
TapirXLA: Embedding Fork-Join Parallelism into 
the XLA Compiler in TensorFlow Using Tapir 

 

Tao B. Schardl 
MIT Computer Science and Artificial Intelligence Laboratory 

32 Vassar Street Cambridge, MA 02139 
neboat@mit.edu 

Siddharth Samsi 
MIT Lincoln Laboratory 

240 Wood Street Lexington, MA 02421 
sid@ll.mit.edu 

 
 
Abstract—This work introduces TapirXLA, a replacement for 

TensorFlow’s XLA compiler that embeds recursive fork-join 
parallelism into XLA’s low-level representation of code. Machine- 
learning applications rely on efficient parallel processing to 
achieve performance, and they employ a variety of technologies to 
improve performance, including compiler technology. But compil- 
ers in machine-learning frameworks lack a deep understanding 
of parallelism, causing them to lose performance by missing 
optimizations on parallel computation. This work studies how 
Tapir, a compiler intermediate representation (IR) that embeds 
parallelism into a mainstream compiler IR, can be incorporated 
into a compiler for machine learning to remedy this problem. 

TapirXLA modifies the XLA compiler in TensorFlow to 
employ the Tapir/LLVM compiler to optimize low-level parallel 
computation. TapirXLA encodes the parallelism within high-level 
TensorFlow operations using Tapir’s representation of fork-join 
parallelism. TapirXLA also exposes to the compiler implementa- 
tions of linear-algebra library routines whose parallel operations 
are encoded using Tapir’s representation. We compared the 
performance of TensorFlow using TapirXLA against TensorFlow 
using an unmodified XLA compiler. On four neural-network 
benchmarks, TapirXLA speeds up the parallel running time of 
the network by a geometric-mean multiplicative factor of 30%   
to 100%, across four CPU architectures. 

I. INTRODUCTION 

Machine-learning (ML) frameworks, including Caffe [1], 
Flux [2], MXNet [3], PyTorch [4], TensorFlow [5], and Theano 
[6] have emerged as popular environments for developing ML 
applications. Because of the high demands of ML applications 
on computing resources, ML frameworks employ a variety of 
technologies to improve the performance of ML applications, 
including compiler technology for optimizing the computation 
within ML applications. In addition, ML applications typically 
exhibit substantial parallelism, which ML frameworks seek to 
exploit for performance using hardware accelerators, including 
GPUs and TPUs [7], and by invoking  software  libraries,  
such as Eigen [8], Intel’s MKL-DNN [9], cuDNN [10], and 
cuBLAS [11], that implement linear-algebra routines that have 
been optimized to exploit parallel computing hardware. ML 
frameworks use all three technologies — compilers, high- 
performance software libraries, and hardware accelerators — 
to execute ML applications efficiently. 

This material is based upon work supported by the Assistant Secretary      
of Defense for Research and Engineering under Air Force Contract No. 
(FA8721-05-C-0002 and/or FA8702-15-D-0001). Any opinions, findings and 
conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the Assistant Secretary  
of Defense for Research and Engineering. 

 

 
 

Fig. 1. Illustration of the high-level design of TensorFlow’s XLA compiler. 
Ovals indicate the representation of the TensorFlow graph at different points in 
the compilation process. Rectangles denote stages of the compilation pipeline. 

 
 

But compilers in ML frameworks struggle to effectively 
optimize low-level parallel computation within ML applica- 
tions. For example, consider TensorFlow’s XLA compiler [12], 
whose compilation pipeline for CPUs and GPUs is illustrated 
in Figure 1. As the figure shows, the XLA compiler compiles 
a TensorFlow graph — an ML network in TensorFlow —- 
into executable machine code through a sequence of stages. 
The TensorFlow graph is first transformed into a high-level 
representation, called HLO IR, by a front-end, such as the 
xla.compile API [13]. Optimizations, such as operator 
fusion and common-subexpression elimination [14, Sec. 12.2], 
are performed on HLO IR before the graph is transformed into 
a lower-level representation, namely, LLVM’s intermediate 
representation (IR) [15], for a target hardware architecture. 
LLVM performs additional optimizations on LLVM IR before 
it finally generates executable code from the optimized LLVM 
IR. Other ML compilers adopt a similar architecture, with 
multiple levels of IRs and a mainstream compiler, such as 
LLVM, operating on the lowest-level IR for final optimization 
and machine-code generation. 

The LLVM optimizer in XLA fails to perform many ef- 
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fective optimizations on parallel control flow in ML compu- 
tations. (Other ML compilers suffer from similar problems.) 
The problem stems from the fact that parallel control flow      
is represented in LLVM IR as function calls into a parallel 
runtime system. Previous work [16] has observed that these 
function calls inhibit standard compiler optimizations, either 
because they are opaque  —  meaning  the  implementations 
of those functions are not exposed to the  compiler  —  or  
they implement concurrency that compilers struggle to reason 
about. These missed optimizations can hurt the efficiency and 
parallel speedup of parallel code [16]. 

To mitigate this problem, as Figure 1 shows, XLA’s high- 
level optimizer not only performs high-level optimizations on 
a TensorFlow graph, but it also decides how to implement 
these operations for a particular parallel back-end, such as        
a multicore CPU or a GPU. In particular, the high-level code-
generator decides how to subdivide the computation into 
parallel tasks, in order to insert appropriate parallel runtime 
calls and low-level primitives to implement those parallel tasks 
for a given hardware back-end. These decisions are made 
before classic compiler optimizations in LLVM, such as loop 
unrolling or vectorization, have optimized the computation in 
each task. XLA uses heuristics to estimate how to subdivide 
the computation into parallel tasks, but subsequent compiler 
optimizations can upset these estimates, depending on how 
effectively different tasks are optimized. 

A similar problem arises when ML compilers insert calls   
to libraries that implement optimized parallel linear-algebra 
kernels. These library calls inhibit compiler optimizations for 
similar reasons. When the library itself is opaque to the 
compiler, then the compiler cannot perform optimizations, 
such as function inlining [17, p. 536], constant propagation 
[17, p. 632], or common-subexpression elimination, on library 
routines based on the context in which they are called. When 
the source of a library routine is exposed to the compiler, the 
parallel library routine itself implements complex concurrency 
or calls to a parallel runtime system. Either way, these library 
calls inhibit compiler optimizations on the parallel computa- 
tion in the application itself. 

 
The TapirXLA compiler 

This work studies the effect of enabling optimizations on 
parallel ML computations by embedding parallelism into an 
ML compiler and exposing parallel linear-algebra libraries to 
the compiler. Analysis and optimization of general parallel 
programs is a long-standing hard problem for compilers (see, 
for example, [18], [19], [20], [21], [22], [23], [24], [25], [26], 
[27], [28]). However, ML computations and linear-algebra rou- 
tines often exhibit structured parallelism, specifically, recur- 
sive fork-join parallelism [29, Sec. 3.3], which includes loop 
parallelism. Previous work on Tapir [16] embeds recursive 
fork-join parallelism into the IR of a mainstream compiler to 
enable effective optimization on parallel computations. This 
work introduces TapirXLA, which integrates the Tapir/LLVM 
compiler  [16]  in  place  of  the  LLVM   component  in   XLA 

to enable effective compiler optimizations on parallel ML 
computations. 

Tapir supports a simple approach to compiling ML ap- 
plications into efficient parallel code. Because the low-level 
Tapir/LLVM optimizer in TapirXLA optimizes parallel compu- 
tation before inserting calls to a particular parallel runtime, the 
high-level optimizer need not use heuristics to decide how to 
partition the computation into parallel tasks. Instead, the high- 
level optimizer represents all logical fork-join parallelism in 
the ML computation using Tapir. The Tapir/LLVM optimizer 
then decides how to schedule and load-balance the computa- 
tion among parallel tasks after it performs other optimizations 
on the parallel tasks. 

TapirXLA exhibits substantial performance improvements 
compared to the XLA compiler in  TensorFlow.  Previous  
work [16] has shown that Tapir broadly improves the effi- 
ciency and parallel speedups of parallel programs, improv-  
ing many benchmarks programs by factors of 5% to 25%. 
Although these are substantial performance gains for a com- 
piler, TapirXLA demonstrates significantly larger performance 
improvements from applying Tapir to compile TensorFlow 
graphs. By embedding Tapir’s representation of parallel com- 
putation into XLA and exposing the implementations of paral- 
lel linear-algebra kernels in Tapir, on four example networks, 
TapirXLA produces geometric-mean multiplicative speedups 
ranging from 30% to 100% across four multicore or manycore 
CPU architectures. 

Impact on machine-learning hardware 
Compiler technology, such as Tapir, for optimizing  par- 

allel computation has bearing on how ML frameworks uti-  
lize parallel hardware, including general-purpose multicore 
CPUs, GPUs, and specialized hardware accelerators such as 
TPUs [7]. Let us briefly survey the hardware currently used 
for machine learning. 

Currently, the most widely used hardware platforms for 
training deep neural networks include NVIDIA GPUs. While 
open source ML frameworks such as TensorFlow and PyTorch 
tend to be optimized for the most commonly available hard- 
ware, the popularity of GPUs for neural network training has 
also been facilitated by the availability of highly optimized 
libraries such as cuBLAS and cuDNN that work on all GPUs 
ranging from laptops and desktops to high end systems such  
as the NVIDA DGX-2 that can achieve a peak performance  
of 2 PetaFLOPS. 

While training neural networks in a High-Performance 
Computing center or in the cloud can leverage powerful GPUs, 
there are many applications where the availability of GPUs  
may be lacking due to power or form-factor constraints. For 
example, AI applications at the edge that run on IoT devices or 
on platforms with limited power capacity require specialized 
hardware for inference. GPUs also suffer from their limited 
memory capacity, compared to CPUs. The  smaller  amount  
of memory available on a GPU can lead  to  compromises 
such the use of small individual data sizes, down-sampling of 
training images, smaller than desired batch sizes, and changes 
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Summit IBM Power9 2,397,824 
Sierra    IBM Power9  1,572,480 

Tianhe 2A   Intel  Xeon E5 2692v2 10,649,600 
Piz Daint  Intel  Xeon E5 2690v3   387,872 

Trinity Intel Xeon E5 2698v3 and Xeon Phi 7250  979,072 
 

 

Table I 
Selected systems in the Top500 list [34] from November 2018. 

 
 
 

to a model architecture. For example, a  typical  workflow  
may consist of extracting small image tiles from large, high 
resolution satellite or medical imaging data. Training a model 
then requires many data transfers between the CPU and the 
GPU, which is cost that can be minimized but not com-  
pletely avoided. CPU-based systems can have significantly 
larger amounts of memory, from several hundred gigabytes    
to multiple terabytes, which can enable completely different 
kinds of applications. As a result, some networks, such as 
recurrent neural networks, have been observed to perform 
better on CPUs than GPUs [30]. 

While GPUs remain the predominant hardware platform 
used for training deep neural networks, CPUs have also 

shown to be effective  on  machine-learning  tasks.  You  et 
al. [31] demonstrated the training of ResNet50 and AlexNet 
deep convolutional networks on the ImageNet [32] dataset on 
2,048 Intel Xeon Platinum 8160 processors. Shen et al. [33] 
demonstrated how CPUs can outperform GPUs on inference 

tasks. In addition, CPUs are cheaper, have broad software 
support and remain more readily available in every data center, 
cloud platform and in deployed systems. Every GPU system 

continues to have a host CPU that has  the  potential to be 
used for DNN training and inference. In recent years, high 
core count CPUs such as the Intel Xeon Phi and the Intel 
Xeon Scalable Processors have been integrated into many of 

the systems in the Top500 list. For example, some of the 
largest HPC systems in the world are built on a combination 
of thousands of CPU cores in conjunction with GPUs. Table I 
illustrates the availability of CPUs in large scale HPC systems. 

There are many efforts underway in the academic [35] and 
commercial space to develop custom processors for training 
and inference applications [36]. Figure 2 shows an overview 
of the wide variety of hardware currently available as well as 
future hardware being developed in the academic and commer- 
cial world. The current trend is towards the development of 
custom hardware for dedicated applications. For example, the 
Google TPU v1 is an application specific integrated circuit 

(ASIC) designed primarily for inference applications [7]. 
Newer generations of the TPU are designed for both inference 
and training [37] and the Edge TPU is built for AI applications 
at the edge, where the inference applications are run at the 
point of data collection. Examples of such applications include 
autonomous vehicles and unmanned drones. Figure 2 graphs 

custom AI/ML architectures and capabilities, mapping peak 
performance vs. power usage. 

This work on TapirXLA complements ongoing develop- 
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Fig. 2. Capabilities of current and planned processors for AI training and 
inference applications. The chart includes existing, commercially available 
hardware as well as processors being developed by academia. For more 
details, readers are referred to [36]. The variety of processors architectures 
available for AI applications makes it extremely challenging to optimize 
AI/ML frameworks for every possible processor architecture. 

 
 

ments with parallel ML hardware. Embedding parallelism into 
an ML compiler affects how the compiler can optimize compu- 
tation for different parallel hardware and target new hardware 
architectures. TapirXLA’s performance results have bearing 
directly on the utility of CPUs for ML, specifically, in making 
CPUs more efficient and cost effective for ML applications. 
Moreover, Tapir’s representation of parallel computation is not 
tied to a particular hardware architecture or parallel runtime 
system. Indeed, Tapir has been used for synthesizing efficient 
hardware for task-parallel programs [38]. By incorporating 
Tapir, an ML compiler can perform low-level optimizations 
on parallel computation that can benefit all hardware platforms 
and parallel runtime systems. 

Contributions 
This work explores the effectiveness of using Tapir to embed 

a parallelism into the compiler of an ML framework to enable 
low-level optimizations on ML applications. In particular, this 
paper makes the following contributions: 
• We introduce TapirXLA, which incorporates Tapir into Ten- 

sorFlow’s XLA compiler. TapirXLA modifies XLA’s high- 
level optimizer to encode fork-join parallelism in higher-  
level TensorFlow operations using Tapir. 

• We developed parallel linear-algebra libraries whose parallel 
implementations are encoded using Tapir and exposed to 
TapirXLA. 

• We evaluated TapirXLA on four neural networks and four 
multicore CPU systems. On these neural-network bench- 
marks, TapirXLA outperforms the XLA compiler in Ten- 
sorFlow by a geometric mean multiplicative factor of 30% 
to 100%, across the different CPU architectures. 
The remainder of the paper is organized as follows. Sec- 

tion II provides background on XLA and the model of 
recursive fork-join parallelism supported by Tapir. Section III 
describes how TapirXLA modifies the XLA compiler to in- 
corporate Tapir and leverage its ability to optimize low-level 
parallel computation. Section IV presents our empirical eval- 
uation of TensorFlow with the prototype TapirXLA compiler. 
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Section V discusses related work, and Section VI offers some 
concluding remarks. 

II. BACKGROUND ON XLA AND TAPIR 

This section presents background on TensorFlow’s XLA 
compiler [13] and the Tapir compiler intermediate representa- 
tion (IR) [16]. We overview the design of TensorFlow’s XLA 
compiler for CPUs and GPUs, which employs both a high-  
level IR and LLVM IR. We review Tapir/LLVM [16], which 
embeds fork-join parallelism into LLVM IR [15]. 

TensorFlow’s XLA compiler 

TensorFlow’s XLA compiler [13] compiles TensorFlow 
graphs to run efficiently on different hardware architectures. 
Figure 1 illustrates the architecture of XLA, specifically, for 
targeting CPUs and GPUs. (XLA can also target TPUs [7] us- 
ing a similar compilation pipeline.) As the figure shows, XLA 
optimizes TensorFlow graphs via transformations through mul- 
tiple intermediate representations (IRs). XLA’s high-level op- 
timizer operates on HLO IR, which represents the TensorFlow 
graph as a data-flow graph of high-level operations on tensors. 
The high-level optimizer performs various optimizations on 
HLO IR, including operator fusion, before transforming the 
optimized HLO IR to LLVM IR. 

When it generates LLVM IR, XLA exploits parallelism 
within the operations in the HLO IR. XLA generates LLVM 
IR to implement each operation in the HLO IR for the chosen 
hardware back-end, e.g., using appropriate calls into appro- 
priate parallel CPU or GPU runtime libraries. To generate 
efficient parallel code, during this translation process, XLA 
uses heuristics to decide how to subdivide computation among 
parallel tasks for the target hardware. XLA also inserts calls  
to parallel libraries for standard linear-algebra routines, such 
as matrix multiplication or 2D convolution, that have been 
optimized for the target hardware. By default, when targeting 
CPUs, XLA inserts calls to the multithreaded Eigen linear-  
algebra library [8]. 

Recursive fork-join parallelism and Tapir/LLVM 

In its implementation of HLO IR operations, XLA exploits 
(recursive) fork-join parallelism, which allows subroutines to 
be spawned recursively in parallel and iterations of a parallel 
loop to execute concurrently. The execution and synchro- 
nization of fork-join parallel tasks is managed “under the 
covers” by a runtime system, such as the Cilk Plus [39] or 
OpenMP runtime systems [40], [41]. Many computations can 
be parallelized efficiently using this simple model of paral-  
lelism. For some HLO IR operations, XLA parallelizes the 
operations directly using fork-join parallelism. For operations 
implemented in optimized linear-algebra libraries, XLA allows 
the library to use any model  of  parallelism  to  implement  
the operation. Although some multithreaded linear-algebra 
libraries do not use fork-join parallelism, the linear-algebra  
algorithms themselves can be parallelized efficiently using 
fork-join parallelism. 

Tapir/LLVM [16] embeds fork-join parallelism into the 
intermediate representation of the LLVM compiler. Tapir adds 
three instructions — detach, reattach, and sync — to  
LLVM IR to express fork-join parallel control flow. These 
instructions allow the existing compiler’s analyses and opti- 
mizations for serial programs to effectively optimize parallel 
programs with only minimal modifications. Tapir also enables 
new compiler optimizations specifically designed for parallel 
code. The Tapir/LLVM compiler has shown to be effective at 
optimizing recursive fork-join parallel programs to improve 
their efficiency and parallel speedup. 

III. DESIGN OF TAPIRXLA 
This section describes how TapirXLA makes use of the 

Tapir/LLVM compiler in place of LLVM in the compilation 
pipeline, to enable optimizations on parallel machine-learning 
operations. We describe the simple strategy that TapirXLA 
employs for compiling and optimizing TensorFlow  graphs. 
We describe the optimized parallel linear-algebra routines 
TapirXLA uses, whose parallel implementations are exposed 
to the compiler for optimization. 

To leverage the Tapir/LLVM compiler’s ability to optimize 
parallel computation, TapirXLA consists of two main changes 
to the XLA compiler in TensorFlow. First, TapirXLA compiles 
operations in HLO IR into parallel implementations that use 
Tapir’s instructions for fork-join parallelism. Second, rather 
than emit opaque calls  to  the  Eigen  linear-algebra  library, 
as XLA does by default, TapirXLA emits calls to  Tapir-  
based parallel implementations of these linear-algebra routines 
and exposes those implementations to Tapir/LLVM. Let us 
examine these two changes more closely. 

TapirXLA’s compilation strategy 
By leveraging Tapir’s ability to optimize parallel code, 

TapirXLA supports a straightforward and effective strategy to 
optimize TensorFlow graphs. The high-level optimizer identi- 
fies operations in HLO IR that can be parallelized using fork- 
join parallelism. Typically, an operation in HLO IR can be 
implemented simply using nested parallel loops, e.g., over the 
dimensions of the operation’s tensor input. For operations not 
handled by an optimized library, TapirXLA emits a parallel 
implementation of the operator using Tapir’s constructs for 
fork-join parallelism. In particular, these parallelizable HLO 
IR operations are translated into Tapir’s simple representation 
of a parallel loop [16]. 

Unlike XLA, TapirXLA does not attempt to optimize the 
parallel implementations of HLO IR operations, but instead 
emits a fork-join implementation of each operation that ex- 
poses all of its logical parallelism. TapirXLA thus relies on the 
Tapir/LLVM compiler to optimize these routines efficiently. 
Tapir/LLVM  optimizes these operations using the full suite   
of LLVM optimization passes, which have been minimally 
modified to optimize parallel code [16]. Tapir/LLVM also 
performs optimizations that specifically target Tapir constructs, 
including parallel-loop strip-mining, loop spawning [16], and 
small-task serialization, which serializes the execution of 



a parallel task that performs too little work to overcome 
scheduling overheads. These Tapir/LLVM optimizations are 
not specialized to ML applications, but instead are generally 
applicable to fork-join parallel programs. Finally, Tapir/LLVM 
lowers Tapir’s parallel constructs in the code to a parallel 
runtime system, meaning that it replaces Tapir instructions 
with appropriate calls to a parallel runtime library. 

Exposing parallel linear-algebra routines 

To uncover additional opportunities to optimize parallel 
code, TapirXLA incorporates the implementation of the par- 
allel linear-algebra library. Hence, when TapirXLA inserts a 
call to this library, the Tapir/LLVM optimizer can subsequently 
optimize the library routine based on the context in which it   
is called. We ensured that the linear-algebra library routines 
were parallelized using Tapir to  enable  such  optimization. 
We developed these parallel linear-algebra routines using Cilk 
[39] and compiled these routines using Tapir/LLVM  [42] to  
an LLVM bitcode that uses Tapir instructions to encode the 
fork-join parallel control flow. When compiling a TensorFlow 
graph, TapirXLA incorporates this bitcode into the LLVM IR it 
produces for the TensorFlow graph. To facilitate optimization 
of these routines within the ML computation, these routines 
are optimized minimally when generating the bitcode file. 

IV. EVALUATION 

This section describes the evaluation of TapirXLA in com- 
parison to the original XLA compiler in TensorFlow. We 
describe the implementation of TapirXLA and the experi- 
mental setup to perform a fair comparison TapirXLA against 
XLA. We evaluated TapirXLA on a  variety  of  multicore  
and manycore CPUs on the MIT Supercloud system [43], a 
heterogenous supercomputing system consisting of compute 
nodes with a variety of multicore and manycore processors. 

Implementation of TapirXLA 

We implemented TapirXLA by modifying XLA in Tensor- 
Flow r1.13, the latest stable release of TensorFlow at the time 
of writing. We modified XLA to incorporate a version of 
Tapir/LLVM based on version 7.0 of the LLVM compiler [15]. 
We used the productivity tool suite integrated with Tapir/L- 
LVM [42], including the Cilksan nondeterminism detector, 
to verify  the  correctness  of  the  implementation.  To  create 
a scientific control to compare against this implementation    
of TapirXLA, we built a version TensorFlow r1.13 with an 
unmodified XLA compiler from source that incorporates the 
same version of LLVM and use the same configuration set- 
tings. For the different test machines, our builds of TensorFlow 
support the subset of, AVX, AVX2, and the fused-multiply-add 
(FMA) operations supported on the target CPU. 

The TapirXLA implementation uses the Cilk Plus runtime 
[39] to execute parallel tasks. Although Tapir/LLVM contains 
prototype back-ends for other parallel runtime systems, the 
Tapir/LLVM back-end for the Cilk Plus runtime system is the 
most stable back-end at the time of writing. TapirXLA ensures 

that all parallel operations it compiles use  the  same  back- 
end parallel runtime system, including parallel operations in 
linear-algebra library routines. As a result, TapirXLA mitigates 
performance issues arising from multiple parallel runtime 
systems competing for processor cores at the same time. 

 
Performance comparison of TapirXLA versus XLA 

We evaluated TapirXLA on training four benchmark neural 
networks written in TensorFlow: a small convolutional neural 
network (CNN), two LSTMs, and a recommendation network 
(NCF) [44]. The two LSTM benchmarks represent LSTM 
networks for isolated digit recognition (referred to as LSTM1 
in Table 3) and continuous speech recognition (LSTM2), based 
on implementations described in [45]. The recommendation 
network was obtained from the suite of TensorFlow official 
models [46] and was evaluated using the MovieLens 1- 
million dataset [47]. All networks were compiled using the 
xla.compile API [13] to invoke TensorFlow’s compiler. 

We evaluated TapirXLA and XLA on all networks on a 
variety of multicore and manycore CPUs in the MIT Super- 
cloud system [43], including an Intel Xeon Gold, an Intel Xeon 
E5, an Intel Xeon Phi, and an AMD Opteron. We followed   
the TensorFlow guidelines [48] and to set the threads used   
for intra- and inter-op thread counts equal to the number of 
processor cores and sockets on the system, respectively. We 
used taskset to pin worker threads in the parallel runtime 
systems onto single processor chips (sockets) on the target 
system. We evaluated other settings of these parameters to 
verify that these settings yield the best parallel performance 
for TensorFlow using either XLA or TapirXLA. 

Figure 3 presents our performance results comparing 
TapirXLA and XLA on the benchmark ML networks and 
processor hardware. As the figure shows, TapirXLA consis- 
tently outperforms XLA across all networks and hardware 
systems. The magnitude of the performance improvement 
varies between networks and systems. TapirXLA yields a 
geometric mean multiplicative speedup of 2.1 on newer Intel 
Xeon E5 and Intel Xeon Gold processors, whereas on the older 
Intel Xeon Phi and AMD Opteron systems, TapirXLA yields a 
geometric mean multiplicative speedup of 1.3. TapirXLA ap- 
pears to speed up different networks similarly, as the network 
that TapirXLA speeds up the most on a given processor differs 
between processors. 

 
V. RELATED WORK 

This section overviews related work on software tech- 
nologies to optimize machine-learning applications. By and 
large, this software technology employs optimized libraries 
for machine-learning tasks as  well  as  compiler  technology 
to perform domain-specific optimizations on machine-learning 
applications. We discuss how this work on incorporating Tapir 
complements these other efforts and can, in principle, be used 
in conjunction with these technologies. 

Software libraries, such as Intel’s  MKL-DNN  [9],  
cuBLAS [10], and cuDNN [11], have been developed that 



Processor Compiler CNN (img/s) LSTM1 (s) LSTM2 (s) NCF (s) 
Intel Xeon Gold 6252/N, 2.3 GHz, 24 Cores XLA 1765.18 208.41 2567.73 248.42 

 TapirXLA 3201.43 111.05 1182.14 148.64 
 Ratio 1.81 1.88 2.17 1.67 

Intel Xeon E5-2683 v3, 2.00 GHz, 14 Cores XLA 423.15 443.19 4303.69 240.70 
 TapirXLA 1792.36 185.83 1764.95 195.36 
 Ratio 4.23 2.38 2.43 1.23 

Intel Xeon Phi 7210, 1.30 GHz, 64 Cores XLA 450.99 949.37 7907.04 793.70 
 TapirXLA 649.65 635.51 4947.71 703.26 
 Ratio 1.32 1.49 1.59 1.12 

AMD Opteron 6274, 2.20 GHz, 8 Cores XLA 496.17 1204.23 13,982.45 353.63 
 TapirXLA 669.48 800.96 10,885.32 305.17 
 Ratio 1.35 1.50 1.28 1.15 

Fig. 3. Performance comparison of TensorFlow using vanilla XLA compiler versus TapirXLA. Each column lists TensorFlow’s CPU performance on a given 
benchmark network when using either vanilla XLA or TapirXLA. The performance of the CNN benchmark is measured in overall images per second, while   
the performance of the other networks is measured in total running time (seconds). The rows labeled “Ratio” give the ratio of performance improvement that 
TapirXLA exhibits over XLA. For the CNN benchmark, this ratio equals the images-per-second performance of TapirXLA divided by the that of XLA. For    
all other benchmarks, this ratio equals the running time of XLA divided by that of TapirXLA. All performance values represent the average of 10 runs. 

 
encode highly optimized implementations of common ML op- 
erations for different hardware architectures. ML frameworks 
can use these highly optimized library routines by calling them 
directly from the language in which the ML application is 
written. Alternatively, compilers in ML frameworks can insert 
calls to these libraries when they compile and optimize an ML 
application. The later approach is compatible with this work  
to integrate Tapir into an ML compiler. This work also shows 
that substantial performance improvements can be obtained 
when a call to a library routine is not opaque, and instead,    
the parallel routine is encoded in Tapir and exposed to the 
compiler for optimization. 

Many ML frameworks employ compiler technology to 
perform domain-specific optimizations on ML applications. 
TensorFlow’s XLA compiler [12] performs operator fusion 
and common-subexpression elimination on high-level opera- 
tions in a TensorFlow graph. PyTorch’s Glow compiler [49] 
represents the ML computation through mutliple levels of IR to 
perform differentiation and a variety of optimizations, includ- 
ing domain-specific optimizations, memory optimizations, and 
quantization. DLVM [50] provides a compiler infrastructure  
to perform domain-specific optimizations on tensor compu- 
tations, such as algebraic simplification and compute-kernel 
fusion. The TVM/NNVM compiler stack [51], [52] extends 
Halide [53] to perform loop optimizations on machine-learning 
networks. Flux and Zygote [54] employ the compiler technol- 
ogy in Julia to optimize ML applications and perform efficient 
reverse-mode automatic differentiation. All of these compilers 
employ LLVM late in their compilation pipelines to perform 
low-level optimizations and code generation. Hence, for any 
of these compilers, one can in principle apply Tapir/LLVM in 
place of LLVM to perform low-level optimizations on parallel 
computation, as this work does for the XLA compiler. 

Intel’s nGraph [55] provides a unified compiler stack to 
perform optimizations on ML applications written in a variety 
of frameworks and to target a variety of hardware back-ends. 

It remains an open research topic how compiler technology 
such as Tapir that enables compiler optimizations on low-level 
parallel operations can be applied within nGraph and what 
performance benefits Tapir may provide. 

 
VI. CONCLUSION 

To conclude, this section discusses potential impact of Tapir 
on machine-learning frameworks. 

In principle, Tapir can make it easy for ML compilers to 
target new parallel hardware architectures or runtime systems. 
For example, to target a new architecture or runtime system, 
XLA’s high-level code-generation stage must emit efficient 
implementations of HLO IR operations for that architecture or 
runtime system. Tapir/LLVM shifts this burden to developing  
a new back-end for lowering Tapir’s three instructions for par- 
allel control flow [16]. Such a back-end allows any compiler 
that incorporates Tapir/LLVM to use the new hardware or run- 
time system. Tapir also allows scheduling and load-balancing 
decisions for parallel code to be made after optimizations have 
been performed on that code. 

One compelling question considers how Tapir can optimize 
GPU code. ML frameworks often employ GPUs for training 
for neural networks, and many of the same issues explored in 
this paper concerning ML compilers and library calls pertain 
to GPUs as well as CPUs. Tapir seems to be a promising 
technology to overcome those challenges with GPU code, 
especially as Tapir’s instructions are not tied to a particular 
hardware architecture or parallel runtime system. Developing  
a GPU back-end for Tapir remains an open research question. 
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