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Abstract—Drug repositioning (also called “drug repurposing”)
is a drug development strategy that saves time and money by
finding new uses for existing drugs. While a variety of com-
putational approaches to drug repositioning exist, recent work
has shown that tensor decomposition, an unsupervised learning
technique for finding latent structure in multidimensional data,
is a useful tool for drug repositioning. The known relationships
between drugs, targets, and diseases can easily be encoded as
a tensor, and by learning a low-rank representation of this
tensor, decompositions can complete missing entries and therefore
predict novel drug-disease associations. Multiple recent works,
in the context of cancer and COVID-19 drug discovery, have
used joint tensor decompositions to suggest drug repositioning
candidates. While these methods make high-quality predictions,
they rely on specialized decompositions formulated for specific
problems. In this work, we use ENSIGN, a suite of tensor
decomposition tools, to show that CP tensor decompositions
of a single tensor encoding drug-target-disease associations are
capable of predicting verifiable drug repositioning candidates.
Because the tensors generated by drug repositioning problems
are sparse, we introduce a filtered tensor construction to limit the
span of the tensor without losing information needed to learn the
relevant associations. We show that our method predicts verifiable
novel drug-disease associations in cancer and COVID-19 data.
The simplicity of our approach makes it an attractive tool for
biomedical researchers looking for out-of-the-box solutions, and
ENSIGN brings an added level of usability and scalability.

Index Terms—Drug Repositioning, COVID-19, Cancer, Tensor,
Tensor Decompositions, Tensor Completion

I. INTRODUCTION

Drug repositioning is the process of finding alternative
uses for drugs outside of their original medical indication.
As a drug development strategy, repositioning has multiple
benefits over de novo drug development including a better risk-
versus-reward trade-off and reduced time and costs. Although
speeding up and reducing the cost of drug development has
often resulted in increased risk, this is not the case for drug
repositioning as the compounds in question, having been
developed for other indications, have often been targeted,
optimized, screened in vitro and in vivo, manufactured, and
possibly used in clinic [1]. Repositioned drugs have therefore
cleared many of the regulatory hurdles that result in a 2%
success rate in de novo drug development [2]. While licens-
ing, further trials, and registration are still required before a
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repositioned drug can go on the market, a key bottleneck is the
identification of compounds that may treat diseases they were
not designed to treat. Serendipitous observation of the side
effects of known drugs is one approach to finding candidates
for repositioning, but computational methods offer principled
ways to examine the known relationships between treatments
and diseases and predict novel relationships.

In this work, we consider the application of CANDE-
COMP/PARAFAC (CP) tensor decomposition to drug reposi-
tioning. CP tensor decomposition is an unsupervised machine
learning tool for decomposing high-dimensional arrays, or fen-
sors, into a sum of rank-1 tensors, or components, analogous to
the singular value decomposition for matrices. It is useful for
studying correlations between different attributes of data [3],
and it has been successfully applied in diverse fields and
data, such as spatiotemporal analysis [4], cybersecurity [5],
[6], chemistry [7], [8], machine learning [9]-[11], precision
healthcare [12], [13], genomics [14], neuroscience [15]-[17],
and others. Tensors and their decomposition provide an ideal
framework for formulating and solving drug repositioning
problems because known relationships are easily encoded as
tensors, and decompositions provide a low-rank summary of
the known relationships and, as we will show, directly predict
novel relationships. A particularly useful set of relationships to
consider are those between drugs, targets (genes or the proteins
they express), and diseases.

Encoding known drug-target-disease triplets is straightfor-
ward: construct a 3-dimensional tensor in which the dimen-
sions, or modes, correspond to drugs, targets, and diseases,
respectively, and the indices in a given mode correspond to
specific instances of that category. Each tensor entry therefore
corresponds to one drug-target-disease triplet, and known
relationships are quantified with nonzero values at the cor-
responding entries while unknown relationships correspond to
zeroes in the tensor. Not only does a low-rank decomposition
of a tensor summarize the data as a sum of rank-1 components,
which are represented by factor matrices, but when recon-
structed into a tensor, it includes nonzero entries not present
in the original tensor that are implied by the multi-linear
relationships discovered by the decomposition. Ranking these
by magnitude provides a means of presenting top predictions
of novel drug-target-disease relationships and thus identifying
candidates for drug repositioning.

This is not the first work to use tensor decomposition for
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drug repositioning. Wang et al. [18] create tensors encoding
drug-protein-disease relationships according to the method
above and decompose them with the additional constraints
that the factor matrices also reproduce known drug-drug and
protein-protein interactions. They apply their method to repo-
sition drugs for cancer and show that their top predicted drug-
disease relationships are validated in the literature. Kanatsoulis
et al. [19] propose a coupled tensor-matrix knowledge graph
embedding that encodes every pairwise relationship (e.g. drug-
target, target-disease, drug-drug) as a tensor. By decomposing
this coupled system of tensors so that entities share factor
matrices across decompositions, they perform a completion of
the knowledge graph. The factor matrices relating to drugs
and diseases can then be used to predict new relationships,
and this method finds 10 COVID-19 trial therapies in its top
100 predictions. Both of these works, in their reliance on
coupled methods, make the implicit assumption that the sparse
drug-target-protein tensor is insufficient to learn the underlying
relationships in order to predict repositioning candidates.

We show that out-of-the-box tensor decompositions applied
to an appropriately-chosen subset of the drug-target-disease
tensor are sufficient to predict novel drug-disease relationships.
The smaller tensor is constructed by providing a list of entities
(drugs, targets, or diseases) that are known to be relevant
a priori and only encoding drug-target-disease relationships
that include at least one of these entities. Assuming that the
filter criteria are well-chosen, excluding information improves
the quality of the predictions because the low-rank decom-
position does not have to capture irrelevant relationships. We
leverage the tensor construction tools, sparse decomposition
methods, and post-processing tools in ENSIGN [20]-[25], a
highly parallelized tensor decomposition package written in
ANSI C, to perform our decompositions. We use the Python
bindings for ENSIGN to perform our experiments in a Jupyter
notebook [26], and we make the Jupyter notebook for the
analysis of the cancer data available on the ENSIGN website
[27]. To summarize our contributions:

e We propose a modified method for constructing drug-
target-disease tensors that filters out relationships that are
believed irrelevant

« We show that applying alternating tensor decompositions
to our filtered tensors is sufficient for finding novel drug-
disease relationships

o We demonstrate our approach on cancer data and show
that our method is capable of suggesting candidates for
repositioning drugs between 229 types of cancer

e We show that our method recommends 5 drugs for
COVID-19 that underwent clinical trials and that 2 of
these are not predicted Kanatsoulis et al. [19]

The organization of the rest of the paper is as follows. In
Section II we discuss previous work on drug repositioning,
tensor completion, and their intersection. In Section III we
provide tensor preliminaries and an exposition of our method.
In Section IV we show the results of our method on cancer
and COVID-19 data. A final discussion is in Section V.
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II. PREVIOUS WORK
A. Computational Drug Repositioning

For a recent survey of computational approaches to drug
repositioning, see the survey by Jarada et al. [28]. We sum-
marize the major approaches in comparison to our proposed
method. There is a large body of work on using network
analysis for drug repositioning due to the fact that relationships
between drugs, targets, and diseases can naturally be expressed
as graphs in which nodes are entities and edges are known
relationships. Network analysis approaches can be categorized
by what kinds of networks are considered. Possible data
choices are any combination of the involved entity types:
protein-protein interaction networks, drug-target interaction
networks, drug-drug interaction networks, drug-disease asso-
ciation networks, drug-side effect association networks, and
disease—disease interaction networks, and other heterogeneous
networks.

The analysis of networks with one interaction type has been
performed using bipartite graph models. Bleakley et al. [29]
propose a supervised bipartite graph to learn novel drug-
target relationships and classify drug-target interaction types.
Kinnings et al. [30] study drug-drug interaction networks in
order to learn drug communities, which enable the identi-
fication of drugs that may behave similarly. Finally, Hu et
al. [31] build disease-drug networks to directly identify drug
repositioning candidates. Our proposed method, like these,
relies on networks of relationships between drugs, targets, and
diseases, but it considers more than a single interaction class.

Others have developed non-bipartite graph approaches for
studying more heterogeneous networks using clustering and
network centrality measures. Using disease-gene associations
and drug-target interactions, Wu et al. [32] build a network in
which nodes represent genes and diseases and edges represent
target interactions and perform clustering in order to predict
important drug-disease links, which are presented as drug
repositioning candidates. Rashkit et al. [33] build disease-
target and drug-target networks and use a variety of network
centrality measures as an ensemble for predicting important
drugs and diseases across the two networks. While these and
other works have leveraged more classes of interaction that
are relevant to drug repositioning, we believe a tensor decom-
position approach is superior for its ability to simultaneously
learn relationships between all classes of entities.

Outside of network analysis, deep learning provides another
set of tools for predicting drug repositioning candidates. Aliper
et al. [34] use a fully-connected network to predict drug
indications and outperform support vector machines. This
method could be used for performing drug repositioning by
predicting application classes of a given drug. Hu et al. [35]
design a convolutional neural network that learns chemical
structure and protein sequences for predicting drug-target
interactions. Segler et al. [36] build a recurrent neural network
for generating compounds with desired biological properties.
While the method performs well, the authors note that it
replicates the de novo drug development process. Finally, Zeng



et al. [37] use deep autoencoders to learn embeddings of
relevant interactions. Despite the promising results from deep
learning approaches, we argue that the inherent interpretability
of tensor methods is a reason to develop strong tensor com-
pletion approaches.

B. Tensor Completion

This work frames drug repositioning as a tensor completion
problem: known relationships are nonzero entries in a tensor,
and we would like to predict new interactions (missing tensor
entries). Tensor completion is performed by decomposing a
tensor with missing entries in order to find its latent structure
so that the reconstructed tensor fills out missing values. Acar et
al. [38] propose an algorithm called CP-WOPT (CP Weighted
OPTimization) that successfully recovers tensor entries even
with 99% missing data and in the presence of noise.

Recently, Liu and Moitra [39] offer a tensor completion
algorithm that consists of performing an alternating tensor
decomposition with pre- and post-processing steps. They are
able to make provable claims about the completion rate of
their method. Namely, they show that when using their pre-
and post-processing algorithms, a logarithmic (in the mode
sizes) number of iterations of alternating minimization are
necessary to estimate the entries of the true tensor within
inverse polynomial (in the mode sizes) accuracy. However,
their experimental results indicate that it is possible for the
alternating minimization (i.e. the decomposition) alone to
produce a completed tensor.

C. Tensor Decomposition for Drug Repositioning

We describe two recent works that use tensor decomposi-
tion/completion for drug repositioning. In addition to serving
as the basis for our method, they serve as points of comparison
for ours, as they both use publicly available data in their
experiments. Wang et al. [18] introduce tensor decomposition
for drug repositioning. They create a tensor in which the
dimensions correspond to drugs, targets, and diseases and the
nonzero entries reflect known relationships. Implicit in this
model is the notion that there are unknown relationships, the
corresponding entries of which are zero. Additionally, they
consider two matrices that encode drug-drug and target-target
interactions. After finding a low-rank decomposition of the
tensor jointly with two matrices, they reconstruct the tensor
and rank new entries by their scores. Their top predictions
are validated by a literature search. Our approach can be
considered a simplification of theirs in that we decompose the
drug-target-disease tensor without coupling it with additional
matrices.

Kanatsoulis et al. [19] use tensor completion to predict
therapies for COVID-19. They consider a knowledge graph
containing relationships between drugs, genes, diseases, side
effects, symptoms, cellular components, pathways, pharmaco-
logical classes, molecular functions, anatomy, and biological
processes. For every pair of entity types, they encode the
known relationships as a 3-dimensional tensor in which two
dimensions correspond to the types and the third dimension
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corresponds to the relationship types. As each entity appears
in multiple tensors, this formulation leads to a large system
of tensor decomposition equations where the latent represen-
tations of each entity type are shared across tensors. After
performing a joint decomposition of these tensors, they derive
scores for drug-disease relationships, in particular for SARS-
CoV-2 variants, the viruses that cause COVID-19. In their
top 100 predictions, they identify 10 therapies that underwent
clinical trials. Again, our approach does not require a joint
decomposition.

III. METHODS
A. Tensor Preliminaries

Before presenting our method, we introduce the basic con-
cepts related to tensor decomposition. For a full treatment on
the topic, see [3]. A tensor is a multidimensional array. The
order of a tensor is the number of dimensions, also known
as modes. Thus, for any N € N, the N-dimensional array
X € RIO¥xXIN js an N-mode tensor. Hence, a vector is a
1-mode tensor and a matrix is a 2-mode tensor. We denote the
(41,...,in)th entry of the N-mode tensor X" as z;,, ;..

In this work, we fix N = 3 and work with tensors encoding
drug-target-disease relationships: X € RIc*Ir>xIp where O,
T, and D signify drugs (compounds), targets, and diseases,
respectively.

A rank-R CP decomposition is an approximation of X as
a sum of R outer products of 3 vectors:

R
X%ZcrotTOdT (D
r=1

It is convenient to express the decomposition as the outer
product of its factor matrices C € RiexE T ¢ RITXE and
D € RIp X1 where the rth column of C is the vector ¢,, and
so on. We use the notation

X~T =[\C,T,D]. )

to rewrite Equation 1 compactly. Here we have column-
normalized the factor matrices and absorbed the weights into
X € R such that A, is the weight corresponding to the rth
component. On a per-entry basis, (2) is equivalent to

R
Ziciryip = ticirip = Z)‘r X Cigr X by o X diD,r~ 3)
r=1
If the decomposition rank IR is equal to the rank of the tensor
X, then (2) is exact and 7 = X. In general, however, we seek
a low-rank representation of X, and 7 is an approximation
to the data tensor X. In order to find 7, we minimize the

sum of the elementwise losses as measured by a function f :
R xR —R,

Ie Ir Ip

mTin Z Z Z flaity). 4)

ic=1lir=1ip=1
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Fig. 1: We use the following construction criterion for building our tensors: A drug-target-disease relationship exists if
the corresponding drug-target and target-disease relationships exist. The filtering criterion, our contribution to the tensor
construction, is a set of entities of any type. During tensor construction, only drug-target-disease triplets with at least one
entity in the specified set are considered. In the example above, there are four drugs, targets, and diseases. The highlighted
rows in the drug-target adjacency matrix indicate that the filtering criterion is a subset of two drugs. As a result, the constructed

tensor has dimensions 2 x 4 x 4.

Here, we use the shorthand z; = x5, j7.ip, and t; = € 57 ip -
The elementwise loss function used is f (i, ) = (zi — t;)°.

In this work, in addition to finding a low-rank approximation
of the data that are known at the time of decomposition,
our goal is to find additional entries that are found in the
approximation 7 and not in X. These are used to find
repositioning candidates.

B. Filtered Tensor Construction

We encode our known drug-target-disease relationships as
a 3-mode tensor in which each mode corresponds to one of
the entity types and each index within a mode corresponds to
a specific entity. Following Wang et al. [18], the tensor is a
Boolean tensor in which the value at an index is 1 if the corre-
sponding drug-target-disease triplet has a known relationship
and O otherwise. In the use cases we consider, the available
data consist of lists of known pairwise entity relationships, in
particular known drug-target and target-disease relationships.
Given these data, in order to construct the tensors representing
the known information, we require a construction criterion for
determining the existence of drug-target-disease relationships
and a filtering criterion for removing irrelevant entities. Again
following Wang et al. [18], we use the following criterion:
A drug-target-disease relationship exists if the corresponding
drug-target and target-disease relationships exist.

The filtering criterion, our contribution to the tensor con-
struction, is a set of entities of any type. During tensor
construction, only drug-target-disease triplets with at least one
entity in the specified set are considered. This very simple filter
enables us to obtain predictions we did not otherwise find. The
tensors we consider are very sparse, and much of the sparsity
comes from the large mode sizes. By removing entities that
we know have no relevance to the drug repositioning problem
in question, we are able to decrease the span of the tensor and
improve the qualities of the decomposition.

Let Ror and Rrp be the sets of known drug-target and
target-disease relationships. In our use cases, the data provide
these explicitly in the form of adjacency matrices. Let F' be
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the set provided as the filtering criterion. Then the drug-target-
disease tensor is given by

1 (ic,ir) € Rer and
T = (iT>iD) € Rrp and )
ic,iT,iD (iceForipreForip€eF)

0 otherwise

C. Tensor Completion

We do not perform a specialized tensor completion algo-
rithm a la Acar et al. [38] or Liu et al. [39]. As stated,
our objective is to test how basic tensor decomposition per-
forms for the task of tensor completion in the context of
drug repositioning. We use the alternating least-squares CP
decomposition (CP-ALS) [44], [45], which assumes Gaussian-
distributed data and solves least-squares problems to update
the factor matrices in an alternating fashion. We use the
scalable implementation provided in ENSIGN, and perform
decompositions of the filtered drug-target-disease tensors. The
factor matrices are then used to reconstruct the tensor, and any
nonzero entries in the reconstruction that are not present in the
original tensor are considered predictions. Because the original
tensor was Boolean and the reconstruction is not perfect, the
reconstructed values are between 0 and 1, which we interpret
as the confidence in the prediction. This allows the user to
set a threshold for which predictions should be considered as
drug repositioning candidates.

IV. RESULTS
A. Identifying Cancer Treatments for Repositioning

We consider the data compiled by Luo et al. [46] and
used by Wang et al. [18] available on GitHub [47]. The
heterogeneous network consists of 708 drugs from Drug-
Bank [48], 1,512 targets from Human Protein Reference
Database (HPRD) [49], and 5,603 diseases from Comparative
Toxicogenomics Database (CTD) [50]. There are adjacency
matrices for every pair of entity types, and we consider



Drug | Original Indication

Novel Indication \ Literature Validation

Verapamil high blood pressure, heart arrhythmias, and angina
Halothane anesthetic
Verapamil high blood pressure, heart arrhythmias, and angina
Nitrazepam hypnotic

Theophylline chronic asthma and chronic lung disease

colonic neoplasms / neoplasm invasiveness

Yohem et al. [40]
Rudnick et al. [41]
Yu et al. [42]
None
Makower et al. [43]

neoplasm invasiveness

renal cell carcinoma
prostatic neoplasms
leukemia

TABLE I: We embed drug-target and target-disease adjacency matrices as drug-target-disease relationships in a 3-mode Boolean
tensor. The non-zero entries represent known relationships, and we complete the tensor in order to discover novel relationships.
To perform the completion process we decompose the tensor using CP-ALS and reconstruct the decomposition to find values
that did not appear in the original tensor. Our top 5 predicted drug-target-disease relationships have scores above 0.9. From
these predicted relationships, we derive the drug repositioning candidates found in this table. Four of our predictions are

validated by a paper in the medical literature.

drug-target associations (collected from DrugBank), target-
disease associations (collected from CTD), and drug-disease
associations (collected from CTD).

Following the tensor construction method in Section III-B,
we consider a drug-target-disease interaction to exist when the
drug-target and target-disease relationships exist. To evaluate
our method for cancer drug repositioning, we define the
filtering criterion F' as the set of cancer-related diseases that
have at least 300 target-disease associations and at least 100
drug-disease associations. The connectivity requirements help
to ensure that the tensor is not too sparse. The resulting
tensor contains 473 drugs, 397 targets, and 229 diseases. There
are 51,694 entries, meaning that many drug-target-disease
relationships are inferred from the adjacency matrices, for an
overall sparsity of 99.88%.

We perform a rank-250 decomposition of the tensor using
CP-ALS, then reconstruct the tensor entries from the factor
matrices. After ranking the novel drug-target-disease triplets
by score, there are only 5 drug-disease pairs derived from
triplets with scores greater than 0.9. These drug-disease rela-
tionships are presented in Table I. While we predict relatively
few novel associations with high confidence, owing to the
sparsity of the tensor, 4 of those that we predict are validated
by the literature as having been tenable hypotheses.

B. Proposing COVID-19 Therapies

In the context of COVID-19 drug development, we con-
sider the Drug Repurposing Knowledge Graph for Covid-19
(DRKG) created by Ioannidis et al. [51] and used by Kanat-
soulis et al. [19] in their tensor completion work. The DRKG
is a heterogeneous network consisting of relationships between
drugs, genes, diseases, side effects, symptoms, cellular compo-
nents, pathways, pharmacological classes, molecular functions,
anatomy, and biological processes. Moreover, the associations
themselves are separated into classes (e.g., a disease-gene
relationship may be a “blocker” or an “inhibitor”). The drug-
target and drug-disease relationships are pulled from Drug-
Bank [48], the Global Network of Biomedical Relationships
(GNBR) [52], and Hetionet [53], while the target-disease
relationships are pulled from the last two networks.

Following the tensor construction method in Section III-B,
we consider a drug-target-disease interaction to exist when the
drug-target and target disease relationships exist. To evaluate
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our method for COVID-19 drug repositioning, we defined the
filtering criterion F’ as the set of genes that have an association
with a COVID-19 variant or genes that are associated with one
of these genes. This filtering drastically reduces the number
of associations the tensor decomposition must capture in its
low-rank representation while retains the most relevant data
for finding associations related to COVID-19. The resulting
tensor encodes 3,626 drugs (20 of which are known to have
undergone trials for treating COVID-19), 4,215 genes, and
1,753 diseases (of which 27 are SARS-CoV-2 variants, the
viruses that cause COVID-19).

We perform a rank-400 decomposition of the tensor using
CP-ALS, then reconstruct the tensor entries from the factor
matrices. As stated in Section III-C, we take reconstructed
entries not seen in the original tensor with scores greater than a
user-defined confidence threshold as repositioning candidates.
Specifically, we set the confidence threshold to 0.99. Amongst
the predictions surpassing the threshold are 5 drug-disease
associations between known trial COVID-19 drugs and the
SARS-CoV-2 variants. These are presented in Table II. There
are 304 false positives

We did not report all of the drugs found by Kanatsoulis et
al. [19], but we found 2 that they did not report: Ibuprofen
and tranexamic acid. Both methods rank Dexamethasone as
the top choice, and as they point out, there were originally
contradictory recommendations for and against it, but our
results align with the updated evidence that Dexamethasone
reduces the 28-day mortality rate in COVID-19 patients [54].

While our method did not outperform that of Kanatsoulis
et al. [19], there are advantages to our approach. First, rather
than jointly decomposing many tensors and matrices, we
decompose a single tensor with a common algorithm that is
implemented in tensor decomposition software. Next, because
we complete a single tensor, our scores are simply the nonzero
unseen entries, which take values between 0 and 1. This allows
the scores to be interpreted as confidences in the prediction.
The practical and conceptual advantages of this approach
warrant further work toward reducing the false positives.

V. DISCUSSION

We use ENSIGN in order to demonstrate that out-of-the-box
CP tensor decompositions are capable of performing tensor
completion for drug repositioning. When we apply our method



Drug Indication Kanatsoulis et al. Rank [19] | Our Score
Dexamethasone Steroid 1 0.999
Methylprednisolone Steroid 6 0.996
Azithromycin Antibiotic 13 -
Thalidomide Immunomodulator 18 -
Losartan Anti-hypertensive 41 0.995
Hydroxychloroquine | Immunosuppressive 47 -
Colchicine Anti-inflammatory 48 -
Oseltamivir Anti-viral 60 -
Chloroquine Immunosuppressive 68 -
Deferoxamine Iron reducer 88 -
Ibuprofen Anti-inflammatory - 0.997
Tranexamic acid Clotting promoter - 0.995

TABLE II: We embed drug-target and target-disease relationships found in a COVID-19 knowledge graph [51] as a drug-target-
disease tensor encoding known associations. We use CP-ALS to decompose the tensor and reconstruct the decomposition to
perform tensor completion. Any reconstructed value not seen in the original tensor with a value above the threshold of 0.99 is
a predicted drug-target-disease pair, from which we derive our COVID-19 treatment predictions. We find 3 predictions made
by Kanatsoulis et al. [19] in addition to 2 not noted in their paper.

of tensor construction and decomposition to a tensor encoding
known drug-target-cancer relationships, we predict few novel
drug-disease associations, yet all but one of them are validated
by the literature. When applied to the COVID-19 knowledge
graph, our method identifies 5 of the known trial therapies
for treating COVID-19. In addition to being able to identify
viable drug repositioning candidates, our method relies on
constructing a single tensor and performing a straightforward
decomposition. No joint or other specialized decompositions
are necessary. The simplicity and efficacy of our approach
make it attractive for use in rapid experimentation by the
biomedical research community and drug developers.

We have laid the foundations on which to build an elegant
and robust tensor completion method for drug repositioning.
Despite the ability of our method to predict novel drug-
disease associations that can be validated by the literature, a
remaining challenge is to reduce the number of false positives
produced by our method. If the goal is that these methods
should play a large role in the drug development process, then
it is not sufficient that they produce correct predictions, but
that they only produce correct predictions. Future work will
include improving the robustness of our simplified approach
and adding advancements that help to increase confidence in
the predictions.

It is also important to note that our method is easily
extended to incorporate additional information into new di-
mensions of the tensor. We consider a 3-dimensional drug-
target-disease tensor, but genotypic, phenotypic, chemical,
pathway, or symptom information could be incorporated in
additional modes analogous to how other methods incorporate
these features through coupled tensors. This approach would
retain the simplicity and ease-of-use of building and working
with a single tensor.
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