;

end
end

end

[ii jj vv] = find(ptCountyMat);
ptCounty(iState) = accumarray(ii,jj,[length(iState) 1],@max);
ptCountyFP(iState(ptCounty(iState) > 0)) = ...
us.state(i).countyFP(ptCounty(iState(ptCounty(iState) > 0)));

end
end

% Assign block to each point.
ptBlock = zeros(Npt,1);
ptBlockFP = zeros(Npt,1);
ptBlockFIPS = char(zeros(Npt,12,’int8’));

for i=nonEmptyStates
iState = find(ptState == i);
if nnz(iState)
Ncounty = length(us.state(i).countyFP);
ptCounty_iState = ptCounty(iState);
nonEmptyCounties = unique(ptCounty_iState(ptCounty_iState > 0)).’;

for k=nonEmptyCounties
iCounty = find(ptCounty_iState == k);
if nnz(iCounty)

% Get block bounding boxes.
Xmin = sparse(us.state(i).county(k).blockBB(:,1).’);
Xmax = sparse(us.state(i).county(k).blockBB(:,2).’);
Ymin = sparse(us.state(i).county(k).blockBB(:,3).’);
Ymax = sparse(us.state(i).county(k).blockBB(:,4).’);
iState_iCounty = iState(iCounty);

% Test each point against each block bounding box.
ptBlockBB = (Xpt(iState_iCounty) > Xmin) & (Xpt(iState_iCounty) < Xmax) & ...

(Ypt(iState_iCounty) > Ymin) & (Ypt(iState_iCounty) < Ymax);

ptBlockMat = ptBlockBB;
ptBlockBBcheck = ptBlockBB;

% Leave points in more than one bounding box.
ptBlockBBcheck(sum(ptBlockMat,2) == 1,:) = 0;
Nblock = length(us.state(i).county(k).blockFP);
nonEmptyBlocks = find(sum(ptBlockBB,1));

for l=nonEmptyBlocks
j = find(ptBlockBBcheck(:,l));
inBlock = 0;
if nnz(j)
iState_iCounty_j = iState_iCounty(j);
inBlock = inpolygon2(Xpt(iState_iCounty_j),Ypt(iState_iCounty_j), ...
us.state(i).county(k).blockXY(l).X,us.state(i).county(k).blockXY(l).Y);

if nnz(inBlock)
ptBlockMat(j(inBlock),:) = 0;
ptBlockMat(j(inBlock),l) = 1;
ptBlockBBcheck(j(inBlock),:) = 0;

end
end

end

[ii jj vv] = find(ptBlockMat);
ptBlock(iState_iCounty) = accumarray(ii,jj,[length(iCounty) 1],@max);
ptBlockFP(iState_iCounty( ptBlock(iState_iCounty) > 0 )) = ...
us.state(i).county(k).blockFP(ptBlock(iState_iCounty( ptBlock(iState_iCounty) > 0 )));

ptBlockFIPS(iState_iCounty( ptBlock(iState_iCounty) > 0 ),:) = ...
us.state(i).county(k).blockFIPS(ptBlock(iState_iCounty( ptBlock(iState_iCounty) > 0 )),:);

end
end

end
end

function in = inpolygon2(Xpt,Ypt,Xpoly,Ypoly)
% Format for use with polygon cross-number code.
nodes = [Xpoly’, Ypoly’];
Npoly = length(Xpoly);
edges = [(1:Npoly)’,(2:(Npoly+1))’];
edges(Npoly,2) = 1;
in = inpoly2([Xpt,Ypt],nodes,edges);

end

APPENDIX B
SIMPLE APPROACH: DATA STRUCTURE

function us = buildCensusStruct(stateFile,countyFile,blockFile)
% Build location projection structure from census data.

S = shaperead(stateFile); % Read state shape file.
Nstate = length(S)
stateFP = zeros(Nstate,1);
stateBB = zeros(Nstate,4);
for i=1:Nstate

stateFP(i) = str2num(S(i).STATEFP);
stateBB(i,:) = reshape(S(i).BoundingBox,1,4);
stateXY(i,1).X = S(i).X;
stateXY(i,1).Y = S(i).Y;

end
us.stateFP = stateFP;

us.stateBB = stateBB;
us.stateXY = stateXY;

C = shaperead(countyFile); % Read county shape file.
Ncounty = length(C)
countyStateFP = zeros(Ncounty,1);
countyFP = zeros(Ncounty,1);
countyBB = zeros(Ncounty,4);
for i=1:Ncounty
countyStateFP(i) = str2num(C(i).STATEFP);
countyFP(i) = str2num(C(i).COUNTYFP);
countyBB(i,:) = reshape(C(i).BoundingBox,1,4);
countyXY(i,1).X = C(i).X;
countyXY(i,1).Y = C(i).Y;

end
for i=1:Nstate
istate = find(countyStateFP == stateFP(i));
us.state(i).countyFP = countyFP(istate);
us.state(i).countyBB = countyBB(istate,:);
us.state(i).countyXY = countyXY(istate,:);

end

B = shaperead(blockFile); % Read block shape file.
Nblock = length(B)
blockCountyStateFP = zeros(Nblock,1);
blockCountyFP = zeros(Nblock,1);
blockFP = zeros(Nblock,1);
blockFIPS = char(zeros(Nblock,12,’int8’));
blockBB = zeros(Nblock,4);
for i=1:Nblock
blockCountyStateFP(i) = str2num(B(i).STATE_FIPS);
blockCountyFP(i) = str2num(B(i).CNTY_FIPS);
blockFP(i) = str2num([B(i).TRACT B(i).BLKGRP]);
blockFIPS(i,:) = B(i).FIPS;
blockBB(i,:) = reshape(B(i).BoundingBox,1,4);
blockXY(i,1).X = B(i).X;
blockXY(i,1).Y = B(i).Y;

end
for i=1:Nstate
istate = find(blockCountyStateFP == stateFP(i));
for ii=1:length(us.state(i).countyFP);
icounty = find(blockCountyFP(istate) == us.state(i).countyFP(ii));
us.state(i).county(ii).blockFP = blockFP(istate(icounty));
us.state(i).county(ii).blockFIPS = blockFIPS(istate(icounty),:);
us.state(i).county(ii).blockBB = blockBB(istate(icounty),:);
us.state(i).county(ii).blockXY = blockXY(istate(icounty),:);

end
end

end
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