
MIT Open Access Articles

Discrete Integrated Circuit Electronics (DICE)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fredin, Z, Zemanek, J, Blackburn, C, Strand, E, Abdel-Rahman, A et al. 2020. "Discrete
Integrated Circuit Electronics (DICE)." 2020 IEEE High Performance Extreme Computing
Conference, HPEC 2020.

As Published: 10.1109/HPEC43674.2020.9286236

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/137149

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137149
http://creativecommons.org/licenses/by-nc-sa/4.0/

Discrete Integrated Circuit Electronics (DICE)
Zach Fredin,∗ Jiri Zemanek,∗† Camron Blackburn,∗ Erik Strand,∗

Amira Abdel-Rahman,∗ Premila Rowles,∗ Neil Gershenfeld∗
∗The Center for Bits and Atoms

Massachusetts Institute of Technology
Cambridge, MA, USA
first.last@cba.mit.edu

†Faculty of Electrical Engineering
Czech Technical University

Prague, CZ

Abstract—We introduce DICE (Discrete Integrated Circuit
Electronics). Rather than separately develop chips, packages,
boards, blades, and systems, DICE spans these scales in a
direct-write process with the three-dimensional assembly of
computational building blocks. We present DICE parts, discuss
their assembly, programming, and design workflow, illustrate ap-
plications in machine learning and high performance computing,
and project performance.

Index Terms—Automated assembly, additive manufacturing,
chiplets, system integration, machine learning, high-performance
computing

I. INTRODUCTION

There is a familiar hierarchy from developing chips, to
packages, to boards, to blades, to systems. Different skills
are required for design at each layer, and different industries
perform their production. We present an alternative to this
prevailing paradigm, DICE (Discrete Integrated Circuit Elec-
tronics). DICE is based on the three-dimensional assembly of
computational building blocks that can span these levels of
description. It extends the role of modularity from design to
construction, with a direct-write process using a cross between
pick-and-place and 3D printing.

The immediate antecedant to DICE is the assembly of chips
from chiplets [1]. These can offer very high interconnect speed
and density, but are limited to two-dimensional chip-scale
applications. DICE takes advantage of progress in packag-
ing, fabrication, and automation to offer an architecture that
spans from devices to systems, with acceptable performance
overhead as described below. A closer antecedant is older, the
post-war Project Tinkertoy that aimed to robotically assemble
electronics from standard building blocks [2]. DICE revisits
that goal with updated components.

Potential benefits of DICE include reducing the time and
cost for system development, aligning applications with ar-
chitectures, shortening and reducing vulnerabilities in supply
chains, reducing waste with disassembly rather than disposal,
and enabling greater system integration and novel form factors.

We gratefully acknowledge support from, and collaboration with, DARPA
and the Air Force Research Laboratory under award number FA8650-19-2-
7921, Lincoln Labs under ACC 767, the Fulbright Program, and the Center
for Bits and Atoms consortium.

Realizing these benefits requires revisiting the historical
boundary between hardware and software, in order to simulta-
neously specify the content and construction of a computation.
In the following sections we present an end-to-end DICE
workflow, including performance projections (for existing and
prospective devices), modules (on multiple length scales),
their programming (both embedded and application), assembly
(using conventional and custom robots), design (both logical
and physical placement), and applications (aligning geometry
and algorithms for machine learning and high-performance
computing).

II. PROJECTIONS

We start with projections of DICE performance before
discussing their implementation. Table I compares the speed,
power, and cost efficiency of existing and potential DICE
devices with other computing platforms to illustrate their
potential impact. Assuming a low communication overhead,
supported by experimental benchmarking explained in sections
III and VI, and adequate cooling and sparsity in the DICE
lattice for power distribution, discussed further in section III,
DICE nodes can be assembled to match complex computing
structures. It would take roughly 3,000 SAMD51 microcon-
troller DICE nodes to match the compute performance of an
Intel Core i7 and the DICE network would require about
30% more power. The same comparison using NXP RT1020
microcontrollers would need approximately 1,000 nodes and
consume half of the power of the i7.

Looking beyond commercial-off-the-shelf (COTS) compo-
nents, DICE has the potential to scale to state-of-the-art
supercomputing performance with a dedicated node modeled
after the Summit supercomputer’s power and cost efficiency
[3]. The Qualcomm Hexagon DSP processor has been shown
to achieve a maximum power efficiency of 58mW/GHz on
an architecture with 256KB of RAM, two 32 bit ALUs, two
64 bit vector execution units, and an asynchronous FIFO bus
interface [5]. Taking this as a starting point, the logic units
could be replaced with single precision FPUs shown to have
1.44mW power consumption without significant additional
cost [6]. Combining these low-power techniques, a DICE node
would be able to perform single-cycle floating-point operations

TABLE I
DICE PERFORMANCE PROJECTION AND COMPARISON

GFlops GFlops/W GFlops/$ W $
Summit ORNL(a) 148,600,000 14.7 0.45 10,096 kW $325M
Nvidia V100(b) 12,589 50.4 2.10 300 W $5993
Intel i7-8700T(c) 46.9 0.34 0.155 140 W $537
SAMD51J20A(c) 0.0168 0.233 0.01 72 mW $2.91
NXP i.MX RT1020(c) 0.0417 0.593 0.02 70 mW $1.87
“Summit MCU”(d) 1 14.7 0.45 68 mW $2.22
Super-DICE(d) 5 106 – 10 nW –
(a)November 2019 Green500 list [3]
(b)Manufacturer’s specification.
(c)Flops and power measured with a pi calculation benchmark [4]
(d)Projected calculations for dedicated DICE hardware.

at 1 GHz while consuming 68mW with a cost of $2.22.
Described here as the “Summit MCU” due to matching its 14.7
GFlops/W and 0.45 GFlops/$, just 50 nodes would outperform
the Intel Core i7 while using 97% less power.

Development of rapid single flux quantum (RSFQ) super-
conducting electronics is limited by their cryogenic cooling
overhead and a maximum of O(104) Josephson junctions per
computing unit due to bias current in the circuit [7]. DICE
provides a promising solution for these limitations by building
complex computing from simple low gate-count nodes and
making better use of cryogenic refrigerator volumes with its
3D scaling. It has been shown that 8-bit superconducting
ALUs can operate at 5 Ghz with 1.4 aJ power dissipation [8].
Extrapolating this to a custom Super-DICE node, a chip with
O(104) Josephson junctions operating at 5GHz would require
roughly 10 nW per operation. Taking into account the 103

W/W overhead for 4K cooling, superconducting DICE would
perform at 106 GFlops/W, a 105 power efficiency improvement
over state-of-the-art supercomputing.

III. MODULES

A. Design Considerations

Based on the preceding projections, DICE modules were
developed with COTS components to demonstrate an end-
to-end workflow rather than ultimate performance limits. A
core element of DICE is the direct physical assembly of
computational elements which can be configured to suit both
planned and unexpected applications. Interconnection between
elements supports the transfer of information, power, and
mechanical loads, and must be durable enough to permit
repeated re-assembly [9], whether by hand or by purpose-built
machine.

Prior to developing dedicated DICE devices, a number of
general-purpose microcontrollers were considered for proto-
typing the workflow. The search space was limited to devices
with floating-point units (FPUs), since planned applications
would require this capability. Microcontrollers were further
evaluated based on estimated performance (net and per watt),
along with minimum available package size, RAM, and built-
in communication peripherals. FPGAs were also considered

as they would allow considerable flexibility in terms of in-
ternode communication implementation and problem-specific
gate configurations [10], but were avoided for these initial
iterations due to space concerns and lack of direct portability
with existing applications. Based on this evaluation, and the
availability of a well-documented, open development toolchain
[11], the Microchip SAMD51J20 ARM Cortex M4F micro-
controller [12] was selected for initial prototyping of a general-
purpose DICE computing module, with more specialized het-
erogeneous modules anticipated to follow.

B. Physical Iterations

Initially, two hardware iterations were designed and tested
in parallel. The first design, called Static-DICE, was not me-
chanically reconfigurable, but rather was intended to quickly
provide a network of elements large enough to develop and
test inter-node communication layers. Given von Neumann
neighbors [13] (i.e Cartesian connections only, or four in-
terconnections per node), a minimum of twelve nodes were
needed if laid out in a two dimensional grid. Four additional
nodes were added to the final design, forming a square 4x4
grid with sixteen elements.

Fig. 1. Eleven Tiny-DICE nodes assembled.

The second design, called Tiny-DICE (see Fig. 1), consisted
of mechanically reconfigurable modules capable of tiling with

four neighbors per node. Tiny-DICE was used to study the
practical limits of commercially available hardware, both in
terms of size (using the smallest parts possible) and suitability
for mechanical assembly (as small-scale board-to-board con-
nectors are typically not designed for parallel configurations
or structural use). As with Static-DICE, Tiny-DICE used
Microchip SAMD51J20 processors, this time in 3.5 x 3.6
mm wafer-level chip-scale-package (WLCSP) format. Power,
information, and mechanical interconnection was provided by
6-pin Molex SlimStack [14] mezzanine-type connectors. The
small ball pitch on the WLCSP microcontroller necessitated a
commercially sourced high density interconnect PCB with six
layers, 100 um traces, and blind vias. Final node dimensions of
4.5 x 9.0 mm were driven by the connector and processor size.
Board outline tolerances were below manufacturer capabilities
so PCB edge routing was performed in-house on a precision
CNC mill prior to automated component placement and reflow
soldering. After verifying solder joint integrity using X-ray
inspection, a spring contact programmer was fabricated to flash
Tiny-DICE nodes with test code.

Tiny-DICE devices were evaluated for power consumption,
computation, and thermal performance as a fifteen-node clus-
ter on a build plate as shown in Fig. 2. Each device was
programmed with a simple pi calculation benchmark [4] set
to run for one million iterations. Power consumption was
measured using a current shunt and an oscilloscope, and the
results compared to other hardware devices as shown in Table
I. Convective cooling was adequate on this small scale; for
system scaling, the sparsity of the DICE lattice offers a design
degree of freedom that can vary the density of dissipation, and
can interdigitate computation with a cooling medium.

Fig. 2. Left, fifteen Tiny-DICE nodes connected in a cluster on a build plate
with an external supply and instrumentation; right, the same cluster after
reaching steady state running a pi calculation benchmark, viewed through a
long-wave IR thermography camera.

Lessons from both Static-DICE and Tiny-DICE informed a
third hardware iteration, called Meso-DICE, shown in Fig. 3.
These devices are intended to quickly demonstrate the com-
plete workflow, from design tools through automated assem-
bly, application execution, and mechanical reconfiguration. To
simplify construction and assembly mechanics, the hardware
is scaled roughly to Static-DICE proportions, and includes
fabricated mechanical features to self-align and latch nodes
together. Meso-DICE elements tile in a simple cubic lattice

with six neighbors; to ease assembly, passive strut elements
link adjacent nodes using COTS spring terminals. As with
Tiny-DICE, a spring contact programmer was fabricated to
simplify firmware development.

Fig. 3. Left, twelve rendered Meso-DICE nodes and struts are assembled to
form a 2x2x3 lattice. Right, four functional test elements are assembled and
powered on.

IV. ASSEMBLY

A. Tiny-DICE assembler

Two approaches were evaluated for automating DICE as-
sembly. For Tiny-DICE parts, a dedicated machine was de-
veloped that is a cross between a pick-and-place and a 3D
printer. The purpose of this automatic assembler is to build a
physical structure according to the layout created in the DICE
design tool. The machine has to pick Tiny-DICE parts from the
stack and place them to the final positions. The build process
starts with putting the parts on the substrate; the next layer
is then placed on top of the modules on the substrate, and so
on. Optionally, before the deposition, the assembler can put
every part into a programming station to load firmware with
a bootloader that allows later updates.

The Tiny-DICE assembler has a standard XYZ configura-
tion with a rotational axis on the tool head. The assembler
frame is machined from steel reinforced HDPE and aluminum.
To limit friction, all axes use polymer linear guideways. XY
axes are driven by standard stepper motors NEMA-17 with
GT2 timing belt and the Z-axis is driven by a non-captive
stepper motor with a leadscrew. A control board receives G-
code commands from a computer and drives the motors with
a resolution of 5µm (possible repeatability is approximately
50µm) and max speed 50 mm/s. The assembler also has an on-
tool USB microscope that allows precise jogging and optical
registration.

To reduce the size as much as possible, the Tiny-DICE parts
have no features to facilitate assembly, and due to the dense
packing of the final assembly, the space for grabbing of parts
is limited. Therefore, the assembler utilizes a pair of mating
SlimStack connectors to attach the part to the tool head. An
extendable pin actuated by a linear servo (with max force of
35 N) is then used to release the part from the tool head and
place it to the final destination.

We successfully tested building structures with several
layers. Limiting factors are the self-aligning capabilities of
the connectors and the absence of mechanical support under
upward-facing connectors on Tiny-DICE parts. Therefore,

Fig. 4. Automatic Tiny-DICE assembler. The substrate is in the front, the
stack of parts in the back, and the programming station on the right side.

the successful placing of parts relies on the rigidity of the
connection between already-placed parts.

B. Meso-DICE assembler

For the larger Meso-DICE platform, a 6-axis Universal
Robots UR10 arm was used to manipulate parts. An end effec-
tor was fabricated which uses a hobby servo motor to actuate a
machined acetal cam, which then closes four aluminum jaws
around a node part. The cam uses a flexural profile which
gives each follower a small amount of compliance, allowing
the end effector to adapt to imperfect pickup coordinates and
slight misalignment in the built lattice. A small circuit mounted
to the end effector translates native UR10 signals into servo
commands while limiting stroke to avoid overloads, allowing
the system to be controlled using the UR10’s pendant, an open-
source Python scripting library [15], or the DICE design tool.

In use, Meso-DICE parts are picked from a dedicated pickup
location. As with the Tiny-DICE assembler, the Meso-DICE
system has an integrated programmer for flashing nodes with
new firmware during assembly. Computational structures are
built up on a dedicated fiberglass build plate.

V. DESIGN

Traditional electronics design workflows follow a sequen-
tial linear process that starts with design, then analysis and
simulation, and finally system fabrication and testing. Often
these stages are executed independently from each other, using
different tools, making it hard to translate the feedback from
the simulation or testing stages into viable design amendments.
This adds considerable inefficiency to an inherently iterative
design workflow. As an alternative, we developed an inte-
grated, closed loop DICE design tool where one can design,
simulate, optimize and fabricate re-configurable computing
systems (see Fig. 6).

The design workflow follows several steps. First, DICE
nodes are placed to visualize the 3D structure of the computing
system. The user then selects individual nodes to specify

Fig. 5. Automatic Meso-DICE assembler. Left, the end effector and control
circuit is mounted to the end of a UR-10 robotic arm, shown placing a Meso-
DICE node on the build plate; bottom right, the Meso-DICE node pickup
location; top-right, the integrated Meso-DICE programmer.

Fig. 6. Integrated DICE design tool with interchangeable windows to enable
the simultaneous design of software and hardware, as well as assembly and
testing in real time.

details, such as processor type, connected neighbors, program,
number of operations, maximum token size, and so forth.
During these steps, a connectivity graph is generated in real-
time, showing the average computation and communication
cost of each node based on these preprogrammed node details.
In the future, these numbers could be automatically calculated
by pre-compiling and profiling code for each node.

By treating the computation graph as a dataflow network,
graphical algorithms are used to find and highlight compu-
tation and communication bottlenecks. Based on this anal-
ysis, design recommendations are generated and displayed,
including suggestions for different processors, extra nodes, or
alternative routing.

If the user wants to further optimize the reconfigurable
computing system, the performance projection graph tool
visualizes the effect of each hardware and software decision

on projected overall system performance. A generative prob-
abilistic programming model is used to draw samples from
these inputs and project the cost, energy use, and speed of
the system. Using classic inference techniques one is able to
infer a hardware configuration for a given software workflow.
In the future this could be extended to additionally perform
hardware architecture discovery.

After optimization, the simulation window allows the user
to visualize the state and output of the DICE computation.
Currently, this shows the output of a simulated computation
provided on the host computer prior to physical assembly. In
the future, this framework will be used to visualize real-time
data from the DICE network, augmenting display nodes.

In parallel with the previous steps, the interactive assembly
control window provides a simple mechanism for controlling
the mechanical DICE assembler. Using this feature, systems
can be fabricated, programmed, and tested to quickly pull in
feedback and amend the system architecture accordingly.

This integrated design workflow paves the way for the
design of both discretely integrated circuits and reconfigurable
computing systems that can change and evolve during execu-
tion as needed.

VI. APPLICATION

A. Programming Model

The DICE programming model emphasizes the physical
locality of both memory and compute resources. By reflecting
the underlying compute hardware, this strategy facilitates
reconfigurability, scalability, and energy efficiency. As a result,
applications must be implemented with distributed algorithms
that operate on distributed data. This requires a different set
of tools than is conventionally used for writing parallel code.

Synchronization and communication between DICE nodes
is achieved via the transfer of tokens. Tokens carry arbitrary
data payloads and have application defined identifiers. DICE
nodes can check for the presence or absence of a token
with a certain identifier from a certain neighbor. Tokens are
exchanged only between neighboring nodes, so if data is to be
passed between physically separated nodes propagate along a
chain of intermediate nodes to get there.

Conceptually, DICE nodes can be viewed as actors that
process and exchange these tokens. Input and output data of
computations are passed around as token payloads, and each
DICE node greedily performs computations as inputs become
available. Currently this model is implicit in the application
codes discussed below. Future versions will employ a domain
specific language that associates tokens with actions explicitly,
ceding the main loop to the DICE runtime environment and
allowing it to invoke actions as their tokens become available.

B. Comparison with Existing Models

In the sense that DICE networks consist of regularly ar-
ranged data processing units, they are similar to systolic
arrays [16]. However for DICE there need not be consistent
directions of data transfer, and the complexity of the data and
computations handled by each node is typically higher.

DICE networks are similar to Petri nets in that they produce
and consume tokens along a graph [17]. However DICE
networks impose a consistent lattice structure on the graph, and
allow arbitrary data payloads to be associated to the tokens. It
is also more common for connections between DICE nodes to
be bidirectional than in Petri nets. In a similar manner, DICE
networks resemble asynchronous logic automata (ALA) [18],
[19], where ALA’s single bit tokens are replaced with DICE’s
arbitrary payloads, and ALA’s boolean algebra operations are
replaced with DICE’s arbitrary computations.

In Flynn’s taxonomy [20], each DICE node is a SISD
computer. A network of DICE nodes is a MIMD computer;
future implementations could also include SIMD or MIMD
nodes.

C. Implementation

For the existing SAMD51-based prototype nodes, the DICE
programming model and runtime environment is implemented
as a C/C++ library organized into three layers. The first
layer is a hardware abstraction layer that interfaces with the
SAMD51’s peripherals. In particular, a full implementation of
the firmware stack requires use of the generic clock controller
(GCLK), nested vector interrupt controller (NVIC), external
interrupt controller (EIC), and the universal synchronous and
asynchronous receiver and transmitter (SERCOM USART).
The second layer is a data link layer that enables transfer of
raw bytes between neighboring nodes. It serves an analogous
purpose to the data link layer in the OSI model [21]. The third
layer is the token layer, which implements the token passing
model described above.

D. Physical Simulation

DICE lends itself to problems which can be subdivided
via local data parallelism. One such problem is physical
simulation, which is also a leading use of national class super-
computers. Here, we describe a generalized discrete element
method (DEM) simulation for DICE.

Each DICE node is responsible for simulating a certain
region of space [22]. Adjacent regions within the simulation
are computed by adjacent DICE nodes. As particles move
between these regions, their data is transferred between the
corresponding nodes. Computationally, each node computes
local interaction forces between particles, and uses these forces
to integrate the particles’ velocities and positions forward in
time. Particles near region boundaries may interact across
them, requiring some data transfer. A critical factor for per-
formance is the density of interacting particle pairs, since the
calculation of interaction forces dominates compute time. In
practice this density is limited by an interaction cutoff distance.

Within each DICE node, the memory required to store
particle data and the computational effort required to compute
interaction forces are both proportional to the volume of the
simulated region. The data that must be transferred between
nodes, however, is proportional to the surface area of the
region. Thus the overhead of communication between nodes
is reduced as the size of the regions simulated by each node

grows. This imposes a limit on the acceleration one can
achieve for a single, fixed size simulation by distributing it
across more nodes. But larger simulations (in physical extent
and number of particles) can be run without any increase in
run time if the number of nodes is increased proportionately.

Even for the existing generation of SAMD51J20 based
nodes, the projected communication overhead is not pro-
hibitive. Each SAMD51 has 256KB of RAM, can be clocked
at 120MHz, and has six SERCOMs that can each transmit
a maximum of three million bits per second. Given these
constraints, and assuming an interaction cutoff distance of
three times the characteristic particle spacing at maximum
density, a single node can store approximately 1,700 particles.
At maximum capacity, each node would compute ~135,000
interaction forces in ~1.3 seconds. Computing these forces
would require transferring ~200KB of particle data between
each node and its neighbors, which would take ~85ms if all six
SERCOMs are used in parallel. Thus if data transmission and
force computation happen serially, about 6% of each DICE
node’s time would be spent transferring data. In practice data
transmission and computation can be overlapped using DMA.

The projected Summit MCU discussed earlier would enable
much greater performance. In particular, with 1 GFLOPS
and 256KB of RAM, each node could compute its particles’
interaction forces in ~16ms. To keep the communication
overhead manageable, the Summit MCU’s SERCOMs should
be proportionately faster than the SAMD51’s. In particular,
with six 128MBit/s SERCOMs, each node could transfer the
necessary particle data in ~2ms. This would result in each
node spending ~11% of its time transferring data, assuming
no overlap with computation.

E. Machine Learning

Another important application for DICE is to create re-
configurable computing systems for machine learning. Deep
Neural Networks (DNNs) are currently used in countless appli-
cations, and through time, the models are becoming deeper and
more sophisticated. In an attempt to benchmark and compare
the training performance of variably sized and shaped DNNs
on different hardware architectures (CPUs, GPUs or TPUs),
its was concluded that there were no winners [23]. TPUs had
the highest throughput and worked best with large batches,
GPUs were more flexible for small problems and irregular
computations, and CPUs were the most programmable and
were the only ones to support larger models [23]. There is
an increased need for accelerators and application-specific
hardware in order to reduce data movement, one of the main
bottlenecks of deep learning training, without compromising
accuracy, throughput and cost [24].

Consequently, joint hardware/software design workflows are
essential for developing a deep learning system, where spatial
computing architectures are tailored to the depth and shape
of the DNNs, as well as to the size of the training data.
This will minimize the data movement and shared memory
access, which dominates the energy consumption in traditional
computing architectures.

As a first step to address this problem, a machine learning
add-on was implemented as part of the integrated physical
computing design tools (see Fig. 6). There, one is able to
choose and add different kinds of DNN layers and specify their
size, activation function, and parallelism strategy. The add-
on also has a real-time graphical visualization of the training
progress showing the updated accuracy of the model though
time.

In order to benchmark and estimate the computing re-
quirements for DICE to train DNNs, we chose AlexNet, a
Convolutional Neural Network (CNN) that is widely used
for benchmarking hardware as it was the first CNN to win
the ImageNet challenge [25]. AlexNet consists of five con-
volutional (CONV) layers and three fully connected (FC)
layers. For a 227x227 input image, it requires 61M weights
and 724M multiply-and-accumulates (MACs). Similar to most
DNN architectures, the FC layers have significantly more
weights than CONV layers (58.6M vs 2.3M) and CONV layers
are more computationally expensive than FC layers (666M
MACs vs 58.6M MACs).

Assuming complete data parallelism, a number of chal-
lenges arise when naively trying to map AlexNet onto a
DICE system that uses only one type of node (the SAMD51
processor prototype). Since each processor has only 256Kb
of RAM, for FC layers, one might need up to 2300 nodes
just to store the weights and perform the calculations, which
will result in a communication overhead of more than 1600%.
Therefore, specialized node types are required to efficiently
map AlexNet, or any DNN, into a DICE architecture in
an effort to minimize data movement, maximize number of
parallel computations, and minimize the number of idle nodes.
One is to design hierarchical memory allocation and access.
Dedicated memory nodes could store data (filters, weights
or input images) which is hierarchically broadcast based on
the layer architecture. This enables temporal and spatial data
reuse, where the data is read only once from the expensive
memory and is sent to the small local cheap memory for reuse.
Moreover, the number of weights stored and computation
performed can be pruned by introducing specialized nodes
that address the sparsity generated when using the ReLU as
an activation function. For example, AlexNet’s layers have
around 19-63% sparsity. This has proven to reduce the energy
cost by 96% using similar spatial architecture hardware [26].
If these changes were implemented, in addition to using the
projected Summit MCU performance instead of the SAMD51,
the computation speed will increase by 85x and the average
communication overhead for FC layers will decrease to 33%.

Even though the performance of the first generation DICE
demonstration for deep learning applications does not outper-
form current specialized HPC architectures, advances in Inter-
net of Things and embodied computing require computation to
be physically near sensors and data collection devices in order
to minimize large data transfer. The modularity and ease of
assembly of DICE will facilitates this system integration along
with the addition of specialized robotic and electro-mechanical
input and output modules for data collection, actuation and

output visualization.
Furthermore, one key aspect of DICE modules is their

reconfigurability; this means that in addition to changing the
hardware modules to fit different types of networks, one can
reconfigure the hardware itself as a system learns. Recent
research in deep learning is developing dynamic DNNs that
not only optimize their weights but also their structure, which
means that the hardware should be optimized to match at
different stages of the training. This reconfigurability will also
be essential for online learning and probabilistic inference
tasks where the computing architecture grows as more data
are presented or more analysis is needed.

VII. CONCLUSION

The DICE framework provides a novel approach to system
architecture for high performance computing. As power con-
sumption and memory bandwidth continue to limit exascale
system development [27], DICE blends a low-power node
architecture, distributed memory hierarchy, 3D packaging,
and intuitive design implementation to align hardware with
software.

Beyond the potential raw compute power of DICE nodes
detailed in section I, the design tools and automated assembly
of the DICE framework introduces system scalability and
structural flexibility that are not available with existing su-
percomputing racks and chassis. Building a custom super-
computer or expanding an existing cluster requires rework
of middle layer code and complicated compiler optimizations
[28]. This development bottleneck is bypassed in DICE due
to its direct mapping between programming logic and spatial
computing. Furthermore, the 3D packaging of DICE nodes
and their unique interconnect design allows myriad physical
configurations with potential for sparse lattice structures to
optimize thermodynamics, for structural elements for robotic
design, and for incorporating novel device physics.

DICE introduces a new paradigm for high performance
parallel computing which realigns the relationship between
design, assembly, and architecture to seamlessly transition
from logic to construction, and lays the groundwork for
significant HPC power gains with future dedicated device
development.

REFERENCES

[1] S. K. Moore, “Chiplets are the future of processors: Three advances
boost performance, cut costs, and save power,” IEEE Spectrum, vol. 57,
no. 5, pp. 11–12, 2020.

[2] R. Henry, “Project tinkertoy: a system of mechanized production of
electronics based on modular design,” IRE Transactions on Production
Techniques, vol. 1, no. 1, pp. 11–11, 1956.

[3] [Online]. Available: https://www.top500.org/green500
[4] N. Gershenfeld, The Nature of Mathematical Modeling. Cambridge

University Press; 1st edition, Nov. 1998.
[5] M. Saint-Laurent, P. Bassett, K. Lin, B. Mohammad, Y. Wang, X. Chen,

M. Alradaideh, T. Wernimont, K. Ayyar, D. Bui, D. Galbi, A. Lester,
M. Pedrali-Noy, and W. Anderson, “A 28 nm dsp powered by an on-
chip ldo for high-performance and energy-efficient mobile applications,”
IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 81–91, 2015.

[6] A. A. Del Barrio, N. Bagherzadeh, and R. Hermida, “Ultra-low-power
adder stage design for exascale floating point units,” ACM Trans.
Embed. Comput. Syst., vol. 13, no. 3s, Mar. 2014. [Online]. Available:
https://doi.org/10.1145/2567932

[7] I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Y. Kupriyanov,
A. L. Gudkov, and A. S. Sidorenko, “Beyond moore’s technologies:
operation principles of a superconductor alternative,” Beilstein Journal
of Nanotechnology, vol. 8, p. 2689–2710, Dec 2017. [Online].
Available: http://dx.doi.org/10.3762/bjnano.8.269

[8] N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa,
“An adiabatic superconductor 8-bit adder with 24kbt energy dissipation
per junction,” Applied Physics Letters, vol. 114, no. 4, p. 042602,
2019. [Online]. Available: https://doi.org/10.1063/1.5080753

[9] W. K. Langford, “Electronic digital materials,” Master’s thesis,
Massachusetts Institute of Technology, 2014. [Online]. Available:
http://cba.mit.edu/docs/theses/14.08.Langford.pdf

[10] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider,
“Teramac-configurable custom computing,” in Proceedings IEEE Sym-
posium on FPGAs for Custom Computing Machines, 1995, pp. 32–38.

[11] ARM, “Gnu toolchain,” Accessed on: June 19, 2020.
[Online]. Available: https://developer.arm.com/tools-and-software/open-
source-software/developer-tools/gnu-toolchain/gnu-rm

[12] Microchip, “Atsamd51j20a - 32-bit sam microcontrollers,”
Accessed on: June 18, 2020. [Online]. Available:
https://www.microchip.com/wwwproducts/en/ATSAMD51J20A

[13] A. W. Burks, “Von neumann’s self-reproducing automata,” University of
Michigan Technical Report, 1969.

[14] Molex, “Slimstack board-to-board connectors,” Ac-
cessed on: June 18, 2020. [Online]. Available:
https://www.molex.com/molex/products/family/slimstack fine pitch

smt board to board connectors
[15] O. Roulet-Dubonnet, “python-urx,” Accessed on: August 28, 2020.

[Online]. Available: https://github.com/SintefManufacturing/python-urx
[16] H. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse

Matrix Proceedings 1978, vol. 1. Society for industrial and applied
mathematics, 1979, pp. 256–282.

[17] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9,
no. 3, pp. 223–252, 1977.

[18] D. Dalrymple, N. Gershenfeld, and K. Chen, “Asynchronous logic
automata.” in Automata, 2008, pp. 313–322.

[19] N. Gershenfeld, D. Dalrymple, K. Chen, A. Knaian, F. Green,
E. D. Demaine, S. Greenwald, and P. Schmidt-Nielsen,
“Reconfigurable asynchronous logic automata: (rala),” SIGPLAN
Not., vol. 45, no. 1, January 2010. [Online]. Available:
https://doi.org/10.1145/1707801.1706301

[20] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE transactions on computers, vol. 100, no. 9, pp. 948–960, 1972.

[21] J. D. Day and H. Zimmermann, “The osi reference model,” Proceedings
of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983.

[22] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Sandia National Labs., Albuquerque, NM (United States), Tech.
Rep., 1993.

[23] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu
platforms for deep learning,” arXiv preprint arXiv:1907.10701, 2019.

[24] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[26] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[27] S. Gibson, “Revisiting the 2008 exascale computing study at
sc18,” HPC Wire, Nov. 29, 2018. Accessed on: June 15, 2020).
[Online]. Available: https://www.hpcwire.com/2018/11/29/revisiting-
the-2008-exascale-computing-study-at-sc18/

[28] E. M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A. Tsintzira, A. Am-
patzoglou, and A. Chatzigeorgiou, “Investigating trade-offs between
portability, performance and maintainability in exascale systems,” in
46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 20), 08 2020.

