
ar
X

iv
:2

10
7.

04
09

2v
2

 [
cs

.N
E

]
 2

3
A

ug
 2

02
1

Even Faster SNN Simulation with

Lazy+Event-driven Plasticity and Shared Atomics

1st Dennis Bautembach

FORTH - ICS & CSD - UOC

denniskb@ics.forth.gr

2nd Iason Oikonomidis

FORTH - ICS

oikonom@ics.forth.gr

3rd Antonis Argyros

FORTH - ICS & CSD - UOC

argyros@ics.forth.gr

Abstract—We present two novel optimizations that accelerate
clock-based spiking neural network (SNN) simulators. The first
one targets spike timing dependent plasticity (STDP). It com-
bines lazy- with event-driven plasticity and efficiently facilitates
the computation of pre- and post-synaptic spikes using bitfields
and integer intrinsics. It offers higher bandwidth than event-
driven plasticity alone and achieves a 1.5×–2× speedup over
our closest competitor. The second optimization targets spike
delivery. We partition our graph representation in a way that
bounds the number of neurons that need be updated at any
given time which allows us to perform said update in shared
memory instead of global memory. This is 2×–2.5× faster than
our closest competitor. Both optimizations represent the final
evolutionary stages of years of iteration on STDP and spike
delivery inside “Spice” (/spaIk/), our state of the art SNN
simulator. The proposed optimizations are not exclusive to our
graph representation or pipeline but are applicable to a multitude
of simulator designs. We evaluate our performance on three well-
established models and compare ourselves against three other
state of the art simulators.

Index Terms—AI, ML, spiking neural networks, SNN, simula-
tion, HPC, GPGPU, CUDA

I. INTRODUCTION

SNNs are receiving a lot of attention since they more closely

model biological neural networks than conventional ANNs do

and therefore may prove more powerful. In contrast to ANNs,

which can be inferred via matrix multiplications interleaved

with activation functions, SNNs need to be simulated because

their neurons can undergo arbitrary dynamics.

A SNN simulator works fairly simple:

1) Update neurons, note which ones fire

2) Update synapses

• Compute pre- and post-synaptic spikes

3) Deliver spikes to neurons’ neighbors

Neurons are exclusively governed by their dynamics and

can thus be updated independently of one another, making

it trivial to parallelize step (1) on GPUs. The synapse up-

date requires more attention: In order to advance synapses’

dynamics, a SNN simulator must first compute pre- and post-

synaptic spikes which is a non-trivial task. Additionally, the

sheer number of synapses (in the order of O(#neurons2))
means that most of the simulation time will be spent in

step (2), requiring careful implementation that maps well to

the hardware. Step (3) is another non-trivial and expensive

part of the simulation loop since again the number of spikes

is in the order of O(#neurons2) and neurons are randomly

interconnected, leading to poor memory access patterns.

In this paper we present two optimizations targeting

steps (2) and (3) of the SNN simulation loop. In order to accel-

erate step (2) we, for the first time, combine lazy plasticity [1]

with event-driven plasticity [2]–[6] and efficiently facilitate the

computation of pre- and post-synaptic spikes via per-neuron bit

fields and integer intrinsics. Combined, these measures yield a

cumulative speedup of 30× over the naı̈ve approach of blindly

updating each synapse at every loop iteration and are 1.5×–2×
faster than our closest competitor.

In order to accelerate step (3) we partition our adjacency list

according to [7, Section III-D] into slices of equal width in

the neuron domain. Knowing that each slice indexes a fixed,

contiguous subset of the neuron pool we are able to load

said subset into shared memory and perform all updates there.

The resulting spike delivery algorithm is 2×–2.5× faster than

relying on global memory and is at least 2× faster than our

closest competitor (depending on the benchmark).

These optimizations do not come at the cost of generality—

users can still define custom models with arbitrary dynamics.

Further, they are completely orthogonal to our multi-GPU

acceleration scheme [7]. Finally, they are not exclusive to

our graph representation or pipeline but are applicable to a

multitude of simulator designs.

II. RELATED WORK

Tuckwell [8] notes that early attempts to mathematically

model and simulate the function of biological neurons are

found since the beginning of the 20th century [9], [10]. The

research domain related with the efficient simulation of SNNs

has a long history [2], [11], [12] and is actively research to

this day [1], [13]–[17]. Within the domain, important points

of research focus include the improvement of biological fi-

delity [18] and numerical stability of methods [17]. Fur-

thermore, hardware acceleration is explored [19], [20], in-

cluding platforms such as VLSI [11], FPGA [20], and even

super-computers [21]. On the theoretical front, advances in-

clude methods to quantify the difference between two spike

trains [22], exact solutions of differential equations that model

membrane dynamics [23], as well as a method to implement

back propagation on SNNs [24].

http://arxiv.org/abs/2107.04092v2

A. SNN Simulator Classification

The various SNN simulators that have been proposed feature

different key characteristics, strengths and weaknesses. Based

on these traits, one can define useful classifications. The bi-

ological fidelity level can be such a defining trait. According

to it, simulators can be categorized into ones that aim to

model the behavior of biological neurons as accurately as

possible [18], [25]–[30], and into those that are merely based

on the general principle of spiking neurons.

The versatility, and specifically the ability and ease of defin-

ing neuron models can serve as another way to categorize

simulators. General purpose simulators allow the user to freely

define the behavior of neurons and synapses [1], [5], [7], [31]–

[35], whereas the rest only allow the use of a fixed number of

predefined models [6], [18], [26], [30].

Another important classification can be made based on the

approach adopted regarding the high-level software implemen-

tation. In one category, the time-drive approach simulates the

behavior of neurons and synapses in lock-step, advancing all of

them in every iteration of the simulation [1], [6], [7], [23], [33],

[36], [37]. In contrast, event-driven simulators only update a

neuron or synapse when a new event affects the (predictable,

up until that time instant) evolution of their state [1], [6],

[23], [33], [36], [37]. Ease of implementation and per-element

efficiency are two strong points of the time-driven approaches,

however if the time-step is set very low (desired to increase

simulation accuracy), the simulation becomes computationally

inefficient. Event-driven approaches on the other hand can

achieve arbitrary time resolution with small or even negligi-

ble computational overhead, despite having low per-element

computational efficiency. As a middle ground, approaches

that adopt characteristics of both categories can be called

hybrid [38], [39]. It is debatable whether approaches that adopt

a time-driven neuron update with an event-driven synapse up-

date (event-driven plasticity) [2]–[6] should be called hybrid,

since this combination is less integral.

One last categorization can be made according to the target

hardware platform of the simulator system. A wide variety of

hardware has been employed, starting from regular CPUs [12],

[15], [32], [36], [40]–[42], GPUs [1], [5]–[7], [13], [14], [16],

[20], [27], [30], [33]–[35], [43], [44], combination of CPUs

and GPUs [19], [38], [39], [45], and including even custom-

built hardware [11], [20], [21], [25], [26], [46]. Recent simu-

lators are increasingly adopting the GPU architecture.

B. Classification of Spice and Direct Competition

According to the categorizations presented above, Spice [1],

[7] is general-purpose, time-driven, GPU-accelerated, and in

this work it is fitted with event-driven plasticity.

For the quantitative evaluation of the proposed optimizations

in our simulator, we choose as competitors three very recent

works, closely related to ours: BSim [16], GeNN [5], and

NeuronGPU [47]. All three simulators are time-driven, GPU-

accelerated, and, to varying degrees, general. This allows the

implementation of the same SNN models on all of them,

in turn enabling a direct comparison between them and our

0 1 2 4 6 7

0 1 4 5 7 8

1 3 4 5 6 ∞

0 3 4 6

0 2 4 6

0 1 4 5

n e u r o n a r r

Adjacency List Pivots

Synapse

Array

N
...

...

Fig. 1. Overview over our data structures. We represent the graph using a
padded/rectangular adjacency list. It has N = |neurons| many rows. Row i
represents neuron i’s outgoing connections in the form of indices into the
neuron array. They are sorted. Non-connections are represented by a special
value (INT_MAX in practice). The synapse array has the same number of
entries as the adjacency list with an implicit 1:1 mapping between the two
(adj[i][j] corresponds to synapses[i][j]). We divide the neuron
array into chunks of even size, in this case 3. We then binary-search pivots
so that entries adj[i][pivots[i][j]..pivots[i][j+1]-1] only
index neurons [3j, 3j+3). We explicitly store the implicit “0” so as to avoid
special cases in the implementation.

approach. We do not include event-driven simulators in the

comparison since they pursue different goals with fundamen-

tally different designs and imposed trade-offs, and so are not

directly comparable. Even within the time-driven domain, the

target of each simulator, and the associated performance can

vary quite a lot. GeNN [5], [33], [48] has improved quite a bit

since its introduction, and is usually among the fastest direct

competitors. BSim [16] among other features supports multi-

GPU setups. Finally, NeuroGPU [47] is the least comparable

of the three simulators. It strives to maximize biological fi-

delity and as such features double precision arithmetic and

“exact integration” [49]. We still included it in this compar-

ison, mostly for completeness, to gauge what performance

trade-off these design choices entail.

III. METHOD

SNNs are essentially directed graphs (neurons = vertices,

synapses = edges). They are typically represented as a (binary)

adjacency matrix, adjacency list, or compressed sparse row

(CSR). All representations are grouped by source neuron (that

is, a neuron’s outgoing connections are stored in contiguous

memory) because it is suitable for computations. The con-

nections are also sorted to improve cache coherency. Since a

SNN’s topology is static, the graph needs to be constructed

only once at the beginning of a simulation.

We will illustrate the optimization techniques described in

this paper using a (padded/rectangular) adjacency list because

it is a very simple representation and also happens to be what

Spice uses (Fig. 1). The presented optimizations are applicable

to a variety of representations though, including all of the

commonly used ones mentioned above.

extern int delay; // synaptic delay (in time steps) of the network

struct neuron { int64 hist; ... }; // firing history, each bit represents one time step, LSB = most recent

struct synapse { neuron& src; neuron& dst; ... };

void update(synapse& syn, bool preSynapticSpike, bool postSynapticSpike, int numSteps = 1); // user−defined callback

1 parfor n in neurons:

2 parfor syn in outgoingSynapses(n):

3

4

5

6 update(

7 syn,

8 n.hist[delay],

9 syn.dst.hist[0]);

10

11

12

(a)

parfor n in firing neurons:

parfor syn in outgoingSynapses(n):

age = now − n.timeOfLastUpdate;

for i in age..0:

update(

syn,

i == 0,

syn.dst.hist[i]);

(b)

parfor n in firing neurons:

parfor syn in outgoingSynapses(n):

age = now − n.timeOfLastUpdate;

j = −1;

for i in setBits(syn.dst.hist[age..0]):

update(

syn,

i == age,

true,

i - j);

j = i;

update(syn, j < age, false, age − j);

(c)

Fig. 2. Pseudocode showing the evolution of our implementation from naı̈ve, over lazy, to event-driven plasticity. (a) Naı̈ve plasticity. We loop over all
synapses (lines 1–2) and invoke the user-provided callback update() (line 6) which is part of the model definition. We pass it a reference to each synapse
(line 7) as well as information about the occurrence of pre- and post-synaptic spikes by reading the corresponding bits from the source and destination
neuron’s firing histories (lines 8–9, x[i] := (x≫i) & 1). The parfor loops can be trivially parallelized because each loop iteration is independent.
In the case of two nested parfors the outer loop iterations could be assigned to different CUDA blocks and the inner loop iterations could be assigned to
different threads within a block. (b) Lazy plasticity. Instead of updating all synapses, we only update those originating from firing neurons (line 1) since
they are about to transmit a spike and thus need be up to date. We compute the synapses’ “age”, i.e. the number of iterations for which we have intentionally
neglected them (line 3) and ”replay” all the missed updates (line 5). (c) Event-driven plasticity by contrast does not replay the entire firing history since the
last spike, but only iterates over set bits, i.e. post-synaptic spikes, skipping ahead multiple update steps in-between (line 5). This is communicated to the user
via update()’s fourth parameter which represents the number of time steps that have elapsed since the callback was last invoked (line 10). The update()
call in line 12 handles the ”tail”.

A. Lazy+Event-driven Plasticity

“Plasticity” refers to models with changing (i.e. plastic)

synapse state—neurons are always plastic. The sheer number

of synapses makes this a very costly operation worth optimiz-

ing. The naı̈ve approach (Fig. 2(a)) would be to simply update

every synapse at each simulation step. This is incredibly slow

with the limiting factor being memory bandwidth: Brunel+

uses 12 B per plastic synapse which make up 40% of all

synapses. In order to run a network with 1B synapses total

in real time, it would require 96 TB/s of bandwidth (every

plastic synapse would have to be read and written 10K times

per second of biological time). In comparison, a NVIDIA Tesla

V100 offers ∼0.7 TB/s of bandwidth.

We already presented a simple yet effective optimization to

this naı̈ve approach called “Lazy Plasticity” [1, Section III-A1]

(Fig. 2(b)). It takes advantage of the facts that

• neurons fire infrequently and

• a synapse need only be up to date to transmit a spike

Rather than updating all synapses at every step we inten-

tionally keep them in a stale state. When a neuron fires, we

compute its age = now − timeOfLastSpike and perform that

many update steps on its outgoing synapses. While the total

number of computations stays the same, they can now be

performed inside registers with only the initial and final state

having to be read from/written to global memory, increasing

our effective bandwidth (Section IV-C).

Plasticity need not only update synapses’ states but also

facilitate the efficient computation of pre- and post-synaptic

spikes. A pre-synaptic spike occurs if a synapse’s source neu-

ron fires, a post-synaptic spike occurs if a synapse’s destination

neuron fires. We must inform the synapse of both types of

events. Pre-synaptic spikes are trivial to compute, especially

if synapses are grouped by source neuron: The fact that a

neuron fires, implies that all its outgoing synapses experience

a pre-synaptic spike (potentially after some delay). Luckily

for us these same synapses are already laid out in a known,

contiguous region of memory, making it very efficient to iterate

over and update them.

Post-synaptic spikes are more tricky to compute since we

need to consolidate a neuron’s incoming synapses. An infeasi-

bly slow solution would be to iterate over the entire adjacency

list and search for all occurrences of said neuron, and repeat

this for all firing neurons. Some simulators [5], [6] tackle this

issue by storing a “reverse” adjacency list. That is, in addition

to storing outgoing synapses they also store incoming synapses

per neuron. This has several disadvantages:

• It doubles the memory footprint of the graph representa-

tion.

• While the adjacency data of incoming synapses are now

laid out in contiguous memory and can thus be efficiently

iterated, the synapses they index are spread all over mem-

ory resulting in very poor bandwidth when updating them.

We instead store the network’s recent firing history in the

form of per-neuron bit fields (typically 64 bit large). When it is

time to update a row of synapses (because their source neuron

fired), we read each destination neuron’s firing history and

loop over the most recent age bits which represent the post-

synaptic spikes. This is also sub-optimal in terms of bandwidth

since the read accesses are scattered over memory, however,

• they are confined to a smaller region of memory (kilo-

bytes vs. gigabytes) resulting in better cache utilization,

• their addresses are steadily increasing due to the sorted

nature of the adjacency list, resulting in better cache

coherency, and

• they are only performed once for (up to) 64 update steps,

increasing our effective bandwidth.

From here, implementing event-driven plasticity is trivial:

Instead of looping over all age bits, we only loop over the set

ones which can be done very efficiently using integer intrinsic

__clz() (Fig. 2(c)). In order to benefit from event-driven

plasticity, synapse dynamics must have a closed-form solution

so they can ”skip ahead” multiple steps at a time. If this is not

possible, users of our simulator can simply loop internally in

which case we gracefully degrade back to lazy plasticity.

B. Spike Delivery with Shared Atomics

Whenever a neuron fires, its neighbors must be informed

(potentially after a model-specific delay). The naı̈ve approach

of (in parallel, using a CUDA block) looping over the cor-

responding row in the adjacency list and invoking the user-

defined deliver() callback for each neighbor (Fig. 3(a)),

works fairly well: Reads from the adjacency list get fully

coalesced. Writes to the neurons are scattered, the negative

effects of which get mostly mitigated by the cache. 1

In [7, Section III-C] we introduced an effective optimization

which we call “cache-aware” spike delivery: Instead of travers-

ing the adjacency list row-wise, we traverse it per column or,

more accurately, per 32-column slice so as to maintain full

coalescing of the adjacency data. While writes are still scat-

tered, they are now statistically expected to be closer together,

resulting in a better cache hit rate. Cache-aware spike delivery

is strictly faster than the naı̈ve one but only really shines once

neurons stop fitting into cache. At that point naı̈ve delivery

starts to grow quadratically with network size while cache-

aware delivery continues to grow linearly. Cache-aware spike

delivery is slightly sub-optimal in the sense that metadata (such

as information about the source neuron) need to be re-read for

every warp whereas previously they only had to be read once

per block. This is negligible in practice though.

1Writes are scattered so far apart that we would expect our effective
bandwidth to be 1/32nd of the theoretical bandwidth as each 4 B word
read/write would result in its own memory transaction (128 B large on CUDA
devices). Thanks to the cache, this is far from the case in practice.

// adjacency list

extern int adj[/*rows*/][/*columns*/];

// offsets into ’adj’ marking the start index of each slice

extern int pivots[/*rows*/][/*columns*/];

struct neuron { int id; ... };

// user−defined callback

void deliver(const neuron& source, neuron& destination);

1 parfor src in firing neurons:

2 parfor dst in neighbors(src):

3 deliver(src, dst);

(a)

1 parfor slice in 0..|neurons| / 1024 − 1:

2 shared neuron shared[1024];

3

4 parfor i in 0..1023:

5 shared[i] = neurons[slice * 1024 + i];

6

7 parfor src in firing neurons:

8 parfor dstID in adj[src.id][

9 pivots[src.id][slice]..

10 pivots[src.id][slice+1]−1]:

11 deliver(src, shared[dstID % 1024]);

12

13 parfor i in 0..1023:

14 neurons[slice * 1024 + i] = shared[i];

(b)

Fig. 3. Pseudocode contrasting naı̈ve with shared memory-based spike deliv-
ery. (a) Naı̈ve delivery. We loop over all firing neurons (line 1) and inform
their neighbors (line 2) about the spike by invoking the user-provided callback
deliver() (line 3) which is part of the model definition. (b) Shared
memory-based delivery. We cooperatively load a 1024-neuron slice from
global into shared memory (lines 4–5). Once again we deliver all spikes, but
only to neurons that fall into our slice. The delivery is carried out in shared
memory (lines 7–11). When done we write the new neuron state back to global
memory (lines 13–14). In practice we assign a 1024-thread block to each
slice, establishing a 1:1 mapping between threads and neurons which greatly
simplifies code (the parfors in lines 4 & 13 turn into simple assignments).
We then assign each warp within the block to one spike and finally each
thread within the warp to one destination neuron. This code assumes that the
total number of neurons is a multiple of 1024, for brevity. Additional logic
is needed to guard against out-of-bounds accesses.

In this paper we drive cache-aware spike delivery to its

conclusion: We logically divide the neuron domain into chunks

of equal size, say 1024 neurons each. We then partition

the adjacency list into slices that index a single and only

a single chunk, which is simply achieved by pre-computing

⌈ n

1024
⌉ pivots per row via binary search (Fig. 1(red dotted

lines)). This turns our statistical expectation into a mathe-

matical certainty: Knowing that slice i only indexes neurons

[i ∗ 1024, (i + 1) ∗ 1024) allows us to load them into shared

memory and deliver all spikes there (Fig. 3(b)). Doing so:

• minimizes global memory traffic (only the initial/final

neuron states have to be read from/written to global

memory),

0 0.5B 1B 1.5B 2B 2.5B 3B
Synapse Count

0

1

2

3

4

5

6

7

8
R

ea
l T

im
e

 B
io

lo
gi

ca
l T

im
e

(x
)

Vogels

BSim
GeNN
NeuronGPU
Spice

1B 2B 3B 5B 10B
Synapse Count

0.5

1

2

6
Brunel

BSim
GeNN
NeuronGPU
Spice

0.5B 1B 2B
Synapse Count

1

2

3

4
5

10

20
Brunel+

GeNN
Spice

Fig. 4. Simulation time as a function of network size for each model: We measure the time it takes to simulate 10 s of biological time for various synapse
counts and report wall-clock time ÷ biological time. Note that in the Brunel(+) case both axes are logarithmic.

• uses faster shared memory,

• uses faster shared atomics, and

• circumvents the cache entirely (avoiding cache misses/e-

victions/etc.)

Shared memory-based spike delivery is strictly faster than

cache-aware spike delivery (regardless of the number of neu-

rons) for practical network densities and shared memory sizes.

IV. RESULTS

We compare the performance of our simulator to that of

BSim [16], GeNN [5], and NeuronGPU [47] using three

well-established models: Vogels-Abbott (“Vogels”) and Brunel

(with and without plasticity, “Brunel(+)”), detailed in [6, Ap-

pendixes A & B]. We apply a scaling factor to synaptic weights

allowing us to vary the network size while maintaining the

overall firing pattern [1]. The models are visualized in Fig. 6.

When comparing ourselves to other simulators we enable

all optimizations. The impact of individual optimizations is

analyzed in Section IV-C.

All the code used for the experiments can be found at:

• BSim github.com/denniskb/bsim, forked from master as

of Feb 19, 2020.

• GeNN github.com/denniskb/genn, forked from tag

“GeNN 4.4.0” as of Jan 5, 2021.

• NeuronGPU github.com/denniskb/neurongpu, forked

from master as of Oct 20, 2020.

• Spice github.com/denniskb/spice/tree/gather, as of May

7, 2021.

All benchmarks were performed on a Google Cloud VM

with an Intel Xeon E5-2699 v3, a Nvidia Tesla V100 16 GB,

and 256 GB RAM, running a headless Ubuntu 20 with CUDA

11 and GCC 9.

A. Simulation Time as a Function of Network Size

We measure the time it takes to simulate 10 s of biological

time for various network sizes (synapse counts). We report

wall-clock time ÷ biological time (Fig. 4).

NeuronGPU uses double precision arithmetic and “exact

integration” [49] as opposed to single precision arithmetic and

Euler integration used by the other simulators—we do not

expect it to perform on par but include it for completeness,

to gauge how much performance one has to sacrifice for

biological fidelity.

GeNN offers the choice between three different connectiv-

ity types: SPARSE_GLOBALG is similar to an adjacency list,

BITMASK_GLOBALG is similar to a binary adjacency matrix,

and PROCEDURAL_GLOBALG does not store the graph at all

but generates it on the fly. We found that SPARSE_GLOBALG

is faster for Vogels while BITMASK_GLOBALG is faster for

Brunel(+). The latter is also more memory efficient for dense

networks, allowing GeNN to simulate much larger instances

of Brunel(+).

While both BSim and NeuronGPU support STDP, their

synapse types do not quite match the behavior of Brunel+.

According to the authors, modifying them “currently is a task

for developers, not for users”.

B. Setup Time as a Function of Network Size

Fast setup is important as it allows more experiments to run

in quick succession and thus speeds up network design and

parameter tuning. We measure the time in seconds it takes

to initialize Vogels for various network sizes (Fig. 5(left)).

GeNN and Spice perform this on the GPU which is why

they are orders of magnitude faster. In GeNN, any parameter

change requires recompilation which takes ∼15 s on the test

machine (green, dashed line). Our network construction is so

fast (∼200M synapses/ms) that setup is dominated by memory

allocations and thus virtually constant w.r.t. network size.

BSim and NeuronGPU also use a lot of RAM during setup,

peaking at 200 GB for BSim and 40 GB for NeuronGPU [7,

Table 1], which might be prohibitive for some users.

C. Impact of Optimizations on Simulation Time

In the preceding plots all optimizations were enabled for

Spice. In this section we analyze the relative speedup that each

optimization contributes to the final simulation time, compared

to previous implementations (Fig. 5(middle+right)).

To the best of our knowledge, nobody uses naı̈ve plasticity

due to how slow it is (Fig. 5(middle)). However, it makes for

https://github.com/denniskb/bsim
https://github.com/denniskb/genn
https://github.com/denniskb/neurongpu
https://github.com/denniskb/spice/tree/gather

0 0.5B 1B 1.5B 2B 2.5B 3B
Synapse Count

0.1

1

10

100

500

S
et

up
 T

im
e

(s
)

Setup

BSim
GeNN
NeuronGPU
Spice
GeNN /w comp.

Plastic Models

Naive Lazy Lazy+Event
Optimization

0

5

10

15

20

25

30

S
pe

ed
up

 (
x)

Brunel+

Static Models

Global Shared
Optimization

0

0.5

1

1.5

2

2.5

S
pe

ed
up

 (
x)

Vogels
Brunel

Fig. 5. (left) Setup time as a function of network size for Vogels. The y-axis is logarithmic. The green, dashed line represents setup time + compilation time.
(middle) Speedup due to various plasticity optimizations. The baseline is naı̈ve plasticity which updates every synapse at each simulation step. Shown are the
speedups achieved due to lazy plasticity alone, as well as lazy plasticity combined with event-driven plasticity. (right) Speedup due to shared memory-based
spike delivery. The baseline is naı̈ve spike delivery relying on global atomics and the cache.

a good baseline because it is very close to a “first implemen-

tation” when porting/writing an algorithm to/in CUDA. Lazy

plasticity (with a firing history of 64 steps) is 5 times faster.

Note that both algorithms perform the exact same number of

computations. The speedup is only due to decreased global

memory traffic. Beyond 64 steps, diminishing returns kick in:

While the effective bandwidth continues to increase, dynam-

ics’ computational costs stay constant and start to dominate the

simulation time. Going from 64 to 128 steps is only ∼15%

faster while it increases code verbosity (emulating 128-bit in-

tegers) and might not even generalize to other, higher-activity

models. Event-driven plasticity is another 6 times faster, which

might seem little when considering that most neurons reach

their maximum age and their firing histories only have 0–1

bits set. However, internal tests revealed that we are operating

close to the theoretical limit of our approach: When bypassing

the event-driven plasticity logic entirely and ”blindly” updating

synapses in a single step, we only observed a 25% increase in

performance. That is not to say that there is not a fundamen-

tally different, potentially much faster approach.

Once again, the straightforward, row-wise spike-delivery al-

gorithm serves as the baseline (Fig. 5(right)). Shared memory-

based spike delivery achieves its 2×–2.5× speedup with a slice

width of 1024 neurons. The slice width is a delicate, tunable

parameter. Increasing it increases the average gap between

pivots which leads to better memory bandwidth when reading

adjacency data and higher parallelism when delivering spikes.

At the same time though, it leads to higher shared memory

consumption which can inhibit parallelism again. 1024 neu-

rons strike a good balance in our benchmarks and have the

additional benefit of allowing us to map them 1:1 to CUDA

threads, simplifying code.

V. SUMMARY AND FUTURE WORK

We presented two algorithms for the efficient facilitation

of STDP and spike delivery inside SNNs, which significantly

outperform the state of the art. They can be retrofitted to

existing simulators with minimal code additions and without

the need for fundamental changes to the code architecture.

STDP requires the allocation and update of per-neuron firing

histories and in turn makes reverse adjacency lists obsolete.

Spike delivery requires the computation of pivots which index

the existing graph representation. In the case of adjacency

matrices, the pivots do not even have to be stored but can

be inferred.

A great feature that would interoperate seamlessly with our

presented optimizations is graph compression. The way we

partition the adjacency list lends itself to a very simple block

compression scheme: Since every entry indexes only 1024

neurons, 10 bits are sufficient to represent it. If we packed

3 consecutive indices into one 32-bit integer, we could reduce

memory consumption by almost 2/3rds. This would allow us

to triple the size of static models regardless of their density.

Fig. 6. Visualization of Vogels and Brunel(+). (top left) Graph of Vogels.
(top right) Graph of Brunel(+). (middle) Firing pattern of Vogels. Each row
represents a neuron, each column a time step, each dot a spike. (bottom)
Firing pattern of Brunel (Brunel+ fires very similarly).

REFERENCES

[1] D. Bautembach, I. Oikonomidis, N. Kyriazis, and A. Argyros, “Faster
and simpler snn simulation with work queues,” in 2020 International

Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.

[2] M. Mattia and P. Del Giudice, “Efficient event-driven simulation of
large networks of spiking neurons and dynamical synapses,” Neural

Computation, vol. 12, no. 10, pp. 2305–2329, 2000.

[3] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” Nature neuro-

science, vol. 3, no. 9, pp. 919–926, 2000.

[4] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-dependent
plasticity in balanced random networks,” Neural computation, vol. 19,
no. 6, pp. 1437–1467, 2007.

[5] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: A code generation
framework for accelerated brain simulations,” Scientific Reports,
vol. 6, no. June 2015, pp. 1–14, 2016. [Online]. Available:
http://dx.doi.org/10.1038/srep18854

[6] N. Ahmad, J. B. Isbister, T. S. C. Smithe, and S. M.
Stringer, “Spike: A GPU Optimised Spiking Neural Network
Simulator,” bioRxiv, p. 461160, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/11/06/461160

[7] D. Bautembach, I. Oikonomidis, and A. Argyros, “Multi-gpu snn sim-
ulation with static load balancing,” 2021.

[8] H. C. Tuckwell, Introduction to theoretical neurobiology. Vols. 1 and 2.
Cambridge University Press, 1988.

[9] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical Biophysics,
vol. 5, pp. 115–133, 1943.

[10] L. Lapique, “Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization.” Journal of Physiology and

Pathololgy, vol. 9, pp. 620–635, 1907.

[11] F. J. Pelayo, E. Ros, X. Arreguit, and A. Prieto, “VLSI Implementation
of a Neural Model Using Spikes,” Neuron, vol. 121, pp. 111–121, 1997.

[12] J. Reutimann, “Event-driven simulation of spiking neurons with stochas-
tic dynamics,” no. 2593, 2002.

[13] M. A. Van Der Vlag, “Multi-GPU Brain: A multi-node implementation
for an extended Hodgkin-Huxley simulator,” 2019.

[14] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier,
“SpykeTorch: Efficient Simulation of Convolutional Spiking Neural
Networks with at most one Spike per Neuron,” no. Mm, pp. 1–16,
2019. [Online]. Available: http://arxiv.org/abs/1903.02440

[15] S. Panagiotou, R. Miedema, H. Sidiropoulos, G. Smaragdos, C. Strydis,
and D. Soudris, “A novel simulator for extended Hodgkin-Huxley neural
networks,” pp. 395–402, 2020.

[16] P. Qu, Y. Zhang, X. Fei, and W. Zheng, “High Performance Simulation
of Spiking Neural Network on GPGPUs,” IEEE Transactions on Parallel

and Distributed Systems, vol. 31, no. 11, pp. 2510–2523, 2020.

[17] Z.-Q. K. Tian and D. Zhou, “Library-based Fast Algorithm for
Simulating the Hodgkin-Huxley Neuronal Networks,” pp. 1–19, 2021.
[Online]. Available: http://arxiv.org/abs/2101.07257

[18] T. S. Chou, H. J. Kashyap, J. Xing, S. Listopad, E. L. Rounds,
M. Beyeler, N. Dutt, and J. L. Krichmar, “CARLsim 4: An Open
Source Library for Large Scale, Biologically Detailed Spiking Neural
Network Simulation using Heterogeneous Clusters,” Proceedings of the

International Joint Conference on Neural Networks, vol. 2018-July, pp.
1158–1165, 2018.

[19] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos,
D. Rodopoulos, I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris, C. I. De
Zeeuw, and C. Strydis, “BrainFrame: A node-level heterogeneous accel-
erator platform for neuron simulations,” Journal of Neural Engineering,
vol. 14, no. 6, 2017.

[20] A. Sripad, G. Sanchez, M. Zapata, V. Pirrone, T. Dorta, S. Cambria,
A. Marti, K. Krishnamourthy, and J. Madrenas, “SNAVA—A real-
time multi-FPGA multi-model spiking neural network simulation
architecture,” Neural Networks, vol. 97, pp. 28–45, 2018. [Online].
Available: https://doi.org/10.1016/j.neunet.2017.09.011

[21] S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto,
J. Igarashi, S. Ishii, T. Fukai, A. Morrison, M. Diesmann, and M. Helias,
“Spiking network simulation code for petascale computers,” Frontiers in

Neuroinformatics, vol. 8, no. October, pp. 1–23, 2014.

[22] M. C. W. Van Rossum, “A novel spike distance,” Neural Computation,
vol. 13, no. 4, pp. 751–763, 2001.

[23] M. Rudolph and A. Destexhe, “Analytical integrate-and-fire neuron
models with conductance-based dynamics for event-driven simulation
strategies,” Neural Computation, vol. 18, no. 9, pp. 2146–2210, 2006.

[24] M. S. Tomlinson, “Spike Transmission for Neural Networks,” 1990.

[25] E. Ros, E. M. Ortigosa, R. Agı́s, R. Carrillo, and M. Arnold, “Real-time
computing platform for spiking neurons (RT-spike),” IEEE Transactions

on Neural Networks, vol. 17, no. 4, pp. 1050–1063, 2006.

[26] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” ISCAS 2010 - 2010 IEEE International Symposium on Cir-

cuits and Systems: Nano-Bio Circuit Fabrics and Systems, pp. 1947–
1950, 2010.

[27] C. M. Thibeault, R. Hoang, and F. C. Harris, “A novel multi-GPU
neural simulator,” 3rd International Conference on Bioinformatics and

Computational Biology 2011, BICoB 2011, no. 1, pp. 146–151, 2011.

[28] A. Antonietti, C. Casellato, J. A. Garrido, N. R. Luque, F. Naveros,
E. Ros, E. D’Angelo, and A. Pedrocchi, “Spiking neural network with
distributed plasticity reproduces cerebellar learning in eye blink con-
ditioning paradigms,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 1, pp. 210–219, 2016.

[29] D. Lee, G. Lee, D. Kwon, S. Lee, Y. Kim, and J. Kim, “Flexon: A
flexible digital neuron for efficient spiking neural network simulations,”
Proceedings - International Symposium on Computer Architecture, pp.
275–288, 2018.

[30] M. A. Van Der Vlag, G. Smaragdos, Z. Al-Ars, and C. Strydis, “Explor-
ing complex brain-simulation workloads on multi-GPU deployments,”
ACM Trans. on Architecture and Code Optimization, no. 4, 2019.

[31] D. F. M. Goodman, “The Brian simulator,” Frontiers in Neuroscience,
vol. 3, no. 2, pp. 192–197, 2010.

[32] D. Pecevski, D. Kappel, and Z. Jonke, “NEVESIM: event-driven neural
simulation framework with a Python interface,” Frontiers in Neuroinfor-

matics, vol. 8, no. August, pp. 1–20, 2014.

[33] J. C. Knight and T. Nowotny, “GPUs Outperform Current HPC and Neu-
romorphic Solutions in Terms of Speed and Energy When Simulating a
Highly-Connected Cortical Model,” Frontiers in Neuroscience, vol. 12,
no. December, pp. 1–19, 2018.

[34] M. Stimberg, D. F. M. Goodman, and T. Nowotny, “Brian2GeNN: a
system for accelerating a large variety of spiking neural networks with
graphics hardware,” bioRxiv, p. 448050, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/10/20/448050

[35] H. Hazan, D. J. Saunders, H. Khan, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, “BindsNET: A machine
learning-oriented spiking neural networks library in Python,”
vol. 12, no. December, pp. 1–18, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01423{%}0Ahttp://dx.doi.org/10.3389/fninf.2018.00089

[36] E. Ros, R. Carrillo, E. M. Ortigosa, B. Barbour, and R. Agı́s, “Event-
driven simulation scheme for spiking neural networks using lookup
tables to characterize neuronal dynamics,” Neural Computation, vol. 18,
no. 12, pp. 2959–2993, 2006.

[37] A. Hanuschkin, S. Kunkel, M. Helias, A. Morrison, and M. Diesmann,
“A General and Efficient Method for Incorporating Precise Spike Times
in Globally Time-Driven Simulations,” Frontiers in Neuroinformatics,
vol. 4, no. October, pp. 1–19, 2010.

[38] F. Naveros, N. R. Luque, J. A. Garrido, R. R. Carrillo, M. Anguita,
and E. Ros, “A Spiking Neural Simulator Integrating Event-Driven
and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-
Processing: A Case Study,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 26, no. 7, pp. 1567–1574, 2015.

[39] F. Naveros, J. A. Garrido, R. R. Carrillo, E. Ros, and N. R. Luque,
“Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-
processing for Spiking Neural Networks,” Frontiers in Neuroinformatics,
vol. 12, no. February, pp. 1–22, 2018.

[40] A. Delorme and S. J. Thorpe, “SpikeNET: An event-driven simulation
package for modelling large networks of spiking neurons,” Network:

Computation in Neural Systems, vol. 14, no. 4, pp. 613–627, 2003.

[41] H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and M. O.
Gewaltig, “Efficient parallel simulation of large-scale neuronal networks
on clusters of multiprocessor computers,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 4641 LNCS, pp. 672–681, 2007.

[42] J. A. Garrido, R. R. Carrillo, N. R. Luque, and E. Ros, “Event and Time
Driven Hybrid Simulation of,” no. June 2011, 2014.

[43] B. Kasap and A. J. van Opstal, “Dynamic parallelism for synaptic
updating in GPU-accelerated spiking neural network simulations,”

http://dx.doi.org/10.1038/srep18854
https://www.biorxiv.org/content/early/2018/11/06/461160
http://arxiv.org/abs/1903.02440
http://arxiv.org/abs/2101.07257
https://doi.org/10.1016/j.neunet.2017.09.011
https://www.biorxiv.org/content/early/2018/10/20/448050
http://arxiv.org/abs/1806.01423{%}0Ahttp://dx.doi.org/10.3389/fninf.2018.00089

Neurocomputing, vol. 302, pp. 55–65, 2018. [Online]. Available:
https://doi.org/10.1016/j.neucom.2018.04.007

[44] P. Szynkiewicz, “A novel GPU-enabled simulator for large scale spik-
ing neural networks,” Journal of Telecommunications and Information

Technology, vol. 2016, no. 2, pp. 34–42, 2016.
[45] P. Krishnamani and V. Venkittaraman, “Acceleration of spiking neural

networks on single-GPU and multi-GPU systems,” no. May, p. 81, 2010.
[Online]. Available: http://gradworks.umi.com/14/75/1475559.html

[46] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the SpiNNaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, 2013.

[47] B. Golosio, G. Tiddia, C. De Luca, E. Pastorelli, F. Simula, and P. S.
Paolucci, “A new gpu library for fast simulation of large-scale networks
of spiking neurons,” arXiv preprint arXiv:2007.14236, 2020.

[48] J. C. Knight and T. Nowotny, “Larger gpu-accelerated brain
simulations with procedural connectivity,” Nature Computational

Science, vol. 1, no. 2, pp. 136–142, Feb 2021. [Online]. Available:
https://doi.org/10.1038/s43588-020-00022-7

[49] S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling,” Biological

Cybernetics, vol. 81, no. 5, pp. 381–402, Nov 1999. [Online]. Available:
https://doi.org/10.1007/s004220050570

https://doi.org/10.1016/j.neucom.2018.04.007
http://gradworks.umi.com/14/75/1475559.html
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1007/s004220050570

	I Introduction
	II Related Work
	II-A SNN Simulator Classification
	II-B Classification of Spice and Direct Competition

	III Method
	III-A Lazy+Event-driven Plasticity
	III-B Spike Delivery with Shared Atomics

	IV Results
	IV-A Simulation Time as a Function of Network Size
	IV-B Setup Time as a Function of Network Size
	IV-C Impact of Optimizations on Simulation Time

	V Summary and Future Work
	References

