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Abstract—As unmanned aircraft systems (UASs) continue to 

integrate into the U.S. National Airspace System (NAS), there is a 

need to quantify the risk of airborne collisions between unmanned 

and manned aircraft to support regulation and standards 

development. Both regulators and standards developing 

organizations have made extensive use of Monte Carlo collision 

risk analysis simulations using probabilistic models of aircraft 

flight. We've previously determined that the observations of 

manned aircraft by the OpenSky Network, a community network 

of ground-based sensors, are appropriate to develop models of the 

low altitude environment. This works overviews the high 

performance computing workflow designed and deployed on the 

Lincoln Laboratory Supercomputing Center to process 3.9 billion 

observations of aircraft. We then trained the aircraft models using 

more than 250,000 flight hours at 5,000 feet above ground level or 

below. A key feature of the workflow is that all the aircraft 

observations and supporting datasets are available as open source 

technologies or been released to the public domain. 

Keywords—aerospace control, simulation, geospatial analysis, 

open source software 

I. INTRODUCTION 

The continuing integration of unmanned aircraft system 
(UAS) operations into the National Airspace System (NAS) 
requires new or updated regulations, policies, and technologies 
to maintain safe and efficient use of the airspace. To help 
achieve this, regulatory organizations such as the Federal 
Aviation Administration (FAA) and the International Civil 
Aviation Organization (ICAO) mandate the use of collision 
avoidance systems to minimize the risk of a midair collision 
(MAC) between most manned aircraft (e.g. 14 CFR § 135.180).  

Monte Carlo safety simulations and statistical encounter 
models of aircraft behavior [1] have enabled the FAA to 
develop, assess, and certify systems to mitigate the risk of 
airborne collisions. These simulations and models are based on 
observed aircraft behavior and have been used to design, 
evaluate, and validate collision avoidance systems deployed on 
manned aircraft worldwide [2]. 

A. Motivation 

For assessing the safety of UAS operations, the Monte Carlo 
simulations need to determine if the UAS would be a hazard to 

manned aircraft. Therefore there is an inherent need for models 
that represent how manned aircraft behave. While various 
models have been developed for decades, many of these models 
were not designed to model manned aircraft behavior where 
UAS are likely to operate [3]. In response, new models designed 
to characterize the low altitude environment are required. In 
response, we previously identified and determined that the 
OpenSky Network [4], a community network of ground-based 
sensors that observe aircraft equipped with Automatic 
Dependent Surveillance-Broadcast (ADS-B) out, would provide 
sufficient and appropriate data to develop new models [5]. ADS-
B was initially developed and standardized to enable aircraft to 
leverage satellite signals for precise tracking and navigation. [6, 
7]. However, the previous work did not train any models. 

B. Scope 

This work considered only how aircraft, observed by the 
OpenSky Network,  within the United States and flying between 
50 and 5,000 feet above ground level (AGL) or less. Thus this 
work does not consider all aircraft, as not all aircraft are 
equipped with ADS-B. The scope of this work was informed by 
the needs of FAA UAS Integration Office, along with the 
activities of the standards development organizations of ASTM 
F38, RTCA SC-147, and RTCA SC-228. Initial scoping 
discussions were also informed by the UAS ExCom Science and 
Research Panel (SARP), an organization chartered under the 
ExCom Senior Steering Group; however the SARP did not 
provide a final review of the research. 

C. Objectives and Contributions 

We focused on two objectives identified by the aviation 
community to support integration of UAS into the NAS. First to 
train a generative statistical model of how manned aircraft 
behavior at low altitudes. And second to estimate the relative 
frequency that a UAS would encounter a specific type of 
aircraft. These contributions are intended to support current and 
expected UAS safety system development and evaluation and 
facilitate stakeholder engagement to refine our contributions for 
policy-related activities. 

The primary contribution of this paper is the design and 
evaluation of the high performance computing (HPC) workflow 
to train models and complete analyses that support the 
community’s objectives. Refer to previous work [5, 8] for 
discussion on the assessment of the training data source or how This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. 
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to use the results from this workflow. This paper focus primarily 
on the use of the Lincoln Laboratory Supercomputing Center 
(LLSC) [9] to process billions of aircraft observations in a 
scalable and efficient manner.  

II. STORAGE AND COMPUTE ARCHITECTURE 

We first briefly overview the storage and compute 
infrastructure of the LLSC. The LLSC and its predecessors have 
been widely used to process aircraft tracks and support aviation 
research for more than a decade. 

A. Storage and Filesystem 

The LLSC High-Performance Computing (HPC) systems 
have two forms of storage: distributed and central. Distributed 
storage is comprised of the local storage on each of the compute 
nodes and this storage is typically used for running database 
applications. Central storage is implemented using the open-
source Lustre parallel file system on a commercial storage array. 
Lustre provides high performance data access to all the compute 
nodes, while maintaining the appearance of a single filesystem 
to the user. The Lustre filesystem is used in most of the largest 
supercomputers in the world. Specifically, the block size of 
Lustre is 1MB, thus any file created on the LLSC will take at 
least 1MB of space.  

B. Compute Infrastructure 

The processing described in this paper was conducted on the 

LLSC HPC system [9]. The system consists of a variety of 

hardware platforms, but we specifically developed, executed, 

and evaluated our software using compute nodes based on dual 

socket Haswell (Intel Xeon E5- 2683 V3 @ 2.0 GHz) 

processors. Each Haswell processor has 14 cores and can run 

two threads per core with the Intel Hyper-Threading 

technology. The Haswell node has 256 GB of memory.  

III. PROCESSING AND RESULTS 

This section describes the high performance computing 
workflow and the results for each step. 

A. Raw Data 

A shell script was used to download the raw data archives 
for a given Monday from the OpenSky Network. Data was 
organized by day and hour. Both the OpenSky Network and our 
architecture will create a dedicated directory for a given day, 
such as 2020-06-22. After extracting the raw data archives, up 
to 24 comma separated value (csv) files will populate the 
directory; each hour in UTC time corresponds to a specific file. 
However, there are a few cases where not every hour of the day 
was available. The files contain all the abstracted observations 
of all aircraft for that given hour. For a specific aircraft, 
observations are updated at least every ten seconds. For this 
paper, we downloaded 85 Mondays spanning February 2018 to 
June 2020, totaling 2002 hours. 

The size of each hourly file was dependent upon the number 
of active sensors that hour, the time of day, the quantity of 
aircraft operations, and the diversity of the operations. Across a 
given day, the hourly files can range in size by hundreds of 
megabytes with the maximum file size between 400 and 600 
megabytes. Together all the hourly files for a given day currently 
require about 5-9 gigabytes of storage. We observed that on 

average the daily storage requirement for 2019 was greater than 
for 2018.  

B. Organization 

Parsing, organizing, and aggregating the raw data for a 
specific aircraft required high performance computing 
resources, especially when organizing the data at scale. Many 
aviation use cases require organizing data and building a track 
corpus for each specific aircraft. Yet it was unknown how many 
unique aircraft were observed in a given hour and if a given 
hourly file has any observations for a specific aircraft. To 
efficiently organize the raw data, we need to address these 
unknowns.  

We identified unique aircraft by parsing and aggregating the 
national aircraft registries of the United States, Canada, the 
Netherlands, and Ireland. Registries were processed for each 
individual year for 2018-2020. All registries specified the 
registered aircraft’s type (e.g. rotorcraft, fixed wing single-
engine, etc.), the registration expiration date, and a global unique 
hex identifier of the transponder equipped on the aircraft. This 
identifier is known as the ICAO 24-bit address [10], with (224-
2) unique addresses available worldwide. Some of the registries 
also specified the maximum number of seats for each aircraft.  

Using the registries, we created a four tier directory structure 
to organize the data. The highest level directory corresponds to 
the year, such as 2019. The next level was organized by twelve 
general aircraft type, such as fixed wing single-engine, glider, or 
rotorcraft. The third directory level was based on the number of 
seats, with each directory representing a range of seats. A 
dedicated directory was created for aircraft with an unknown 
number of seats. The lowest level directory was based on the 
sorted unique ICAO 24-bit addresses. For each seat-based 
directory, up to 1000 ICAO 24-bit address directories are 
created. Additionally to address that the four aircraft registries 
do not contain all registered aircraft globally, a second level 
directory titled “Unknown” was created and populated with 
directories corresponding to each hour of data. The top and 
bottom level directories remained the same as the known aircraft 
types. The bottom directories for unknown aircraft are generated 
at runtime.  

This hierarchy ensures that there are no more than 1000 
directories per level, as recommended by the LLSC, while 
organizing the data to easily enable comparative analysis 
between years or different types of aircraft. The hierarchy was 
also sufficiently deep and wide to support efficient parallel 
process I/O operations across the entire structure. For example, 
a full directory path for the first three tiers of the directory 
hierarchy could be:  “2020/Rotorcraft/Seats_001_010/.” The 
directory would contain all the known unique ICAO 24-bit 
addresses for rotorcraft with 1-10 seats in 2018. Within this 
directory would be up to 1000 directories, such as 
“A00C12_A00D20” or “A000D20_A00ECF” This lowest 
level directory would be used to store all the organized raw 
data for aircraft with an ICAO 24-bit address. The first hex 
value was inclusive, but the second hex value was not 
inclusive. 

With a directory structure established, each hourly file was 
then loaded into memory, parsed, and lightly processed. 



Observations with incomplete or missing position reports were 
removed, along with any observations outside a user-defined 
geographic polygon. The default polygon, illustrated by Figure 
1, was a convex hull with a buffer of 60 nautical mile around 
approximately North America, Central America, the Caribbean, 
and Hawaii. Units were also converted to U.S. aviation units. 
The country polygons were sourced from Natural Earth, a public 
domain map dataset [11]. 

 

Fig. 1. Geospatial filtering polygon used for coarse organization.  

After processing, an individual csv file was created for each 
hour for each aircraft. For example suppose an aircraft with an 
address of A00C12 was observed from 05:00 to 06:30 UTC on 
2020-03-16. The following two files would be created: 

 /2020/Rotorcraft/Seats_001_010/A00C12_A00D20/20
20-03-16_05_A00CDE.csv 

 /2020/Rotorcraft/Seats_001_010/A00C12_A00D20/20
20-03-16_06_A00CDE.csv 

Specifically for the 85 Mondays across the three years, 2214 
directories were generated across the first three tiers of the 
hierarchy and 802,159 directories were created in total across 
the entire hierarchy. Of these, 770,661 directories were non-
empty. The majority of the directories were created within the 
unknown aircraft type directories. As overviewed by Tables 1 
and 2, about 3.9 billion raw observations were organized, with 
about 1.4 billion observations available after filtering. There was 
a 15% annual percent increase in observations per hour from 
2018 to 2019. However, a 50% percent decrease in the average 
number of observations per hour was observed when comparing 
2020 to 2019; this could be attributed to the COVID-19 
pandemic. This worldwide incident sharply curtailed travel, 
especially travel between countries. 

This reduction in travel was reflected in the amount of data 
filtered using the geospatial polygon. In 2018 and 2019, about 

41-44% of observations were filtered based on their location. 
However, only 27% of observations were filtered for 
observations from March to June 2020. Conversely, the amount 
of observations removed due to quality control did not 
significantly vary in 2020, as 26%, 20%, and 25% were removed 
for 2018, 2019, and 2020. 

TABLE I.  ORGANIZING STATISTICS - TOTAL 

Year Hours Raw Organized 

2018 724 1,539,058,315 502, 407, 955 

2019 942 2,131,412,447 761, 908, 350 

2020 336 320,233,440 155, 814, 012 

Total 2002 3,990,704,202 1,420,130,317 

TABLE II.  ORGANIZING STATISTICS – HOURLY AVERAGE 

Year Hours Raw Organized 

2018 724 2,125,771 693,934 

2019 942 2,262,646 808,820 

2020 336 953,076 463,732 

 

 These results were generated using 512 CPUs across 2002 
tasks, where each task corresponded to a specific hourly file. 
Tasks were uniformly distributed across CPUs, a dynamic self-
scheduling parallelization approach was not implemented. Each 
task required on average 626 seconds to execute, with a median 
time of 538 seconds. The maximum and minimum times to 
complete a task were 2153 and 23 seconds. Across all tasks, 
about 348 hours of total compute time was required to parse and 
filter the 85 days of data. It is expected that if the geospatial 
filtering was relaxed and observations from Europe were not 
removed, that the compute time would increase due to increase 
demands on creating and writing to hourly files for each aircraft. 

C. Archive Organized Data 

Since files were created for every hour for each unique 
aircraft, tens of millions of small files less than 1 megabyte in 
size were created. This was problematic as small files typically 
use a single object storage target, thus serializing access to the 
data. Additionally, in a cluster environment, hundreds or 
thousands of concurrent, parallel processes accessing small files 
can lead to significantly large random I/O patterns for file access 
and generates massive amounts of networks traffic. This results 
in increased latency for file access, higher network traffic and 
significantly slows down I/O and consequently causes 
degradation in overall application performance. While this 
approach to data organization may provide acceptable 
performance on a laptop or desktop computer, it was unsuitable 
for use in a shared, distributed HPC system. 

In response, we created zip archives for each of the bottom 
directories. In a new parent directory, we replicated the first 
three tiers of the directory hierarchy from the previous step. 
Then instead of creating directories based on the ICAO 24-bit 
addresses, we archiving each directory with the hourly csv files 
from the previous organization step. We then removed the 
hourly csv files from storage. This was achieved using 



LLMapReduce [12], with a task created for each of the 770,661 
non-empty bottom level directories. Similar to the previous 
organization step, all tasks were completed in a few hours but 
with no optimization for load balancing. The performance of this 
step could be improved by distributing tasks based on the 
number of files in the directories or the estimated size the output 
archive.   

A key advantage to archiving the organized data, is that the 
archives can be updated with new data as it becomes available. 
If the geospatial filtering parameters and aircraft registry data 
doesn’t change, only new Open Sky data needs to be organized. 
Once organized into individual csv files, LLMapReduce can be 
used again to update the existing archives. This substantially 
reduces the computational and storage requirements to process 
new data. 

D. Process and Interpolate Data 

The archived data can now be segmented, have outliers 
removed, and interpolated. Additionally above ground level 
altitude was calculated, airspace class was identified, and 
dynamic rates (e.g. vertical rate) were calculated. We also split 
the raw data into track segments based on unique position 
updates and time between updates. This ensures that each 
segment does not include significantly interpolated or 
extrapolated observations. Track segments without ten points 
are removed. Figure 2 illustrates the track segments for a FAA 
registered fixed wing multi-engine aircraft from March to June 
2020. Note that segment length can vary from tens to hundreds 
of nautical miles long. Track segment length was dependent 
upon the aircraft type, availability of active OpenSky Network 
sensors, and nearby terrain. However, the ability to generate 
track segments that span multiple states represents a substantial 
improvement over previous processing approaches for 
development of aircraft behavior models. 

 

Fig. 2. Track segements for a FAA registered fixed wing multi-engine aircraft 

from March to June 2020.  

Then for each segment we detect altitude outliers using a 1.5 
scaled median absolute deviations approach and smooth the 
track using a Gaussian-weight average filter with a 30-second 
time window. Dynamic rates, such as acceleration, are 
calculated using a numerical gradient. Outliers are then detected 
and removed based on these rates. Outlier thresholds were based 
on aircraft type. For example, the speeds greater than 250 knots 
were considered outliers for rotorcraft, but fixed wing multi-
engine aircraft had a threshold of 600 knots. The tracks were 
then interpolated to a regular one second interval.  

Lastly, we estimated the above ground level altitude using 
digital elevation models. This altitude estimation was the most 
computationally intensive component of the entire workflow.  It 
consists of loading into memory and interpolating SRTM3 or 
NOAA GLOBE [13] digital elevation models (DEMs) to 
determine the elevation for each interpolated track segment 
position. To reduce the computational load prior to processing 
the terrain data, it was determined using a C++ based polygon 
test to identify which track segment positions are over the ocean, 
as defined by Natural Earth Data. Points are over the ocean are 
assumed to have an elevation of 0 feet mean sea level and their 
elevation are not estimated using the DEMs.  

For the 85 days of organized data, approximately 
900,000,000 interpolated track segments were generated. For 
each aircraft in a given year, a single csv was generated 
containing all the computed segments. In total across the three 
years, 619,337 files were generated. As these files contained 
significantly more rows and columns than when organizing the 
raw data, the majority of these final files were greater than 1 MB 
in size. The output of this step did not face any significant 
storage block size challenges. 

Similar to the previous step, tasks were created based on the 
bottom tier of the directory hierarchy. Specifically for 
processing, parallel tasks were created for each archive. During 
processing, archives were extracted to a temporary directory 
while the final output was stored in standard memory.  

IV. DISCUSSION AND APPLICATIONS 

Given the processed data, this section overviews two 
applications on how to exploit and dissemination the data to 
inform and support the aviation safety community.  

A. Distribution of Aircraft Models 

As the aircraft type was identified when organizing the raw 
data, it was a straightforward task to estimate the observed 
distribution of aircraft types per hour.  

TABLE III.  AVERAGE AIRCRAFT TYPE DISTRIBUTION PER HOUR 

Year 
Fixed Wing 

Multi Engine 

Fixed Wing 

Single Engine 
Rotorcraft Unknown 

2018 71% 8% 2% 19% 

2019 76% 11% 3% 10% 

2020 62% 21% 7% 10% 

 

 These distributions are not reflective of all aircraft 
operations in the United States, as not all aircraft are observed 
by the OpenSky Network. The distributions were also calculated 
independently for each aircraft type, so the yearly (row) 
percentages may not sum to 100%. Furthermore the relatively 
low percentage of unknown aircraft was due to the geospatial 
filtering when organizing the raw data. If the same aircraft 
registries were used by the filtering was change to only include 
tracks in Europe, the percentage of unknown aircraft would 
likely significantly rise. 

 This analysis can be extended by identifying specific aircraft 
manufactures and models, such as Boeing 777. However, the 
manufacturer and model information are not consistent within 



an aircraft registry nor across different registries. For example, 
entries of “Cessna 172,” “Textron Cessna 172,” and “Textron 
C172” all refer to the same aircraft model. One possible 
explanation for the differences between entries is that Cessna 
used to be an independent aircraft manufacturer and then 
eventually was acquired by Textron. Depending on the year of 
registration, the name of the aircraft may differ but the size and 
performance of the aircraft remains constant. 

 Since over 300,000 aircraft with unique ICAO 24-bit 
addresses were identified annually across the aircraft registries, 
parsing and organizing the aircraft models can be formulated as 
a traditional natural language processing problem. Parsing the 
aircraft registries differs from a common problem of parsing 
aviation incident or safety reports [14, 15, 16] due to the reduced 
word count of the registries and the structured format of the 
registries. Future work will focus on using fuzzy string matching 
to identify similar aircraft.    

B. Statistical Models of Aircraft Behavior 

For many aviation safety studies, manned aircraft behavior 

is represented using MIT Lincoln Laboratory encounter 

models. Each encounter model is a Bayesian Network, a 

generative statistical model that mathematically represents 

aircraft behavior during close or safety critical encounters, 

such as near midair collisions. The development of the modern 

models started in 2008 [1], with significant updates in 2013 

[17] and 2018 [18]. All the models were trained using the 

LLSC [9] or its predecessors. The most widely used of these 

models were trained using observations collected by ground-

based secondary surveillance radars from the 84th Radar 

Evaluation Squadron (RADES) network.  

Aircraft observations by the RADES network are based on 

Mode 3A/C, an identification friend or foe technology that 

provides less metadata than ADS-B. Notably aircraft type or 

model cannot be explicitly correlated or identified with 

specific aircraft tracks. Instead, we filtered the RADES 

observations based on the flying rules reported by the aircraft. 

However, this type of filtering is not unique to the RADES 

data, it is also supported by the OpenSky Network data. 

Additionally, due to the performance of the RADES 

sensors, we filtered out any observations below 500 feet AGL 

due to position uncertainties associated with radar time of 

arrival measurements. Observations of ADS-B equipped 

aircraft by the OpenSky Network differ because ADS-B 

enables aircraft to broadcast the aircraft’s estimate of their 

own location, which is often based on precise GNSS 

measurements. The improved position reporting of ADS-B 

enabled the new OpenSky Network-based models to be 

trained with an altitude floor of 50 feet AGL, instead of 500.  

Specifically, three new statistical models of aircraft behavior 

were trained, each for a different aircraft type of fixed wing 

multi-engine, fixed wing single-engine, and rotorcraft. A key 

advantage to these models is the data reduction and 

dimensionality reduction. A model was created for each of the 

three aircraft types and stored as a human readable text file. 

Each file requires approximately just 0.5 megabytes. This a 

significant reduction from the hundreds of gigabytes used to 

store the original 85 days of data. 

Table IV reports the quantity of data used to train each 

model. For example, the rotorcraft model was trained from 

about 25,000 flight hours over 85 days. However, like the 

RADES-based model, these models do not represent the 

geospatial nor temporal distribution of the training data. For 

example, a limitation of these models is that they do not 

inform if more aircraft were observed in New York City than 

Los Angeles.  

TABLE IV.  PROCESSED FLIGH HOURS BETWEEN 50 AND 5,000 FEET AGL  

Year 
Fixed Wing 

Multi Engine 

Fixed Wing 

Single Engine 
Rotorcraft Total 

2018 31,669 34,043 6,133 71,845 

2019 56,176 63,826 12,837 132,839 

2020 12,032 30,387 6,984 49,403 

Total 99,877 128,255 25,954 254,097 

 

Figures 3 and 4 illustrate the altitude and speed 

distributions of the various models. There are multiple 

RADES-based models, and these figures only illustrate the 

model trained on aircraft operating under visual flight rules 

(VFR) [17]. These figures illustrate how different aircraft 

behave, such as rotorcraft flying relatively lower and slower 

than fixed wing multi-engine aircraft. Also note that the 

RADES-based model has no altitude observations below 500 

feet AGL, whereas 18% of the approximately 25,000 

rotorcraft flight hours were observed at 50-500 feet AGL.  

It has not been assessed if the OpenSky Network-based 

models can be used a surrogates for other aircraft types or 

operations. Additionally the new models do not fully 

supersede the existing RADES-based models, as each models 

represent different varieties of aircraft behavior.   
 

Fig. 3. Altitude distribution of statistical models. LEGEND: Blue: RADES-

Based VFR; Orange: OpenSky Network-based Fixed Wing Multi-Engine; 



Blueish Green: OpenSky Network-based Fixed Wing Single-Engine; 

Vermillion: OpenSky Network-based Rotorcraft 

 

Fig. 4. Speed distribution of statistical models. LEGEND: Blue: RADES-
Based VFR; Orange: OpenSky Network-based Fixed Wing Multi-Engine; 

Blueish Green: OpenSky Network-based Fixed Wing Single-Engine; 

Vermillion: OpenSky Network-based Rotorcraft 

 

V. CONCLUSION 

 We developed and deployed a workflow to efficiently 

organize, archive, and process aircraft tracks observed by the 

OpenSky Network. Many of the capabilities described in this 

paper have been, or are in the process of being, transitioned as 

open source software under permissive open source licenses. 

On GitHub.com, please refer to the MIT Lincoln Laboratory 

(@mit-ll) and Airspace Encounter Models (@Airspace-

Encounter-Models) organizations. 
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