
TapirXLA: Embedding Fork-Join Parallelism into
the XLA Compiler in TensorFlow Using Tapir

Tao B. Schardl
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street Cambridge, MA 02139
neboat@mit.edu

Siddharth Samsi
MIT Lincoln Laboratory

240 Wood Street Lexington, MA 02421
sid@ll.mit.edu

Abstract—This work introduces TapirXLA, a replacement for

TensorFlow’s XLA compiler that embeds recursive fork-join
parallelism into XLA’s low-level representation of code. Machine-
learning applications rely on efficient parallel processing to
achieve performance, and they employ a variety of technologies to
improve performance, including compiler technology. But compil-
ers in machine-learning frameworks lack a deep understanding
of parallelism, causing them to lose performance by missing
optimizations on parallel computation. This work studies how
Tapir, a compiler intermediate representation (IR) that embeds
parallelism into a mainstream compiler IR, can be incorporated
into a compiler for machine learning to remedy this problem.

TapirXLA modifies the XLA compiler in TensorFlow to
employ the Tapir/LLVM compiler to optimize low-level parallel
computation. TapirXLA encodes the parallelism within high-level
TensorFlow operations using Tapir’s representation of fork-join
parallelism. TapirXLA also exposes to the compiler implementa-
tions of linear-algebra library routines whose parallel operations
are encoded using Tapir’s representation. We compared the
performance of TensorFlow using TapirXLA against TensorFlow
using an unmodified XLA compiler. On four neural-network
benchmarks, TapirXLA speeds up the parallel running time of
the network by a geometric-mean multiplicative factor of 30%
to 100%, across four CPU architectures.

I. INTRODUCTION

Machine-learning (ML) frameworks, including Caffe [1],
Flux [2], MXNet [3], PyTorch [4], TensorFlow [5], and Theano
[6] have emerged as popular environments for developing ML
applications. Because of the high demands of ML applications
on computing resources, ML frameworks employ a variety of
technologies to improve the performance of ML applications,
including compiler technology for optimizing the computation
within ML applications. In addition, ML applications typically
exhibit substantial parallelism, which ML frameworks seek to
exploit for performance using hardware accelerators, including
GPUs and TPUs [7], and by invoking software libraries,
such as Eigen [8], Intel’s MKL-DNN [9], cuDNN [10], and
cuBLAS [11], that implement linear-algebra routines that have
been optimized to exploit parallel computing hardware. ML
frameworks use all three technologies — compilers, high-
performance software libraries, and hardware accelerators —
to execute ML applications efficiently.

This material is based upon work supported by the Assistant Secretary
of Defense for Research and Engineering under Air Force Contract No.
(FA8721-05-C-0002 and/or FA8702-15-D-0001). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Assistant Secretary
of Defense for Research and Engineering.

Fig. 1. Illustration of the high-level design of TensorFlow’s XLA compiler.
Ovals indicate the representation of the TensorFlow graph at different points in
the compilation process. Rectangles denote stages of the compilation pipeline.

But compilers in ML frameworks struggle to effectively
optimize low-level parallel computation within ML applica-
tions. For example, consider TensorFlow’s XLA compiler [12],
whose compilation pipeline for CPUs and GPUs is illustrated
in Figure 1. As the figure shows, the XLA compiler compiles
a TensorFlow graph — an ML network in TensorFlow —-
into executable machine code through a sequence of stages.
The TensorFlow graph is first transformed into a high-level
representation, called HLO IR, by a front-end, such as the
xla.compile API [13]. Optimizations, such as operator
fusion and common-subexpression elimination [14, Sec. 12.2],
are performed on HLO IR before the graph is transformed into
a lower-level representation, namely, LLVM’s intermediate
representation (IR) [15], for a target hardware architecture.
LLVM performs additional optimizations on LLVM IR before
it finally generates executable code from the optimized LLVM
IR. Other ML compilers adopt a similar architecture, with
multiple levels of IRs and a mainstream compiler, such as
LLVM, operating on the lowest-level IR for final optimization
and machine-code generation.

The LLVM optimizer in XLA fails to perform many ef-

TensorFlow graph

High-level optimizations
and code generation

LLVM IR

LLVM CPU
optimizer

LLVM IR

LLVM GPU
optimizer

LLVM IR

CPU code gen.

LLVM IR

GPU code gen.

CPU EXE GPU EXE

fective optimizations on parallel control flow in ML compu-
tations. (Other ML compilers suffer from similar problems.)
The problem stems from the fact that parallel control flow
is represented in LLVM IR as function calls into a parallel
runtime system. Previous work [16] has observed that these
function calls inhibit standard compiler optimizations, either
because they are opaque — meaning the implementations
of those functions are not exposed to the compiler — or
they implement concurrency that compilers struggle to reason
about. These missed optimizations can hurt the efficiency and
parallel speedup of parallel code [16].

To mitigate this problem, as Figure 1 shows, XLA’s high-
level optimizer not only performs high-level optimizations on
a TensorFlow graph, but it also decides how to implement
these operations for a particular parallel back-end, such as
a multicore CPU or a GPU. In particular, the high-level code-
generator decides how to subdivide the computation into
parallel tasks, in order to insert appropriate parallel runtime
calls and low-level primitives to implement those parallel tasks
for a given hardware back-end. These decisions are made
before classic compiler optimizations in LLVM, such as loop
unrolling or vectorization, have optimized the computation in
each task. XLA uses heuristics to estimate how to subdivide
the computation into parallel tasks, but subsequent compiler
optimizations can upset these estimates, depending on how
effectively different tasks are optimized.

A similar problem arises when ML compilers insert calls
to libraries that implement optimized parallel linear-algebra
kernels. These library calls inhibit compiler optimizations for
similar reasons. When the library itself is opaque to the
compiler, then the compiler cannot perform optimizations,
such as function inlining [17, p. 536], constant propagation
[17, p. 632], or common-subexpression elimination, on library
routines based on the context in which they are called. When
the source of a library routine is exposed to the compiler, the
parallel library routine itself implements complex concurrency
or calls to a parallel runtime system. Either way, these library
calls inhibit compiler optimizations on the parallel computa-
tion in the application itself.

The TapirXLA compiler

This work studies the effect of enabling optimizations on
parallel ML computations by embedding parallelism into an
ML compiler and exposing parallel linear-algebra libraries to
the compiler. Analysis and optimization of general parallel
programs is a long-standing hard problem for compilers (see,
for example, [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28]). However, ML computations and linear-algebra rou-
tines often exhibit structured parallelism, specifically, recur-
sive fork-join parallelism [29, Sec. 3.3], which includes loop
parallelism. Previous work on Tapir [16] embeds recursive
fork-join parallelism into the IR of a mainstream compiler to
enable effective optimization on parallel computations. This
work introduces TapirXLA, which integrates the Tapir/LLVM
compiler [16] in place of the LLVM component in XLA

to enable effective compiler optimizations on parallel ML
computations.

Tapir supports a simple approach to compiling ML ap-
plications into efficient parallel code. Because the low-level
Tapir/LLVM optimizer in TapirXLA optimizes parallel compu-
tation before inserting calls to a particular parallel runtime, the
high-level optimizer need not use heuristics to decide how to
partition the computation into parallel tasks. Instead, the high-
level optimizer represents all logical fork-join parallelism in
the ML computation using Tapir. The Tapir/LLVM optimizer
then decides how to schedule and load-balance the computa-
tion among parallel tasks after it performs other optimizations
on the parallel tasks.

TapirXLA exhibits substantial performance improvements
compared to the XLA compiler in TensorFlow. Previous
work [16] has shown that Tapir broadly improves the effi-
ciency and parallel speedups of parallel programs, improv-
ing many benchmarks programs by factors of 5% to 25%.
Although these are substantial performance gains for a com-
piler, TapirXLA demonstrates significantly larger performance
improvements from applying Tapir to compile TensorFlow
graphs. By embedding Tapir’s representation of parallel com-
putation into XLA and exposing the implementations of paral-
lel linear-algebra kernels in Tapir, on four example networks,
TapirXLA produces geometric-mean multiplicative speedups
ranging from 30% to 100% across four multicore or manycore
CPU architectures.

Impact on machine-learning hardware
Compiler technology, such as Tapir, for optimizing par-

allel computation has bearing on how ML frameworks uti-
lize parallel hardware, including general-purpose multicore
CPUs, GPUs, and specialized hardware accelerators such as
TPUs [7]. Let us briefly survey the hardware currently used
for machine learning.

Currently, the most widely used hardware platforms for
training deep neural networks include NVIDIA GPUs. While
open source ML frameworks such as TensorFlow and PyTorch
tend to be optimized for the most commonly available hard-
ware, the popularity of GPUs for neural network training has
also been facilitated by the availability of highly optimized
libraries such as cuBLAS and cuDNN that work on all GPUs
ranging from laptops and desktops to high end systems such
as the NVIDA DGX-2 that can achieve a peak performance
of 2 PetaFLOPS.

While training neural networks in a High-Performance
Computing center or in the cloud can leverage powerful GPUs,
there are many applications where the availability of GPUs
may be lacking due to power or form-factor constraints. For
example, AI applications at the edge that run on IoT devices or
on platforms with limited power capacity require specialized
hardware for inference. GPUs also suffer from their limited
memory capacity, compared to CPUs. The smaller amount
of memory available on a GPU can lead to compromises
such the use of small individual data sizes, down-sampling of
training images, smaller than desired batch sizes, and changes

System CPU Cores

Summit IBM Power9 2,397,824
Sierra IBM Power9 1,572,480

Tianhe 2A Intel Xeon E5 2692v2 10,649,600
Piz Daint Intel Xeon E5 2690v3 387,872

Trinity Intel Xeon E5 2698v3 and Xeon Phi 7250 979,072

Table I
Selected systems in the Top500 list [34] from November 2018.

to a model architecture. For example, a typical workflow
may consist of extracting small image tiles from large, high
resolution satellite or medical imaging data. Training a model
then requires many data transfers between the CPU and the
GPU, which is cost that can be minimized but not com-
pletely avoided. CPU-based systems can have significantly
larger amounts of memory, from several hundred gigabytes
to multiple terabytes, which can enable completely different
kinds of applications. As a result, some networks, such as
recurrent neural networks, have been observed to perform
better on CPUs than GPUs [30].

While GPUs remain the predominant hardware platform
used for training deep neural networks, CPUs have also

shown to be effective on machine-learning tasks. You et
al. [31] demonstrated the training of ResNet50 and AlexNet
deep convolutional networks on the ImageNet [32] dataset on
2,048 Intel Xeon Platinum 8160 processors. Shen et al. [33]
demonstrated how CPUs can outperform GPUs on inference

tasks. In addition, CPUs are cheaper, have broad software
support and remain more readily available in every data center,
cloud platform and in deployed systems. Every GPU system

continues to have a host CPU that has the potential to be
used for DNN training and inference. In recent years, high
core count CPUs such as the Intel Xeon Phi and the Intel
Xeon Scalable Processors have been integrated into many of

the systems in the Top500 list. For example, some of the
largest HPC systems in the world are built on a combination
of thousands of CPU cores in conjunction with GPUs. Table I
illustrates the availability of CPUs in large scale HPC systems.

There are many efforts underway in the academic [35] and
commercial space to develop custom processors for training
and inference applications [36]. Figure 2 shows an overview
of the wide variety of hardware currently available as well as
future hardware being developed in the academic and commer-
cial world. The current trend is towards the development of
custom hardware for dedicated applications. For example, the
Google TPU v1 is an application specific integrated circuit

(ASIC) designed primarily for inference applications [7].
Newer generations of the TPU are designed for both inference
and training [37] and the Edge TPU is built for AI applications
at the edge, where the inference applications are run at the
point of data collection. Examples of such applications include
autonomous vehicles and unmanned drones. Figure 2 graphs

custom AI/ML architectures and capabilities, mapping peak
performance vs. power usage.

This work on TapirXLA complements ongoing develop-

Legend
Computation Precision

Int8

Int16

Float16

Float16 -> Float32

Float32

Float64

Form Factor
Chip
Card
System

Computation Type
Inference
Training

Fig. 2. Capabilities of current and planned processors for AI training and
inference applications. The chart includes existing, commercially available
hardware as well as processors being developed by academia. For more
details, readers are referred to [36]. The variety of processors architectures
available for AI applications makes it extremely challenging to optimize
AI/ML frameworks for every possible processor architecture.

ments with parallel ML hardware. Embedding parallelism into
an ML compiler affects how the compiler can optimize compu-
tation for different parallel hardware and target new hardware
architectures. TapirXLA’s performance results have bearing
directly on the utility of CPUs for ML, specifically, in making
CPUs more efficient and cost effective for ML applications.
Moreover, Tapir’s representation of parallel computation is not
tied to a particular hardware architecture or parallel runtime
system. Indeed, Tapir has been used for synthesizing efficient
hardware for task-parallel programs [38]. By incorporating
Tapir, an ML compiler can perform low-level optimizations
on parallel computation that can benefit all hardware platforms
and parallel runtime systems.

Contributions
This work explores the effectiveness of using Tapir to embed

a parallelism into the compiler of an ML framework to enable
low-level optimizations on ML applications. In particular, this
paper makes the following contributions:
• We introduce TapirXLA, which incorporates Tapir into Ten-

sorFlow’s XLA compiler. TapirXLA modifies XLA’s high-
level optimizer to encode fork-join parallelism in higher-
level TensorFlow operations using Tapir.

• We developed parallel linear-algebra libraries whose parallel
implementations are encoded using Tapir and exposed to
TapirXLA.

• We evaluated TapirXLA on four neural networks and four
multicore CPU systems. On these neural-network bench-
marks, TapirXLA outperforms the XLA compiler in Ten-
sorFlow by a geometric mean multiplicative factor of 30%
to 100%, across the different CPU architectures.
The remainder of the paper is organized as follows. Sec-

tion II provides background on XLA and the model of
recursive fork-join parallelism supported by Tapir. Section III
describes how TapirXLA modifies the XLA compiler to in-
corporate Tapir and leverage its ability to optimize low-level
parallel computation. Section IV presents our empirical eval-
uation of TensorFlow with the prototype TapirXLA compiler.

WaveSystem

DGX-2

Arria DGX-1
WaveDPU DGX-Station Turing

TPU3 V100
Goya

TPU2 GraphCoreNode
TPU1 Nervana P100

TrueNorth

GraphCoreC2
Xavier K80

TrueNorthSyPshi7290F
2xSkyLakeSP

Phi7210F
JetsonTX2

MovidiusX

JetsonTX1

TPUEdge

MIT Eyeriss

Peak Power (W)

Pe
ak

G

O
ps

/S
ec

on
d

1	
Te
ra
Op
s/
W

100
	

Giga
Ops
/W

10	
Ter
aO
ps/
W

Section V discusses related work, and Section VI offers some
concluding remarks.

II. BACKGROUND ON XLA AND TAPIR

This section presents background on TensorFlow’s XLA
compiler [13] and the Tapir compiler intermediate representa-
tion (IR) [16]. We overview the design of TensorFlow’s XLA
compiler for CPUs and GPUs, which employs both a high-
level IR and LLVM IR. We review Tapir/LLVM [16], which
embeds fork-join parallelism into LLVM IR [15].

TensorFlow’s XLA compiler

TensorFlow’s XLA compiler [13] compiles TensorFlow
graphs to run efficiently on different hardware architectures.
Figure 1 illustrates the architecture of XLA, specifically, for
targeting CPUs and GPUs. (XLA can also target TPUs [7] us-
ing a similar compilation pipeline.) As the figure shows, XLA
optimizes TensorFlow graphs via transformations through mul-
tiple intermediate representations (IRs). XLA’s high-level op-
timizer operates on HLO IR, which represents the TensorFlow
graph as a data-flow graph of high-level operations on tensors.
The high-level optimizer performs various optimizations on
HLO IR, including operator fusion, before transforming the
optimized HLO IR to LLVM IR.

When it generates LLVM IR, XLA exploits parallelism
within the operations in the HLO IR. XLA generates LLVM
IR to implement each operation in the HLO IR for the chosen
hardware back-end, e.g., using appropriate calls into appro-
priate parallel CPU or GPU runtime libraries. To generate
efficient parallel code, during this translation process, XLA
uses heuristics to decide how to subdivide computation among
parallel tasks for the target hardware. XLA also inserts calls
to parallel libraries for standard linear-algebra routines, such
as matrix multiplication or 2D convolution, that have been
optimized for the target hardware. By default, when targeting
CPUs, XLA inserts calls to the multithreaded Eigen linear-
algebra library [8].

Recursive fork-join parallelism and Tapir/LLVM

In its implementation of HLO IR operations, XLA exploits
(recursive) fork-join parallelism, which allows subroutines to
be spawned recursively in parallel and iterations of a parallel
loop to execute concurrently. The execution and synchro-
nization of fork-join parallel tasks is managed “under the
covers” by a runtime system, such as the Cilk Plus [39] or
OpenMP runtime systems [40], [41]. Many computations can
be parallelized efficiently using this simple model of paral-
lelism. For some HLO IR operations, XLA parallelizes the
operations directly using fork-join parallelism. For operations
implemented in optimized linear-algebra libraries, XLA allows
the library to use any model of parallelism to implement
the operation. Although some multithreaded linear-algebra
libraries do not use fork-join parallelism, the linear-algebra
algorithms themselves can be parallelized efficiently using
fork-join parallelism.

Tapir/LLVM [16] embeds fork-join parallelism into the
intermediate representation of the LLVM compiler. Tapir adds
three instructions — detach, reattach, and sync — to
LLVM IR to express fork-join parallel control flow. These
instructions allow the existing compiler’s analyses and opti-
mizations for serial programs to effectively optimize parallel
programs with only minimal modifications. Tapir also enables
new compiler optimizations specifically designed for parallel
code. The Tapir/LLVM compiler has shown to be effective at
optimizing recursive fork-join parallel programs to improve
their efficiency and parallel speedup.

III. DESIGN OF TAPIRXLA
This section describes how TapirXLA makes use of the

Tapir/LLVM compiler in place of LLVM in the compilation
pipeline, to enable optimizations on parallel machine-learning
operations. We describe the simple strategy that TapirXLA
employs for compiling and optimizing TensorFlow graphs.
We describe the optimized parallel linear-algebra routines
TapirXLA uses, whose parallel implementations are exposed
to the compiler for optimization.

To leverage the Tapir/LLVM compiler’s ability to optimize
parallel computation, TapirXLA consists of two main changes
to the XLA compiler in TensorFlow. First, TapirXLA compiles
operations in HLO IR into parallel implementations that use
Tapir’s instructions for fork-join parallelism. Second, rather
than emit opaque calls to the Eigen linear-algebra library,
as XLA does by default, TapirXLA emits calls to Tapir-
based parallel implementations of these linear-algebra routines
and exposes those implementations to Tapir/LLVM. Let us
examine these two changes more closely.

TapirXLA’s compilation strategy
By leveraging Tapir’s ability to optimize parallel code,

TapirXLA supports a straightforward and effective strategy to
optimize TensorFlow graphs. The high-level optimizer identi-
fies operations in HLO IR that can be parallelized using fork-
join parallelism. Typically, an operation in HLO IR can be
implemented simply using nested parallel loops, e.g., over the
dimensions of the operation’s tensor input. For operations not
handled by an optimized library, TapirXLA emits a parallel
implementation of the operator using Tapir’s constructs for
fork-join parallelism. In particular, these parallelizable HLO
IR operations are translated into Tapir’s simple representation
of a parallel loop [16].

Unlike XLA, TapirXLA does not attempt to optimize the
parallel implementations of HLO IR operations, but instead
emits a fork-join implementation of each operation that ex-
poses all of its logical parallelism. TapirXLA thus relies on the
Tapir/LLVM compiler to optimize these routines efficiently.
Tapir/LLVM optimizes these operations using the full suite
of LLVM optimization passes, which have been minimally
modified to optimize parallel code [16]. Tapir/LLVM also
performs optimizations that specifically target Tapir constructs,
including parallel-loop strip-mining, loop spawning [16], and
small-task serialization, which serializes the execution of

a parallel task that performs too little work to overcome
scheduling overheads. These Tapir/LLVM optimizations are
not specialized to ML applications, but instead are generally
applicable to fork-join parallel programs. Finally, Tapir/LLVM
lowers Tapir’s parallel constructs in the code to a parallel
runtime system, meaning that it replaces Tapir instructions
with appropriate calls to a parallel runtime library.

Exposing parallel linear-algebra routines

To uncover additional opportunities to optimize parallel
code, TapirXLA incorporates the implementation of the par-
allel linear-algebra library. Hence, when TapirXLA inserts a
call to this library, the Tapir/LLVM optimizer can subsequently
optimize the library routine based on the context in which it
is called. We ensured that the linear-algebra library routines
were parallelized using Tapir to enable such optimization.
We developed these parallel linear-algebra routines using Cilk
[39] and compiled these routines using Tapir/LLVM [42] to
an LLVM bitcode that uses Tapir instructions to encode the
fork-join parallel control flow. When compiling a TensorFlow
graph, TapirXLA incorporates this bitcode into the LLVM IR it
produces for the TensorFlow graph. To facilitate optimization
of these routines within the ML computation, these routines
are optimized minimally when generating the bitcode file.

IV. EVALUATION

This section describes the evaluation of TapirXLA in com-
parison to the original XLA compiler in TensorFlow. We
describe the implementation of TapirXLA and the experi-
mental setup to perform a fair comparison TapirXLA against
XLA. We evaluated TapirXLA on a variety of multicore
and manycore CPUs on the MIT Supercloud system [43], a
heterogenous supercomputing system consisting of compute
nodes with a variety of multicore and manycore processors.

Implementation of TapirXLA

We implemented TapirXLA by modifying XLA in Tensor-
Flow r1.13, the latest stable release of TensorFlow at the time
of writing. We modified XLA to incorporate a version of
Tapir/LLVM based on version 7.0 of the LLVM compiler [15].
We used the productivity tool suite integrated with Tapir/L-
LVM [42], including the Cilksan nondeterminism detector,
to verify the correctness of the implementation. To create
a scientific control to compare against this implementation
of TapirXLA, we built a version TensorFlow r1.13 with an
unmodified XLA compiler from source that incorporates the
same version of LLVM and use the same configuration set-
tings. For the different test machines, our builds of TensorFlow
support the subset of, AVX, AVX2, and the fused-multiply-add
(FMA) operations supported on the target CPU.

The TapirXLA implementation uses the Cilk Plus runtime
[39] to execute parallel tasks. Although Tapir/LLVM contains
prototype back-ends for other parallel runtime systems, the
Tapir/LLVM back-end for the Cilk Plus runtime system is the
most stable back-end at the time of writing. TapirXLA ensures

that all parallel operations it compiles use the same back-
end parallel runtime system, including parallel operations in
linear-algebra library routines. As a result, TapirXLA mitigates
performance issues arising from multiple parallel runtime
systems competing for processor cores at the same time.

Performance comparison of TapirXLA versus XLA

We evaluated TapirXLA on training four benchmark neural
networks written in TensorFlow: a small convolutional neural
network (CNN), two LSTMs, and a recommendation network
(NCF) [44]. The two LSTM benchmarks represent LSTM
networks for isolated digit recognition (referred to as LSTM1
in Table 3) and continuous speech recognition (LSTM2), based
on implementations described in [45]. The recommendation
network was obtained from the suite of TensorFlow official
models [46] and was evaluated using the MovieLens 1-
million dataset [47]. All networks were compiled using the
xla.compile API [13] to invoke TensorFlow’s compiler.

We evaluated TapirXLA and XLA on all networks on a
variety of multicore and manycore CPUs in the MIT Super-
cloud system [43], including an Intel Xeon Gold, an Intel Xeon
E5, an Intel Xeon Phi, and an AMD Opteron. We followed
the TensorFlow guidelines [48] and to set the threads used
for intra- and inter-op thread counts equal to the number of
processor cores and sockets on the system, respectively. We
used taskset to pin worker threads in the parallel runtime
systems onto single processor chips (sockets) on the target
system. We evaluated other settings of these parameters to
verify that these settings yield the best parallel performance
for TensorFlow using either XLA or TapirXLA.

Figure 3 presents our performance results comparing
TapirXLA and XLA on the benchmark ML networks and
processor hardware. As the figure shows, TapirXLA consis-
tently outperforms XLA across all networks and hardware
systems. The magnitude of the performance improvement
varies between networks and systems. TapirXLA yields a
geometric mean multiplicative speedup of 2.1 on newer Intel
Xeon E5 and Intel Xeon Gold processors, whereas on the older
Intel Xeon Phi and AMD Opteron systems, TapirXLA yields a
geometric mean multiplicative speedup of 1.3. TapirXLA ap-
pears to speed up different networks similarly, as the network
that TapirXLA speeds up the most on a given processor differs
between processors.

V. RELATED WORK

This section overviews related work on software tech-
nologies to optimize machine-learning applications. By and
large, this software technology employs optimized libraries
for machine-learning tasks as well as compiler technology
to perform domain-specific optimizations on machine-learning
applications. We discuss how this work on incorporating Tapir
complements these other efforts and can, in principle, be used
in conjunction with these technologies.

Software libraries, such as Intel’s MKL-DNN [9],
cuBLAS [10], and cuDNN [11], have been developed that

Processor Compiler CNN (img/s) LSTM1 (s) LSTM2 (s) NCF (s)
Intel Xeon Gold 6252/N, 2.3 GHz, 24 Cores XLA 1765.18 208.41 2567.73 248.42

 TapirXLA 3201.43 111.05 1182.14 148.64
 Ratio 1.81 1.88 2.17 1.67

Intel Xeon E5-2683 v3, 2.00 GHz, 14 Cores XLA 423.15 443.19 4303.69 240.70
 TapirXLA 1792.36 185.83 1764.95 195.36
 Ratio 4.23 2.38 2.43 1.23

Intel Xeon Phi 7210, 1.30 GHz, 64 Cores XLA 450.99 949.37 7907.04 793.70
 TapirXLA 649.65 635.51 4947.71 703.26
 Ratio 1.32 1.49 1.59 1.12

AMD Opteron 6274, 2.20 GHz, 8 Cores XLA 496.17 1204.23 13,982.45 353.63
 TapirXLA 669.48 800.96 10,885.32 305.17
 Ratio 1.35 1.50 1.28 1.15

Fig. 3. Performance comparison of TensorFlow using vanilla XLA compiler versus TapirXLA. Each column lists TensorFlow’s CPU performance on a given
benchmark network when using either vanilla XLA or TapirXLA. The performance of the CNN benchmark is measured in overall images per second, while
the performance of the other networks is measured in total running time (seconds). The rows labeled “Ratio” give the ratio of performance improvement that
TapirXLA exhibits over XLA. For the CNN benchmark, this ratio equals the images-per-second performance of TapirXLA divided by the that of XLA. For
all other benchmarks, this ratio equals the running time of XLA divided by that of TapirXLA. All performance values represent the average of 10 runs.

encode highly optimized implementations of common ML op-
erations for different hardware architectures. ML frameworks
can use these highly optimized library routines by calling them
directly from the language in which the ML application is
written. Alternatively, compilers in ML frameworks can insert
calls to these libraries when they compile and optimize an ML
application. The later approach is compatible with this work
to integrate Tapir into an ML compiler. This work also shows
that substantial performance improvements can be obtained
when a call to a library routine is not opaque, and instead,
the parallel routine is encoded in Tapir and exposed to the
compiler for optimization.

Many ML frameworks employ compiler technology to
perform domain-specific optimizations on ML applications.
TensorFlow’s XLA compiler [12] performs operator fusion
and common-subexpression elimination on high-level opera-
tions in a TensorFlow graph. PyTorch’s Glow compiler [49]
represents the ML computation through mutliple levels of IR to
perform differentiation and a variety of optimizations, includ-
ing domain-specific optimizations, memory optimizations, and
quantization. DLVM [50] provides a compiler infrastructure
to perform domain-specific optimizations on tensor compu-
tations, such as algebraic simplification and compute-kernel
fusion. The TVM/NNVM compiler stack [51], [52] extends
Halide [53] to perform loop optimizations on machine-learning
networks. Flux and Zygote [54] employ the compiler technol-
ogy in Julia to optimize ML applications and perform efficient
reverse-mode automatic differentiation. All of these compilers
employ LLVM late in their compilation pipelines to perform
low-level optimizations and code generation. Hence, for any
of these compilers, one can in principle apply Tapir/LLVM in
place of LLVM to perform low-level optimizations on parallel
computation, as this work does for the XLA compiler.

Intel’s nGraph [55] provides a unified compiler stack to
perform optimizations on ML applications written in a variety
of frameworks and to target a variety of hardware back-ends.

It remains an open research topic how compiler technology
such as Tapir that enables compiler optimizations on low-level
parallel operations can be applied within nGraph and what
performance benefits Tapir may provide.

VI. CONCLUSION

To conclude, this section discusses potential impact of Tapir
on machine-learning frameworks.

In principle, Tapir can make it easy for ML compilers to
target new parallel hardware architectures or runtime systems.
For example, to target a new architecture or runtime system,
XLA’s high-level code-generation stage must emit efficient
implementations of HLO IR operations for that architecture or
runtime system. Tapir/LLVM shifts this burden to developing
a new back-end for lowering Tapir’s three instructions for par-
allel control flow [16]. Such a back-end allows any compiler
that incorporates Tapir/LLVM to use the new hardware or run-
time system. Tapir also allows scheduling and load-balancing
decisions for parallel code to be made after optimizations have
been performed on that code.

One compelling question considers how Tapir can optimize
GPU code. ML frameworks often employ GPUs for training
for neural networks, and many of the same issues explored in
this paper concerning ML compilers and library calls pertain
to GPUs as well as CPUs. Tapir seems to be a promising
technology to overcome those challenges with GPU code,
especially as Tapir’s instructions are not tied to a particular
hardware architecture or parallel runtime system. Developing
a GPU back-end for Tapir remains an open research question.

ACKNOWLEDGMENTS

The authors acknowledge the MIT Lincoln Laboratory
Supercomputing Center for providing HPC resources that have
contributed to the research results reported in this paper.

REFERENCES

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[2] M. Innes, “Flux: Elegant machine learning with julia,” Journal of Open
Source Software, 2018.

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[6] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/
1605.02688

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a
tensor processing unit,” in ISCA. ACM, 2017.

[8] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[9] Intel Corporation. (2019) Intel™math kernel library for deep
neural networks (intel™MKL-DNN). [Online]. Available: https:
//intel.github.io/mkl-dnn/

[10] NVIDIA. (2019) NVIDIA cuDNN. [Online]. Available: https://
developer.nvidia.com/cudnn

[11] ——. (2019) NVIDIA cuBLAS. [Online]. Available: https://developer.
nvidia.com/cublas

[12] The XLA team within Google, “XLA — TensorFlow,
compiled,” https://developers.googleblog.com/2017/03/xla-tensorflow-
compiled.html, 2017.

[13] The XLA compile API, The TensorFlow authors, 2019. [Online].
Available: https://www.tensorflow.org/xla/tutorials/xla_compile

[14] S. S. Muchnick, Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[15] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO, 2004, pp. 75–87.

[16] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embed-
ding fork-join parallelism into LLVM’s intermediate representation,” in
PPoPP, 2017, pp. 249–265.

[17] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Addison-Wesley, 2006.

[18] S. P. Midkiff and D. A. Padua, “Issues in the optimization of parallel
programs,” in ICPP, 1990, pp. 105–113.

[19] LLVM Developer List, “[LLVMdev] [cfe-dev] SPIR Provisional
Specification Is Now Available in the Khronos Website,” Available from
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053293.html,
September 2012.

[20] ——, “[LLVMdev] [RFC] OpenMP Representation in LLVM IR,”
Available from http://lists.llvm.org/pipermail/llvm-dev/2012-September/
053861.html, September 2012.

[21] ——, “[LLVMdev] LLVM Parallel IR,” Available from http://lists.llvm.
org/pipermail/llvm-dev/2015-March/083314.html, March 2015.

[22] J. Lee, S. P. Midkiff, and D. A. Padua, “Concurrent static single assign-
ment form and constant propagation for explicitly parallel programs,” in
LCPC, 1997, pp. 114–130.

[23] V. Sarkar, “Analysis and optimization of explicitly parallel programs
using the parallel program graph representation,” in LCPC, 1998, pp.
94–113.

[24] D. Grunwald and H. Srinivasan, “Data flow equations for explicitly
parallel programs,” in PPoPP, 1993, pp. 159–168.

[25] J. Knoop, B. Steffen, and J. Vollmer, “Parallelism for free: Efficient and
optimal bitvector analyses for parallel programs,” ACM TOPLAS, pp.
268–299, 1996.

[26] H. Srinivasan and M. Wolfe, “Analyzing programs with explicit paral-
lelism,” in LCPC, 1991, pp. 405–419.

[27] H. Srinivasan, J. Hook, and M. Wolfe, “Static single assignment for
explicitly parallel programs,” in POPL, 1993, pp. 260–272.

[28] R. Rugina and M. C. Rinard, “Pointer analysis for structured parallel
programs,” TOPLAS, pp. 70–116, Jan. 2003.

[29] M. McCool, A. D. Robison, and J. Reinders, Structured Parallel
Programming: Patterns for Efficient Computation. Elsevier Science,
2012.

[30] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving rnn-
based deep learning models 10x faster,” in 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, 2018,
pp. 951–965. [Online]. Available: https://www.usenix.org/conference/
atc18/presentation/zhang-minjia

[31] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in Proceedings of the 47th International Conference
on Parallel Processing, ser. ICPP 2018. ACM, 2018, pp. 1:1–1:10.
[Online]. Available: http://doi.acm.org/10.1145/3225058.3225069

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[33] H. Shen, F. Tian, X. Deng, C. Xu, A. Rodriguez,
I. K., and W. Li. (2019) Intel™CPU outperforms
NVIDIA GPU on ResNet-50 deep learning inference.
[Online]. Available: https://software.intel.com/en-us/articles/intel-cpu-
outperforms-nvidia-gpu-on-resnet-50-deep-learning-inference

[34] Top500.org. (2019) Top500 supercomputer sites. [Online]. Available:
https://www.top500.org/

[35] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in ISSCC, 2016, pp. 262–263.

[36] V. Gadepally, J. Goodwin, J. Kepner, A. Reuther, H. Reynolds, S. Samsi,
J. Su, and D. Martinez, “AI Enabling Technologies,” MIT Lincoln
Laboratory, Lexington, MA, Tech. Rep., 2019.

[37] J. Dean, D. Patterson, and C. Young, “A new golden age in computer ar-
chitecture: Empowering the machine-learning revolution,” IEEE Micro,
vol. 38, no. 2, pp. 21–29, Mar 2018.

[38] S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam,
“TAPAS: Generating parallel accelerators from parallel programs,” in
MICRO, Oct 2018, pp. 245–257.

[39] Intel Cilk Plus Language Extension Specification, Ver-
sion 1.2, Intel Corporation, 2013, document 324396-003US.
[Online]. Available: https://www.cilkplus.org/sites/default/files/open_
specifications/Intel_Cilk_plus_lang_spec_1.2.htm

[40] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP
tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, 2009.

[41] OpenMP Architecture Review Board, OpenMP Application Program
Interface, Version 4.5, Jul. 2015, available from http://www.openmp.
org/wp-content/uploads/openmp-4.5.pdf.

[42] T. B. Schardl, I.-T. A. Lee, and C. E. Leiserson, “Brief announcement:
Open cilk,” in SPAA, 2018, pp. 351–353. [Online]. Available:
http://doi.acm.org/10.1145/3210377.3210658

[43] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in HPEC, Sep. 2018, pp. 1–6.

[44] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua, “Neural
collaborative filtering,” CoRR, vol. abs/1708.05031, 2017. [Online].
Available: http://arxiv.org/abs/1708.05031

[45] S. Braun, “LSTM benchmarks for deep learning frameworks,” CoRR,
vol. abs/1806.01818, 2018. [Online]. Available: http://arxiv.org/abs/
1806.01818

[46] TensorFlow models, The TensorFlow authors, 2019. [Online]. Available:
https://github.com/tensorflow/models

[47] GroupLens Research. (2019) Movielens. [Online]. Available: http:
//files.grouplens.org/datasets/movielens/

[48] Performance — TensorFlow core, The TensorFlow authors, 2019.
[Online]. Available: https://www.tensorflow.org/guide/performance/
overview

[49] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman,
R. Levenstein, B. Maher, N. Satish, J. Olesen, J. Park, A. Rakhov,
and M. Smelyanskiy, “Glow: Graph lowering compiler techniques
for neural networks,” CoRR, vol. abs/1805.00907, 2018. [Online].
Available: http://arxiv.org/abs/1805.00907

[50] R. Wei, V. S. Adve, and L. Schwartz, “DLVM: A modern compiler
infrastructure for deep learning systems,” CoRR, vol. abs/1711.03016,
2017. [Online]. Available: http://arxiv.org/abs/1711.03016

[51] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“Tvm: An automated end-to-end optimizing compiler for deep
learning,” in OSDI, 2018, pp. 579–594. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=3291168.3291211
[52] Paul G. Allen School of Computer Science & Engineering, University

of Washington, Amazon Web Service AI team, and DMLC open-
source community. (2017) NNVM compiler: Open compiler for
AI frameworks. [Online]. Available: https://tvm.ai/2017/10/06/nnvm-
compiler-announcement.html

[53] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines,” in PLDI. ACM, 2013, pp. 519–530. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462176

[54] M. Innes, “Don’t unroll adjoint: Differentiating ssa-form programs,”
CoRR, vol. abs/1810.07951, 2018. [Online]. Available: http://arxiv.org/
abs/1810.07951

[55] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi,
R. Kimball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao, C. R. Lishka,
J. Menon, J. Myers, S. A. Narayana, A. Procter, and T. J. Webb, “Intel
ngraph: An intermediate representation, compiler, and executor for
deep learning,” CoRR, vol. abs/1801.08058, 2018. [Online]. Available:

http://arxiv.org/abs/1801.08058

