
Compute, Time and Energy Characterization of 
Encoder-Decoder Networks with Automatic Mixed 

Precision Training 
Siddharth Samsi, Michael Jones, Mark M. Veillette 

MIT  Lincoln Laboratory 
240 Wood  Street Lexington, MA  02421 

 
Abstract—Deep neural networks have shown great success in 

many diverse fields. The training of these networks can take 
significant amounts of time, compute and  energy.  As datasets 
get larger and models become more complex, the exploration     
of model architectures becomes prohibitive. In this paper we 
examine the compute, energy and time costs of training a U-     
Net based deep neural network for the problem of predicting 
short term weather forecasts (called precipitation Nowcasting). 
By leveraging a combination of data distributed and mixed- 
precision training, we explore the design space for this problem. 
We also show that larger models with better performance come 
at a potentially incremental cost if  appropriate  optimizations  
are used. We show that it is possible to achieve a significant 
improvement in training time by leveraging mixed-precision 
training without sacrificing model performance. Additionally, we 
find that a 1549% increase in the number of trainable parameters 
for a network comes at a relatively smaller 63.22% increase in 
energy usage for a UNet with 4 encoding layers. 

Index Terms—Deep Learning, Computational cost, Mixed 
precision 

 
I. INTRODUCTION 

Training deep learning models requires significant amounts 
of computational resources [1], [2]. This is compounded by 
the fact that the identification of the best model for a given 
task involves hyperparameter tuning as well as a search for an 
appropriate model architecture. Thus, optimizing performance 
of deep neural networks matters - not only for accelerating 
scientific discovery and insight, but also for reducing the 
energy costs of training complex models. In this paper we 
present results of experiments related to training deep neu-  
ral networks using mixed precision training [3]. In mixed 
precision training, model training operations such as matrix 
multiplication, convolutions, activations, and gradient compu- 
tations are carried out in half-precision 16-bit floating point 
(FP16), while the weight updates are performed on a 32-bit 
floating point (FP32) copy of the model weights. Using FP16 
for mathematical operations has the effect of significantly 
increasing performance while reducing memory consumption 
and energy usage. 

 
This material is based upon work supported by the Assistant Secretary of 

Defense for Research and Engineering under Air Force Contract No. FA8721- 
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the Assistant Secretary of Defense for 
Research and Engineering. 

Obtaining the full benefit of mixed-precision is not always 
straightforward. First and foremost, the hardware must support 
FP16 operations. Second, for best results the model archi- 
tecture must be well-aligned with hardware  specifications.  
For example, for Tensor Cores on NVIDIA Volta GPUs, 
maximum performance in matrix multiple is achieved when 
certain matrix sizes are  multiples  of  8  [4].  In  the  context 
of convolutional neural networks (CNNs), this corresponds to 
convolutional layers with filter sizes that are multiples of 8. 
Additionally, larger batch sizes, layers, number of filters can 
also result in better compute performance due to more efficient 
memory accesses and reduced overheads. 

In this paper, we provide various benchmarks of automatic 
mixed precision (AMP) training on a standard U-Net model 
architecture [5]. U-Net is a very common  architecture that  
has been applied to a large number of applications, including 
image-to-image translation, natural language processing, im- 
age segmentation, and others. We use this model for the task 
of generating short term weather forecasts, called nowcasts. 
The experiments described in this work use the Storm EVent 
Imagry (SEVIR) weather dataset1. SEVIR events consist of 
weather image sequences for over 10,000 events that occurred 
over the US. These events cover 384 km x 384 km patches 
and span 4 hours. Using this dataset, we train a U-Net to 
perform the task of predicting M future frames of weather 
radar imagery given N previous frames. Our experiments 
demonstrate the speedup of mixed precision training across 
several variations of the U-Net architecture, as well as a 
reduction in memory and energy usage. In addition, we show 
that training using FP16 has little to no impact on the quality 
of the nowcast model. 

II. PRIOR WORK 

Nowcast is the term used for high-resolution, short-term 
weather forecasts (typically 1-2 hours) of precipitation, cloud 
coverage or other meteorological quantities [6], [7]. These 
types of forecasts are of high value in public safety, air traffic 
control, tactical mission planning and many other areas where 
high resolution and rapidly updating forecasts are needed. Pre- 
vious work on deep learning for nowcasting includes convo- 
lutional Long Short Term Memory (ConvLSTM) models [8], 

1https://registry.opendata.aws/sevir/ 



which showed that DNNs are capable of generating forecasts. 
Recent work also involves the use of recurrent architectures [9] 
and fully convolutional networks [7], [10] for precipitation 
nowcasting. 

The data used for precipitation nowcasting consists of a 
sequence of images  depicting  precipitation  intensity.  This  
is represented using vertically integrated liquid (VIL) [11] 
which estimates liquid content in the atmosphere from weather 
radar measurements. The SEVIR dataset was used to generate 
training and testing data. We frame nowcasting as a future 
prediction task where the model input consists of 13 VIL 
images sampled at 5 minute intervals. The model is trained   
to produce the next 12 images in the sequence, corresponding 
to the next hour of weather. Data from SEVIR was first 
extracted and processed into 44,760 sequences for training 
and an independent set of 12,144 sequences for testing the     
fit model. This was done by splitting each SEVIR event into   
3 input and output sequences. The model input was of size 
Nx384x384x13 and the output sequence was Nx384x384x12 
pixels, where N is the batch size. 

III. MODEL ARCHITECTURES 

The nowcast model uses variants of the U-Net architecture 
[5] with configurable encoders and decoder blocks. The U- 
Net architecture consists of two phases, an encoder and a 
decoder. Each of these phases is made of d sequential blocks, 
which are combinations of layers and activation functions. 
The number of decoder blocks and filters in each layer are 
the same as those in the parallel encoder block. Figure 1 
shows one such configuration of the encoding and decoding 
blocks, along with the details of each block. This configuration 
is used as a baseline model. Table  I shows the full set   
of U-Net configurations explored in this work. The encoder 
block used here consists of two Conv2D, BatchNorm, Relu 
sequences, and finalized with a 2x2 MaxPool2d layer. The 
decoder portion of the network consists of the same num- 
ber of layers as the encoder blocks. Each decoder block 
consists of a Conv2DTranspose followed by skip con- 
nection with the parallel encoder block, followed by two 
Conv2D, BatchNorm, Relu sequences. The final layer of 
the network is Conv2D with linear activation, configured 
with the appropriate number of outputs depending on the 
application. The final layer of the network is Conv2D with 
linear activation, configured with the appropriate number of 
outputs. 

We parameterize different U-Net architectures with two fac- 
tors: the depth d which controls the number of encoder/decoder 
blocks, and the starting filter size f which controls the number 
of filters in the first encoding block. Subsequent encoding 
(decoding) blocks using double (half) the filters of the previous 
block. We will use the notion ”Ud-f ” to describe a given 
model architecture. The baseline network drawn in figure 1 
shows U4-32. 

Training time and the quality of model output are largely 
affected by these hyperparameters, as well as batch sizes used 
for training, loss function and number of epochs. Table I shows 

 

  
 

Fig. 1. Example U-Net model architecture used in this paper: This example 
shows the nowcast workflow where the inputs data consists of an hour of 
weather radar images in 13 time steps and the output is the predicted weather 
for the next hour in increments of 5 minutes, resulting in 12 predicted images. 

 
 

TABLE I 
Variations on U-Net architecture explored in this work. The notation 

”Ud-f ” denotes a U-Net with d encoder/decoder blocks, starting with f 
filters in the first block. 

 
Name Number of filters Parameter % Increase 

 per encoder layer Count over UN-32 

U3-32 32,64,128 12,062,476 - 
U3-64 64,128,256 16,496,140 36.75 
U3-128 128,256,512 30,807,052 155.39 
U3-256 256,512,1024 81,203,212 573.18 

U4-32 32,64,128 16,556,044 - 
U4-64 64,128,256 31,053,836 87.56 
U4-128 128,256,512,1024 82,204,684 396.52 
U4-256 256,512,1024,2048 273,127,436 1549.71 

U5-32 32,64,128,256,512 31,113,740 - 
U5-64 64,128,256,512,1024 82,451,468 165.00 
U5-128 128,256,512,1024,2048 274,128,908 781.05 
U5-256 256,512,1024,2048,4096 1,013,491,724 3157.37 

U6-32 32,64,128,256,512,1024 82,511,372 - 
U6-64 64,128,256,512,1024,2048 274,375,692 232.5 

 
 

the different U-Net configurations and the resulting number of 
trainable parameters. As seen in this table, models with four 
layers can have as many as 273 million unknown parameters 
simply as a result of increasing the number of filters per layer. 

In addition to the model parameters themselves, the total  
training time for a model is affected by the I/O pipeline and 
the hardware capabilities. Analysis of file I/O for training is 
not the focus of this  paper.  From  a  hardware  perspective, 
the use of mixed precision compute for model training can 
significantly improve training time. We trained our implemen- 
tations on NVIDIA Volta GPUs which can speed  up  linear 
and convolutional layers by using tensor cores on the GPU. 
While enabling a massive amount of compute, GPUs also tend 
to impose restrictions on model training primarily due to the 
limited amount of memory available on the device. For a given 
model and a given data size, the total amount of memory 
available on a GPU tends to limit the largest batch size that 
can used for training and this in turn can lead to increased 
training time for small batch sizes. 

Taken together, the training time for a model is thus affected 
by design choices that may force trade-offs between training 
time and model accuracy. It is important to carefully weigh 
these trade-offs when selecting an optimal architecture. 



IV. EVALUATION METRICS 

The section describes the set of quantitative evaluation 
metrics used for assessing the quality of the nowcasting model. 

12,144 sequences was used to calculate the evaluation metrics 
discussed in Section IV. We train different configurations of 
the nowcast model as listed in Table I. 

The output of the nowcast model consists of 12 images 
representing the predicted weather for the next hour. The 
model is expected to produce textural detail as well as motion 
in the radar data. Given that image quality assessment can     
be inherently challenging, we  use  forecast-specific  metrics 
as well as commonly used image quality metrics for eval- 
uating networks trained on the SEVIR dataset. The overall 

 
 
 

0.5 
 
 

0.4 
 
 

0.3 
 
 

0.2 
 
 

0.1 

 
MSE Training Loss 

 
0 10 20 30 40 50 

Epochs 

 
 
 

200 
 

175 
 

150 
 

125 
 

100 
 

75 
 

50 
 

25 
 

0 

 
Mean Time per Epoch 

 
 
 
 
 
 
 
 
 
 

FP32 AMP+Batch32 AMP+Batch16 

quality of the generated vil imagery is evaluated using 
metrics common in forecast evaluation [12]. These metrics  
are computed by first binarizing the truth and prediction 
images at a set of thresholds that span the range 0 - 255. 
Thresholds for vil were chosen based on the 6 Video 
Integrator and Processor (VIP) intensity levels [13] which cor- 
respond to pixel values [16, 74, 133, 160, 181, 219]. Binarized 
pixels are scored as Hits (H) if prediction=truth=1, 
Misses (M) if prediction=0,truth=1, False Alarms 
(FA) if prediction=1,truth=0 and Correct Rejection 
otherwise. The summary statistics calculated over the test set 
are : Probability of Detection (POD), Success Rate (SUCR), 
Critical Success Index (CSI), and BIAS. The statistics are 
computed as follows - POD = H , SUCR = H    

Fig. 2. Full vs. automatic mixed-precision training: Loss profile is seen to be 
unchanged when using mixed-precision training as compared with training in 
full 32-bit floating point precision. Using mixed-precision leads to a reduced 
mean epoch time over the training process as seen here. 

 

A. Mixed-precision training 
In order to establish a baseline for compute performance, we 

trained the U4-32 U-Net implementation with 32-bit floating 
point precision as well as 16-bit mixed-precision. The mixed- 
precision model was trained with batch sizes of 32 and 16 
whereas the full precision model was only trained with a  
batch size of 32. Using larger batch sizes results in out- of-
memory (OOM) errors on the GPU. Figure 2 shows the  loss 
curves during training as well as the average time per H+M H+FA Critical Success Index (CSI) =  H , BIAS = H+F A . epoch for these three model configurations. It can be seen here H+M +FA H+M 

Evaluation of the perceptual quality of the output can be 
performed using several metrics such as Mean Squared Error 
(MSE) and Structural Similarity Index (SSIM) [14]. However, 
while pixel-level metrics are computationally efficient, they do 
not capture the rich textural information in weather radar im- 
ages. Thus, to evaluate perceptual quality, we use the Learned 
Perceptual Image Path Similarity (LPIPS)  metric  proposed 
by Zhang et. al [15] which has been shown to outperform 
traditionally used metrics. The LPIPS evaluates images by 
computing the cosine distance between normalized network 
activations from deep networks such as AlexNet, SqueezeNet 
and VGG. In this paper we use an AlexNet network trained on 
the ImageNet [16] dataset. In the nowcast application, metrics 
were averaged over the 12 steps in the output. Metrics reported 
in the paper were calculated on an independent validation set 
consisting of 12,144 vil sequences. 

V. RESULTS 

Experiments were performed on the Lincoln Laboratory 
Supercomputing Center (LLSC) TX-Gaia supercomputer. This 
cluster consists of 448 computer nodes with dual Intel Xeon 
Gold 6248 CPUs with 384 GB of RAM and two NVIDIA 
Volta V100 GPUs with 32 GB of memory per GPU. All 
models were trained using GPUs. Models were developed in 
TensorFlow 2.1 and the Horovod framework was used for  
data distributed training. All models were trained on 44,760 
VIL image sequences generated from the SEVIR dataset. The 
input to the models consists of 13 images of size 384x384 
pixels representing one hour of data. The model output consists 
of 12 images of the same pixel dimensions representing the 
forecast for the next hour. A separate test dataset consisting of 

that there the training loss is barely affected by switching to 
mixed-precision training. Moreover, mixed-precision training 
provides a 26.89% and 22.07% speedup for batch sizes of     
32 and 16 respectively when compared with the original full 
precision trained model as shown in Figure 2. We do not report 
the total training time here because this also includes file I/O 
which we are not evaluating in this paper. 

Table II shows GPU usage statistics obtained with the 
NVIDIA DGCM [17] tools across several U-Net architecture 
variations. One interesting observation here is that simply 
switching to mixed-precision training for the same model 
results not only in a reduction of the per  epoch  compute  
time, but it is achieved at a lower  resource  utilization  as  
seen by the average Streaming Multiprocessor (SM) and GPU 
memory utilization in Table II. The lower numbers for SM 
utilization suggests that this particular configuration of the 
model is leading to the GPUs being  data  starved.  If  the  
SMs had more data available to compute or a larger number  
of compute operations to hide overheads, one could expect   
the SM utilization to increase as well. Increased compute 
operations can be achieved by either increasing the number of 
layers or the number of filters per layer or some combination 
of the two. In some cases, deeper and wider networks are   
able to perform better at a given task. Faster training through 
AMP enables wider parameter sweeps which can lead to the 
identification of improved model architectures which perform 
better (albeit at a higher compute cost). 
B. Comparison of U-Net model performance 

While our original model shows modest reduction in com- 
pute time with mixed-precision training, the model suffers 

 

 

Lo
ss

 

T
im

e 
(s

ec
on

ds
) 



TABLE II 
GPU utilization statistics from NVIDIA DCGM tool: AMP refers to the use of Automatic Mixed Precision for training models. 

 
Model Avg.  SM Utilization % Max.  Memory Utilization % Avg.  Memory Utilization % Energy Usage (Joules) 

 FP32 AMP  FP32 AMP  FP32 AMP  FP32 AMP 

U3-32 61.5 55  40.5 34  90.5 84.0  991,870.0 834,312.0 
U3-64 78.0 67  49 42  75.0 90.5  1,169,834.0 1,026,087.0 
U3-128 89.5 81.5  49.5 44  76.5 76.5  1,318,431.0 1,255,385.0 
U3-256 96.0 94  38 37  100 59.5  1,540,444.0 1,428,421.0 

U4-32 64.5 59  40 34  84 75.5  959,247.0 826,726.0 
U4-64 77 70.5  48 42.5  75 87  1,163,470.0 1,057,388.0 
U4-128 91 88.5  62 39  84.5 62.5  1,416,633.0 1,255,483.0 
U4-256 93 94.5  73.5 32  100 59.5  1,474,127.0 1,349,416.0 

U5-32 63.0 58.0  41.0 34.0  83.5 74.0  951,037.0 815,611.0 
U5-64 80.5 71.5  47.0 41.0  75.0 83.5  1,156,716.0 1,098,744.0 
U5-128 93.0 88.0  54.0 34.5  95.0 73.5  1,307,724.0 1,179,121.0 

U6-32 67.5 62.0  66.0 65.0  28.0 26.0  740,556.0 538,298.0 
U6-64 94.0 89.0  64.5 58  26.0 20.5  796,253.0 691,416.0 

 
 
 

2500 
 

2000 
 

1500 
 

1000 
 

500 
 
 

107 108 
Number of parameters 

 

Fig. 3. Performance comparisons of FP32 vs AMP across different U-Net 
configurations. The ”wider” networks (those with more filters in each layer) 
show much larger performance gains using AMP. 

 
TABLE III 

Speedups from mixed-precision training for different models. AMP: 
Automatic mixed-precision 

 
Model Batch Sz. Mean  Epoch Time (Sec.) FP16 

 
 

 

1500 

 
 

1000 

 
 

500 

 
 

0 

 
Parameter Count 

 
 
 

U4-128 U4-256 U6-32 

 
 
 
 

600 
 
 

400 
 
 

200 
 
 

0 

 
Avg. Epoch Time 

 
 
 
 
 
 
 
 
 
 
 

U4-128 U4-256 U6-32 

 
Energy Usage 

60 
 
 

40 
 
 

20 
 
 

0 
 

U4-128 U4-256 U6-32 

 

Fig. 4. Comparison of parameters, mean epoch time and energy usage for U4- 
128, U4-256, U6-32 model configurations relative to the U4-32 configuration. 
All comparisons in this figure used results from mixed-precision training for 
all the networks. 

 
 

U6-64 

U6-32 

U5-128 

U5-64 

U5-32 

U4-256 

U4-128 

U4-64 

U4-32 

U3-256 

U3-128 

U3-64 

U3-32 

 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

Energy Savings of AMP over FP32 
 
 

Fig. 5. Reductions in energy usage by training UNets with AMP 

 
from the use of small encoder layers.  Empirically,  deeper 
and wider models have also been shown to achieve improved 
results as seen by their successes in the ImageNet [16] chal- 
lenge. Thus, we can potentially improve nowcast performance 
while also leveraging compute optimizations by making our 
model larger. We evaluated other U-Net model configurations 
with increased encoder filter sizes as shown in Table I. These 
models are also trained using mixed-precision compute. The 
compute time speedups observed per epoch are listed  in  
Table III and shown graphically in Figure 3 against the number 
of parameters in each model. Generally, wider models with 
larger number of filters achieved the biggest advantage with 
AMP. However, larger models also require a reduction in the 
batch size used which may increase compute time per epoch  
as compared with the smaller models. 

Table 2 also shows the GPU usage statistics for the larger 

   

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%
 In

cr
ea

se
 

U
-N

et
 C

on
fig

ur
at

io
n 

M
ea

n 
E

po
ch

 T
im

e 
(s

)  

%
 In

cr
ea

se
 

%
 In

cr
ea

se
 

   

    

 

 FP32/AMP FP32 AMP Speedup % 

U3-32 48 179.093 140.338 21.63 
U3-64 16/32 277.04 191.588 30.84 
U3-128 16 570.643 339.558 40.49 
U3-256 8 1853.6725 821.852 125.54 

U4-32 32 173.485 137.725 25.96 
U4-64 16/32 295.35 194.518 34.14 
U4-128 8/8 749.98 417.005 44.39 
U4-256 4/8 2537.88 1121.4 55.81 

U5-32 32/32 176.50 139.26 21.10 
U5-64 16/32 325.10 210.21 35.34 
U5-128 8/16 1045.185 520.845 100.67 

U6-32 4 392.87 345.86 13.59 
U6-64 4 1106.48 562.92 95.55 

 



U-Net models. With the U4-128 and U4-256 configurations 
we observe that the average SM utilization on the GPU is 
significantly higher than the U4-32 model. Figure 4 shows the 
percentage increases in the mean epoch time and energy usage 
for U4-128, U4-256, U6-32 model configurations relative to 
the U4-32 configuration when all models were trained using 
mixed-precision. It can be seen that a nearly 400% increase in 
the parameter count for the U4-128 model results in a 200% 
increase in mean epoch time and only 45% increase in the 
energy usage. 

An additional benefit of using AMP training is a modest  
reduction in the total energy used to train the model. The last 
two columns of Table II show the total energy usage in Joules 
measured when training each network in FP32 and AMP for   
a fixed number of epochs. The resulting reduction in energy 
usage in percent is plotted in Figure 5 for each configuration, 
which shows reductions ranging between 4.8 to 27.3%. While 
AMP appears to decrease energy usage when training with a 
fixed number of epochs, it is unclear if this reduction has any 
dependence on network configuration or size (in contrast to 
training time per epoch). The low energy usage observed in 
the U6 architectures was also surprising, and requires further 
investigation. 

 
C. Nowcast Evaluation 

As seen in the previous sub-section, using mixed-precision 
training can offer significant improvements in training time for 
larger models. However, there is a risk that training with lower 
precision might negatively impact the quality of the results. In 
order to test this potential trade-off, we evaluated the model 
performance for precipitation nowcasting for a subset of the U- 
Net architectures. Figure 6 shows example outputs from some 
of the models trained using mixed-precision compute. The top 
row in this figure shows the expected model output. Each 
successive row shows the output of different models. Columns 
correspond to the time step in the output and successive 
columns represent weather at 5 minute intervals. A visual 
inspection of these results shows that the larger models (U4- 
128 and U4-256) appear to perform better than the smaller 
U4-32 model. Note that larger U-Net configurations have 
significantly more trainable parameters and can potentially 
benefit from longer training runs. 

Figure 7 shows that the time-savings achieved with AMP 
comes at minimal reduction in nowcast performance as mea- 
sured with metrics from Section IV. These plots show evalua- 
tion on three U-Net configurations trained with AMP, relative 
to the baseline U4-32 model, as well as the persistence forecast 
(which is obtained by simply repeating  the  final  image  in 
the input sequence). The metrics plotted here include MSE, 
LPIPS, as well as POD, SUCR and CSI at two thresholds    
(74 and 133). All models trained outperformed the persistence 
forecast. Each models becomes worse as one goes forward     
in lead time, which is to be expected. Overall, the models 
trained with FP16 show no obvious disadvantage relative to 
FP32. The U6-32 model trained with FP16 AMP shows the 

best performance in the majority of metrics, demonstrating the 
value of using AMP training for this problem. 

 
VI. CONCLUSION 

In this paper we discuss the implementation of U-Net based 
deep neural network for precipitation nowcasting and the 
design choices that influence the performance of the model. 
We show that using mixed-precision training for these mod- 
els can provide a significant boost in compute performance 
with an appropriate selection of the model architecture. The 
combination of data distributed and mixed-precision training 
allows us to rapidly prototype a variety of models. We show 
that increasing model complexity by 1549.71% as represented 
by the number of trainable parameters in the U4-256 model 
only requires a 714.23% increase in training time as compared 
with the U4-32, model when using mixed-precision training. 
Perhaps more importantly, this is accompanied by only a 
63.22% increase in energy used to train the model  on the 
same dataset, for the same number of epoch without sacrificing 
model performance. Most surprisingly, energy usage actually 
decreases by appropriate selection of model configuration as 
seen in the case of U4-32 and U6-32 in Table II. While a 
comparison of loss functions and the effect on energy usage 
and training time was not the focus of this paper, this is part  
of our ongoing research. Finally, the experiments described   
in this paper focus on a meteorology application that uses 
variations of a fully-convolutional U-Net model architecture 
which is widely used in diverse application domains. We 
expect that these findings can help inform applications in other 
areas where large datasets and model configurations lead to 
challenges for design choices. Future work involves the in- 
vestigation of other model architectures such as convolutional 
LSTMs and recurrent architectures for modeling the nowcast 
problem. 

 
VII. ACKNOWLEDGEMENTS 

The authors wish to acknowledge the following individuals 
for their contributions and support:Bob Bond, Steve Rejto and 
Dave Martinez, along with William Arcand, David Bestor, 
William Bergeron, Chansup Byun, Matthew Hubbell, Vijay 
Gadepally, Michael Houle, Jeremy Kepner, Anna Klein, Peter 
Michaleas, Lauren Milechin, Julie Mullen, Andrew Prout, 
Albert Reuther, Antonio Rosa, and Charles Yee. 

 
REFERENCES 

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy Consider- 
ations for Deep Learning in NLP,” arXiv e-prints, p. arXiv:1906.02243, 
Jun. 2019. 

[2] D. Amodei, D. Hernandez, G. SastryJack,  J.  Clark,  G.  Brockman,  
and I. Sutskever, “Ai and compute.” [Online]. Available: https: 
//openai.com/blog/ai-and-compute/ 

[3] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, 
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed 
precision training,” arXiv preprint arXiv:1710.03740, 2017. 

[4] Nvidia.   (2020)   Deep   learning   performance    optimization.  
[Online]. Available: https://docs.nvidia.com/deeplearning/performance/ 
mixed-precision-training/index.html 



 
 

Inputs 

 
 

Target 

 
Persistence 
Score Map U4-32 

 
U4-32 

Score Map U4-128 

 
U4-128 

Score Map U4-256 

 
U4-256 

Score Map U6-32 

 
U6-32 

Score Map 

 
 
 
 
 
 
 
 
 
 
 
 
 

False Alarm Miss Hit 

 
Fig. 6. Model outputs for different U-Net configurations: Each row in this figure shows the predicted output from the different models evaluated in this paper. 
Columns represent successive time steps. As seen here, larger models are able to produce greater amounts of texture in the predicted images as compared     
with the baseline U4-32 model. However,  all models fail to produce sufficient detail in the last few time steps. Improving the outputs of the model farther     
into the future is the focus of future research. 

 
 

1500 
 
 

1000 
 
 

500 
 
 

0 
 
 
 
 
 

0.8 
 
 
 

0.6 

 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 
 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 

 
 
 

0.3 
 
 

0.2 
 
 
 
 
 
 

0.8 
 

0.6 
 

0.4 
 

0.2 

 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 
 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 

 
0.8 

 
 

0.6 
 
 

0.4 
 
 
 
 
 
 
 

0.8 
 
 

0.6 
 
 

0.4 

 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 
 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 

 

0.6 
 
 

0.4 
 
 

0.2 
 
 
 
 
 
 

0.8 
 

0.6 
 

0.4 
 

0.2 

 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 
 

 
5 10 15 20 25 30 35 40 45 50 55 60 

Lead Time (minutes) 
 

Persistence U4-FP32-32 U4-FP16-128 U4-FP16-256 U6-FP16-32 
 
 

Fig. 7. Comparison of different models using domain specific and image quality metrics: The Persistence model represents a trivial model that simply repeats 
the last image seen. The LPIPS [18] metric evaluates the perceptual quality of the produced image. In this figure, FP16 refers to the use of Automatic Mixed 
Precision (AMP) for training. All other metrics are computed after binarizatio.n of the truth and predicted data as described in Section IV. 

 
[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks 

for biomedical image segmentation,” in International Conference on 
Medical image computing and computer-assisted intervention. Springer, 
2015, pp. 234–241. 

[6] R. Prudden, S. Adams, D. Kangin, N. Robinson, S. Ravuri, S. Mohamed, 
and A. Arribas, “A review of radar-based nowcasting of precipitation and 
applicable machine learning techniques,” 2020. 

[7] S. Samsi, C. Mattioli, and M. Veilette, “Distributed Deep Learning for 
Precipitation Nowcasting,” in 2019 IEEE High Performance Extreme 
Computing Conference (HPEC), Sep. 2019. 

[8] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.- 
c. Woo, “Convolutional lstm network: A machine learning approach for 
precipitation nowcasting,” in Advances in neural information processing 
systems, 2015, pp. 802–810. 

[9] A. D. Heye, K. Venkatesan, and J. E. Cain, “Precipitation nowcasting : 
Leveraging deep recurrent convolutional neural networks,” in Proceed- 
ings of the Cray User Group (CUG) 2017, 2017. 

[10] S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and 
J. Hickey, “Machine learning for precipitation nowcasting from radar 
images,” arXiv preprint arXiv:1912.12132, 2019. 

[11] D. R. Greene and R. A. Clark, “Vertically integrated liquid watera new 
analysis tool,” Monthly Weather Review, vol. 100, no. 7, pp. 548–552, 
1972. 

[12] D. S. Wilks, Statistical methods in the atmospheric sciences. Academic 
Press, 2011, vol. 100. 

[13] M. Robinson, J. Evans, and B. Crowe, “En route weather depiction 
benefits of the nexrad vertically integrated liquid water product utilized 
by the corridor integrated weather system,” in 10th Conference on 
Aviation, Range and Aerospace Meteorology, American Meteorological 
Society, Portland, OR, 2002. 

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 
quality assessment: From error visibility to structural similarity,” Trans. 
Img. Proc., vol. 13, no. 4, pp. 600–612, Apr. 2004. 

[15] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The 
unreasonable effectiveness of  deep  features  as  a  perceptual  metric,” 
in The IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), June 2018. 

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: 
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009. 

[17] NVIDIA Corp., “Nvidia data center gpu manager (dcgm).” [Online]. 
Available: https://developer.nvidia.com/dcgm 

[18] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The 
unreasonable effectiveness of deep features as a perceptual metric,” in 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2018, pp. 586–595. 

  

M
SE

 
P

O
D

74
 

0
 M

in
u

te
s 

-1
5

 M
in

u
te

s 
-3

0
 M

in
u

te
s 

- 4
5

 M
in

u
te

s  

+
6
0
 M

in
u
te

s 
+

4
5
 M

in
u
te

s  
+

3
0
 M

in
u
te

s  
+

1
5
 M

in
u
te

s  

P
O

D
13

3 
LP

IP
S 

S
U

C
R

74
 

C
S

I7
4 

S
U

C
R

13
3 

C
S

I1
33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


