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Abstract—Over the past few years, there has been significant 
interest in video action recognition systems and models. However, 
direct comparison of accuracy and computational performance 
results remain clouded by differing training environments, hard- 
ware specifications, hyperparameters, pipelines, and inference 
methods. This article provides a direct comparison between 
fourteen “off-the-shelf” and state-of-the-art models by ensuring 
consistency in these training characteristics in order to provide 
readers with a meaningful comparison across different types of 
video action recognition algorithms. Accuracy of the models is 
evaluated using standard Top-1 and Top-5 accuracy metrics in 
addition to a proposed new accuracy metric. Additionally, we 
compare computational performance of distributed training from 
two to sixty-four GPUs on a state-of-the-art HPC system. 

Index Terms—action recognition, neural network, deep learn- 
ing, accuracy metrics, computational performance 

 
I. INTRODUCTION 

Over the past decade, the confluence of computing hard- 
ware, data availability, and algorithms have created a number 
of advances in machine learning and artificial intelligence [14]. 
For example, applications such as object recognition in images 
have essentially reached, and in some cases surpassed, the 
accuracy of human object recognition (e.g., 29 of 38 teams in 
the 2017 ImageNet [8] Challenge achieving error rates < 5% 
[15]). However, other applications such as the classification of 
actions in trimmed and untrimmed videos remain a challenge 
due to the volume and complexity of analyzing video streams. 
Video action recognition can be used for autonomous vehicle 
applications [28], reviewing security footage, organizing video 
databases, or summarizing video feeds. 
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While there were early  successes  using  techniques  such 
as Hidden Markov Models (HMMs) [43] or Support Vector 
Machines (SVMs) [38], recent innovations have largely come 
in the way of Deep Convolutional Neural Networks (CNNs). 
Deep CNNs have unique abilities to learn complex feature 
representations from raw data. Some algorithms trained on 
small video datasets with limited human action classes have 
demonstrated reasonable accuracy performance [22], [41], 
[44]; however, generalizing these results to a broader set of 
actions still results in high error rates [29], [44]. 

Unlike the field of image classification, video action recog- 
nition lacks a thorough discussion of the accuracy and compu- 
tational performance metrics by which models and algorithms 
are compared. For example, it is difficult to compare accuracy 
metrics of various algorithms  which  are  often  developed  
and tested on heterogenous datasets or lack sufficient details 
regarding model architectures. Comparing a Top-5 accuracy 
result from a 100-class problem with a Top-5 accuracy result 
from a 400-class problem is impractical at best and deceptive 
at worst. Further, the race for higher accuracies has sidelined 
discussions of equally relevant aspects of model development 
details and training computational performance. 

In this paper, we catalog a subset of state-of-the-art video 
action recognition models. Specifically, we 

 
1) select a dataset most appropriate for video action recog- 

nition model comparison, 
2) survey the landscape of action recognition approaches, 
3) train and evaluate a set of models under similar hyper- 

parameters, training methods, and hardware, and 
4) discuss and employ accuracy and computational perfor- 

mance metrics. 
 

Therefore, this paper addresses gaps in the literature and 
provides readers with a detailed overview of ”off-the-shelf” 
video action recognition techniques, a novel set of action 
recognition accuracy metrics, a thorough side-by-side com- 
parison of model effectiveness and efficiency, and data-driven 
recommendations for future use of these models. 



II. VIDEO DATASETS 

Datasets for video action recognition are  defined  by a set 
of qualities: source, pre-processing, point-of-view, number of 
videos, length of each video, number of action classes, classes 
per video (single or multi-label), annotations, and purpose. A 
myriad of datasets have been crafted and curated to span this 
spectrum of qualities. This section describes the progression 
of these datasets and how we selected one for our experiment. 

The vast majority of these datasets focus entirely on human 
actions due to their relevance in all aspects of everyday life. 
Early datasets, KTH [33], Weizmann [3], GTEA [12], GTEA 

GAZE [11], and GTEA GAZE+ [11], focus on daily activities. 
Spurred by the growth of online video, UCF101 [35]  and 

HMDB51 [23], with 13,000 and 7,000 videos respectively, 
quickly became foundational benchmarks in human action 
recognition. Thumos [21] and ActivityNet [19] had similar 

goals but did not gain the same level of popularity. 
While human actions and activities continue to dominate 

the field of video datasets, slowly other purposes emerged. 
Among them, YouTube-8M [2] and MV [30] focus on broader 
actions and visual entities. The Something-Something [16] 
dataset looks at low-level action captions for intuitive physics 
and semantics. Moments in Time [29], a dataset with over a 
million 3-second videos labeled by action verb, includes both 
human and non-human actions. 

Among the most current iterations of these datasets, only     
a few have the breadth (action  classes)  and  depth  (videos 
per class) that are comparable to  ImageNet  and  other  ob- 
ject recognition datasets. Kinetics-600 [22] and VLOG [13] 
achieve this for human actions and daily interactions. Mo- 
ments in Time uniquely offers high interclass and intraclass 
variation. Additionally, the best performance on Moments in 
Time currently is a Top-1  accuracy of 38.64% and a Top-       
5 accuracy of 67.19% [24]. Therefore, Moments in Time is      
a good benchmark because of its dataset qualities and the 
tremendous room for improvement in models. In this paper, 
we use Moments in Time training and validation data. 

Moments in Time was first used in the CVPR’18 action 
recognition challenge which tasked teams to develop state-  
of-the-art methods for achieving high Top-1 and Top-5 ac- 
curacies. However, the optionally submitted reports by the top-
performing teams lack key details of implementation and 
training with almost no mention of hyperparameter selection, 
validation methods, hardware, or computational performance. 
By rigorously describing the experimental setup, this paper  
provides grounds of model comparison that cannot be easily 
derived from the original Moments in Time paper nor the 2018 
Moments in Time Challenge results. 

III. CLASSIFICATION TECHNIQUES 

Action recognition models can be broadly  arranged  into 
2D and 3D approaches referring to their 2-dimensional or 3-
dimensional convolutional kernels, respectively. Figure 1 
displays four of the most common architectures. This section 
describes these approaches and provides insights obtained 
from those employed in the Moments in Time challenges. 

 

 
 

Fig. 1. Common video action recognition approaches. Note that these are 
simplified where icons for 2D-ConvNets, 3D-ConvNets, dense classification 
networks, LSTM modules, and averaging/softmax layers are used only as 
visual interpretation. Their actual design can vary significantly. Similarly, the 
majority of approaches have 2-stream variants for RGB+Optical Flow. 

 
 

A. 2D Approaches 

2D approaches include traditional 2D Convolutional Neural 
Networks (C2D), Temporal Segment Networks (TSN) [41], 
Long-term Recurrent Convolutional Neural Networks (LRCN) 
[10] sometimes referred to as CNN+LSTMs, and Temporal 
Shift Modules (TSM) [27]. C2D models are derived directly 
from the image recognition field. With C2D, a frame is 
extracted from the video and used as input to a 2D-ConvNet. 
After several convolution and pooling layers, the logits are  
fed into one or more fully-connected layers which produce a 
softmax output prediction over the dataset classes. With  TSN, 



TABLE I 
MOMENTS IN TIME CHALLENGE 2018 TOP-PERFORMING MODELS 

 
Model 
Type 

Model 
Backbone 

Validation 
Top-1 % 

Accuracy 
Top-5 % report 

Video Models 
 

C2D 

SENet152 33.7 61.3 [25] 
SEResNeXt 30.0 60.2 [25] 

Xception 31.8 59.2 [25] 
ResNet50 28.3 53.2 [25] 

TSN 
ResNet152 33.0 n/a [40] 
DPN107 31.1 n/a [40] 
ResNet50 27.4 53.2 [25] 

TRN 
SENet154 31.9 58.8 [6] 

Inception-v3 29.7 55.7 [6] 
InceptionResNet-v2 29.3 55.6 [6] 

I3D 
ResNet50 34.2 61.4 [25] 

ResNet101-NL 33.7 n/a [40] 
Inception-v3 27.6 53.9 [6] 

C3D InceptionResNet-v2 35.1 63.3 [24] 
ResNet101 33.6 61.2 [24] 

Audio Models 
 
 

C2D 

VGGish 17.1 n/a [40] 
SENet50 16.8 n/a [40] 
M34-res 14.8 27.4 [24] 

ResNet34 13.8 23.6 [24] 
EnvNet+ResNet 13.2 25.9 [24] 

NetVLAD 9.0 19.5 [6] 
SoundNet 7.6 18.0 [26] 

 
 

a video is segmented along its temporal (frames) dimension 
and one frame is extracted from each segment for input to 2D-
ConvNets that share weights. The predictions from each 
segment are then averaged before the softmax output layer. 
Variants and additions to TSN include Temporal Relations 
Networks (TRN) [44] which performs multi-scale relationing. 
LRCN also segments a video, extracts a frame from each 
segment and feeds those frames into 2D-ConvNets. However, 
the ConvNet outputs are used as inputs to a Long-Short Term 
Memory (LSTM) network prior to softmax predictions. 

B. 3D Approaches 
3D-Convolutional Neural Networks (C3D) were designed 

as the 3D analogy to 2D-ConvNets [37]. However,  because   
of the long-term dependencies of actions, C3D models often 
have had less success on action recognition than their 2D 
counterparts on object recognition. To attempt to bridge the 
gap between 2D and 3D models, Inflated 3D (I3D) models 
were created by ”inflating” pretrained 2D kernels into 3D 
kernels [5]. This allows I3D models to benefit from pretraining 
on 2D image datasets like ImageNet. Some believe that, while 
still in their early days, 3D approaches will be able to retrace 
the successful history of their 2D siblings [17]. Both C3D and 
I3D use either the entire video or a selected portion (e.g. 16, 
32, or 64 frames) as an input to a 3D-ConvNet. Similar to     
the C2D approach, the 3D-ConvNet’s output is then fed into a 
classification network before outputting softmax predictions. 

C. Application to Moments in Time 
Table I shows the best performing RGB-mode single-model 

variants from these 2D and 3D approach categories in the 

2018 Moments in Time Challenge. Most teams tackled the 
multi-modal problem (RGB, optical flow, audio) with a late- 
fusion/ensemble of several models. Teams placing within the 
top 10 ensembled on average 9 individual models together. 

While model architectures such as C3D, I3D and TRN may 
intuitively be expected to provide significant advantages, from 
our survey of the 2018 challenge results, these architectures 
barely outperform, and in some cases  underperform,  C2D  
and TSN approaches. This combined with the “off-the-shelf” 
nature of many of these models and pretrained weights makes 
them prime for the bulk of this comparison study. 

The Multi-Moments in Time Challenge (ICCV’19) tasked 
teams to detect multiple event labels from videos. Of the 
optional reports that teams submitted, few deviated from 2D 
approaches likely because they drew similar conclusions as 
those described above and encountered difficulties of working 
on more complex models. Both challenges also demonstrated 
that the incorporation of audio into late-fusion ensembles had 
little to no additive benefits over only using the video stream. 
It is hypothesized that the majority of the action classes (e.g. 
running, jumping, catching) in Moments in Time are more 
easily expressed visually than in audio. 

 
IV. METRICS 

Video datasets are often orders of magnitude larger than im- 
age datasets. A single video in Moments in Time contains 90 
frames and one or two audio tracks. This increases the storage 
and computational requirements for training. Therefore, while 
often overlooked in the literature, including both accuracy and 
computational performance in model assessment is instrumen- 
tal in comparing video action recognition approaches. This 
section describes the metrics we use for these comparisons. 

 
A. Accuracy Metrics 

Top-1 and Top-5 percentage accuracy metrics are canon- 
ically used for comparison in action recognition. We ar- 
gue that plotting what we call a pseudo-Receiver Operator 
Characteristic (p-ROC) curve as shown in Figure 2 (or any 
simple transformation of it) allows for more intuitive met- 
rics of accuracy comparison because it shows all values of 
𝑘 ∈ {0,… , |𝐶|}  where 𝐶 is the set of action classes (i.e. 
𝐶={applauding, baking, crashing, descending} in the case of 
Moments in Time). In this p-ROC, the Top-k accuracy is 
plotted against k analogous to plotting the true positive rate 
against the false positive rate for our classifier. 

Even though it has been noted that the ROC  area under   
the curve (AUC) and the maximum  Youden  index  (Jmax), 
the curve height above the chance line, provide desirable 
properties as a classification metric [4], [20], the practice has 
not become standard. These benefits easily transfer to our p- 
ROC curve and allow a user to quickly and more intuitively 
select a model with accuracy characteristics that they desire. 
Equations 1 and 2 show how to calculate p-ROC AUC and 
Jmax where acc(k) refers to a function computing Top-k 
accuracy for a given k. 



 

 
 

Fig. 2.   Example p-ROC curve for a 15-class problem. Three model Top-      
k values are plotted (as well as a random chance line that represents an 
uninformed guesser. 

 
 
 |C|−1 

TABLE II 
MODEL DEPTH AND COMPLEXITY IN COMPARISON 

 
Model 
Type Model Backbone Layers 

Trainable 
Parameters 

 
 
 

C2D 

VGG19 19 20,198,291 
MobileNet (M) 28 3,554,451 

Inception-v3 (Iv3) 48 22,462,963 
ResNet50 (R50) 50 24,229,203 

MobileNet-v2 (Mv2) 53 2,658,131 
Xception (X) 71 21,501,563 

Inception-ResNet-v2 (IRv2) 164 54,797,235 
DenseNet169 (D169) 169 13,048,915 
DenseNet201 (D201) 201 18,744,147 

LRCN n/a (16f) 38 9,788,915 

C3D n/a (16f) 18 148,590,675 
n/a (32f) 18 456,872,019 

I3D Inception-v1 (Iv1) (16f) 27 12,279,984 
Inception-v1 (Iv1) (64f) 27 12,279,984 

 
 

directly by training time and training time per epoch. Attention 
was also paid to how varying the compute resources affects 
training (i.e. yields speedup curves). 

V. EXPERIMENTAL DESIGN 

This section describes the setup for comparing fourteen 
TensorFlow [1] implementations of action recognition mod- 
els. Those include nine C2D models (VGG19, MobileNet, 
Inception-v3, ResNet50, MobileNet-v2, Xception, Inception- 
ResNet-v2, DenseNet169, and DenseNet201 [1]), one LRCN 

AUC = 

k

L

=0 

acc(k + 1) − acc(k) 
2 

(1) model [18], two C3D models [36], and two I3D models [9]. 
Table II describes the depth and complexity of these models. 

Jmax = max 
k∈{0,1,...,|C|} 

  k 
acc(k) − |C| 

(2) A. Software 
Python 3.6.5 scripts trained and validated these ”off-the- 

We claim that there are two key benefits to using p-ROC 
curves as the basis for reporting action recognition model 
accuracy results. First, metrics derived from p-ROC, such as 
AUC, provide a more holistic view of accuracy across all Top- 
k values rather than at a specific k. Real-world applications of 
action recognition will undoubtedly require different accuracy 
requirements, and p-ROC provides the model user a wider 
picture of the model’s capabilities. If only Top-1  and Top-     
5 accuracies were reported for the example shown in Figure   
2, one might naively conclude that Model C  or Model A is  
the ”best”. However, Model B actually has the  highest  p- 
ROC AUC of 11.82 compared with Model A’s 11.72 and 
Model C’s 11.56. Second, p-ROC metrics can be dataset 
agnostic. Jmax is by definition independent of the number of 
classes, and p-ROC AUC can be easily normalized as shown 
in Equation 3. Therefore, model accuracies can be compared 
across datasets with different numbers of classes. 

shelf” models in a distributed fashion using Horovod 0.18.2 
[34] and OpenMPI 4.0. Key package versions used were 
NumPy 1.16.5 [31], H5py 2.9.0 [7], SciPy 1.3.2 [39], Ten- 
sorFlow 1.14.0 [1], and FFmpeg 3.3.7. 

B. Hardware 
Models were trained on 1, 2, 4, 8, 16, and 32 nodes. Each 

node consists of 2x20 Intel Xeon G6-6248 CPU cores with  
two NVIDIA Volta V100 GPUs (PCIe connection) and has 
384 GB RAM and 3.8 TB local disk space. The infrasturture 
used is described in detail in [32]. 

C. Pre-Processing 
The Moments in Time pre-processed 30 frames per second 

(fps) videos resized to 224x224 frames are used as an input. 
We parse videos by extracting the frames to NumPy arrays 
and vertically stacking the frames to create 3D video “cubes”. 
This was completed for training and validation sets that were 

AUC 
 
norm = A UC = AUC 

|C| 
(3) 

defined by the Moments in Time creators. 

D. Training and Validation 
B. Computational Performance Metrics 

Because of the data-scale challenges of dealing with video, 
computational performance of training is essential in assessing 
models. In this paper, we measure computational performance 

C2D and I3D models were initialized with ImageNet pre- 
trained weights while C3D and LRCN models were initialized 
with random weights. On each pass through the dataset during 
training, C2D inputs were randomly sampled frames from 



  
 

Fig. 3. p-ROC curve log-scaled with k/339 subtracted out for each value of 
k to more easily show the peak J-statistic 

 
each video. LRCN, C3D (f16), and I3D (f16) had inputs of   
16 evenly spaced frames. C3D (32f) and I3D (64f) randomly 
sampled 32 and 64 continuous frames, respectively. 

For proper comparison given the computational resources 
limitations of training 14 models, other hyperparameters were 
held consistent across different training sessions. A Horovod- 
wrapped distributed ADADELTA [42] optimizer and categor- 
ical cross-entropy loss metric updated network weights. Five 
warmup epochs slowly raised the learning rate to 1.0 which 
was subsequently decayed at 20, 35, and 50 epochs. Each 
model was trained for 65 epochs. Early stopping was not possi- 
ble due to the distributed training environment. For validation, 
LRCN, C3D, and I3D model inference was performing the 
same as training. C2D model inference was performed in a 
TSN-style averaging across 6 evenly spaced frames for the 90 
frame (30 fps) video. 

 
VI. RESULTS AND DISCUSSION 

Accuracy results and computational performance results are 
summarized in Figures 3 and 4, respectively, as well as in 
Table III. Figure 5 describes the relation between  accuracy 
and computation performance observed in this experiment. 

 
A. Accuracy Results 

By our p-ROC accuracy metrics, the top three performing 
models were all C2Ds: Inception-ResNet-v2, Xception, and 
DenseNet169 with A UC validation results of 0.919,  0.919, 
and 0.917, respectively. These models are noted for their 
greater depth (i.e. more layers). We also note that Inception- 
ResNet-v2 was the highest performer using the traditional Top- 
1 and Top-5 accuracy metrics. Among 2D approaches, the 

Fig. 4. Training Time per Epoch across training configurations of 1, 2, 4, 8, 
16, and 32 nodes where each node as 2 Volta V100 GPUs. 

 
 

LRCN yielded the worst results across all accuracy metrics 
reported likely due to its shallower model backbone depth. 

Of the 3D approaches, the 16 frame I3D-Inception-v1 model 
yielded the best validation accuracy results. However, none of 
the 3D models surpassed the six best performing C2D models 
tested when comparing p-ROC A  UC results. 

It is interesting to note that the maximum Youden J- 
statistics (Jmax) are occurring between k=41 and k=74 for 
these models which indicates the very arbitrary nature of 
Top-5 accuracy as a metric. While not as pronounced in this 
comparison study, other experiments we have conducted 
demonstrate that not only is it possible for Top-5 accuracy to 
be deceptive, but it is actually common for it to be uncorrelated 
with increased or decreased A  UC and Jmax. 

 
B. Computational Performance Results 

As expected, essentially all models approximately halved 
their training times when trained on twice as many GPUs. 
Minor node differences and network lag on the system became 
more apparent in the larger (16 and 32 node) training runs as 
evidenced by increased variation on the right of Figure 4. 

When trained on 64 GPUs, the three quickest trained models 
were ResNet50, Inception-ResNet-v2, and MobileNet-v2 with 
training times of 335.4, 413.5, 460.7 seconds per epoch, 
respectively. Those correspond to total training times of 6.06, 
7.47, and 8.32 hours. C2D models trained between 3x and 17x 
faster than the 3D models in this experiment. LRCN, while 
having fewer layers and trainable parameters than other 2D 
models tested, had noticeably higher training times due to the 
16 frame input size. Clearly, there are computational costs to 
be paid for models with larger inputs. 



TABLE III 
ACCURACY AND COMPUTATIONAL PERFORMANCE RESULTS 

 
Model Val Acc (%) p-ROC metrics Training Time per Epoch (s) on g Volta V100 GPUs 

g = 2 g = 4 g = 8 g = 16 g = 32 g = 64 Type Backbone     
random chance 0.29 1.47 0.5  0.0  

 
 
 

C2D 

VGG19 16.45 36.41 0.891 0.616 (k = 59) 15256.1 8235.5 4135.0 2109.6 1106.4 580.8 
M 21.61 43.79 0.908 0.652 (k = 51) 15103.4 9693.4 4783.7 2585.2 895.6 642.5 
Iv3 24.87 48.20 0.915 0.673 (k = 48) 20920.4 10238.6 5253.3 2890.2 1509.8 493.0 
R50 23.77 46.54 0.911 0.661 (k = 47) 15261.6 9694.5 5298.6 2594.9 660.8 335.4 
Mv2 22.42 45.16 0.915 0.670 (k = 50) 15103.4 9687.1 4783.7 2592.3 1017.8 460.7 

X 24.84 47.58 0.919 0.683 (k = 41) 14997.3 8342.6 4177.8 2179.3 1120.7 502.1 
IRv2 26.83 50.50 0.919 0.683 (k = 41) 15831.6 9694.6 5019.1 2619.3 1473.0 413.5 
D169 25.13 48.63 0.917 0.674 (k = 45) 15399.2 9690.7 5019.1 3041.9 1627.4 666.6 
D201 25.52 48.62 0.915 0.672 (k = 46) 15399.4 8687.1 5019.1 3041.9 1141.9 478.9 

LRCN n/a (16f) 14.04 33.40 0.883 0.596 (k = 63) 37009.4 23740.9 10553.6 6388.7 2553.8 1835.8 

C3D n/a (16f) 13.15 29.41 0.842 0.499 (k = 74) 41622.7 21823.9 11485.8 6195.0 2851.1 2107.2 
n/a (32f) 11.36 25.58 0.824 0.499 (k = 74) 118738.2 64250.2 33911.3 18177.1 9505.5 5688 

I3D Iv1 (16f) 19.33 42.36 0.911 0.661 (k = 52) 36838.8 20456.2 14182.7 6331.1 3567.3 2303 
Iv1 (64f) 20.69 42.74 0.904 0.649 (k = 57) 85565.7 42697.6 23209.8 10864.0 5916.8 2991.8 

 
 

 
Fig. 5.    A plot of training time per epoch (measured in seconds) against p-ROC AUC = AUC_norm. to show accuracy and computational 
performance trade-offs.  The best performing models are found in the lower-right corner. 

 
VII. CONCLUSION 

When holistically looking at both accuracy and compu- 
tational performance, as shown in Figure 5, C2D models 
significantly outperform the LRCN, C3D, and I3D models 
tested in this study.  Of  the  C2D  models,  those  found  in  
the bottom right of the plot—Inception-ResNet-v2, ResNet50, 
DenseNet201, and MobileNetv2—are the top performers. 

These results concur with the 2018 Moments in Time 
Challenge observations that 2D approaches can yield results 
comparable to their more complex 3D counterparts, and model 
depth, rather than input feature scale, is the critical component 
to an architecture’s ability to extract a video’s semantic action 
information. For approaching a new action recognition prob- 
lem, we therefore recommend starting with C2D models with 
TSN-style inference. We also recommend utilizing the p-ROC 

dataset agnostic accuracy metrics (A  U C  and Jmax) presented 
in Section IV of this paper. 

This study has also benchmarked the computational costs of 
training these models. As expected, 3D models clearly incur 
significant computational costs alluded to, but rarely clarified, 
in the literature. The results we have presented should offer     
a training time baseline for these models across a variety of 
computational resource scales on state-of-the-art hardware. 

Future comparison work should expand the list of compared 
models into other 2D and 3D backbones as well as benchmark 
training times on alternative high performance computing 
(HPC) infrastructures. Access to more computational resources 
would allow for hyperparameter tuning. Future action recog- 
nition research should focus on model depth and not dismiss 
the application of simpler C2D models. 
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