
Distributed Out-of-Memory SVD
on CPU/GPU Architectures

Ismael Boureima
Theoretical Division

LANL
Los Alamos, U.S

iboureima@lanl.gov

Nick Solovyev
Theoretical Division

LANL
Los Alamos, U.S

nks@lanl.gov

Manish Bhattarai
Theoretical Division

LANL
Los Alamos, U.S

ceodspspectrum@lanl.gov

Hristo Djidjev
Information Systems

LANL Los Alamos, U.S
and IICT, Sofia, Bulgaria

djidjev@lanl.gov

Maksim E. Eren
Theoretical Division

LANL
Los Alamos, U.S
maksim@lanl.gov

Boian S. Alexandrov
Theoretical Division

LANL
Los Alamos, U.S
boian@lanl.gov

Abstract—We propose an efficient, distributed, out-of-memory
implementation of the truncated singular value decomposition
(t-SVD) for heterogeneous (CPU+GPU) high performance com-
puting (HPC) systems. Various implementations of SVD have
been proposed, with most only estimate the singular values as
the estimation of the singular vectors can significantly increase
the time and memory complexity of the algorithm. In this work,
we propose an implementation of SVD based on the power
method, which is a truncated singular values and singular vectors
estimation method. Memory utilization bottlenecks in the power
method used to decompose a matrix A are typically associated
with the computation of the Gram matrix ATA , which can be
significant when A is large and dense, or when A is super-large
and sparse. The proposed implementation is optimized for out-
of-memory problems where the memory required to factorize
a given matrix is greater than the available GPU memory. We
reduce the memory complexity of ATA by using a batching
strategy where the intermediate factors are computed block by
block, and we hide I/O latency associated with both host-to-device
(H2D) and device-to-host (D2H) batch copies by overlapping each
batch copy with compute using CUDA streams. Furthermore, we
use optimized NCCL based communicators to reduce the latency
associated with collective communications (both intra-node and
inter-node). In addition, sparse and dense matrix multiplications
are significantly accelerated with GPU cores (or tensors cores
when available), resulting in an implementation with good scaling.
We demonstrate the scalability of our distributed out of core SVD
algorithm to successfully decompose dense matrix of size 1TB and
sparse matrix of size 128 PB with 1e-6 sparsity.

Index Terms—SVD, out-of-memory, latent features, data com-
pression, distributed processing, parallel programming, big data,
heterogeneous computing, GPU, CUDA, NCCL, cupy

I. INTRODUCTION

Singular value decomposition (SVD) decomposes a matrix
A of size m × n into two orthogonal matrices U of size
m × m, V of size n × n, and a diagonal matrix Σ of size
m×n, which is a non-negative matrix, such that A = UΣV T .
The diagonal elements of Σ are also called singular values,
whereas U and V contain left and right singular vectors of A,
respectively. The power method is one way of estimating the

SVD. The power method computes the first k monotonically
decreasing singular values and the corresponding vectors, sav-
ing the computational need to estimate the complete singular
values and vectors [2]. The power method based SVD is also
known as truncated SVD [13] is given as A = UkΣkV

T
k

where Σk is a diagonal matrix comprising singular values
σ1 > σ2 > > σk and Uk and Vk are the orthogonal
matrices of sizes m×k and k×n, respectively, whose columns
are the left and right singular vectors corresponding to the
first k largest singular values. The ability to estimate the first
k large singular values and corresponding singular vectors
addresses the challenge in estimating all the singular values
and vectors. The pseudocode of the truncated SVD algorithm
is shown in Algorithms 1 and 2.

Algorithm 1 SVD(A, ε, k = −1) - Truncated SVD
Require: A ∈ Rm×n

+ and a scalar ε where k is an optional parameter.
1: m,n = shape(A)
2: if k==-1 then
3: k = min(m,n)

4: U ,V ,σ = [],[],[] . Initialize as empty arrays
5: for l in [1, k] do
6: X=A
7: if l > 1 then
8: X = X −U [: l]diag(σ[: l])V [: l]T

9: if m > n then
10: V (l)= SVD 1D (X, ε)
11: U(l) = A@V (l) . @ stands for matrix multiplication operation
12: σ(l) = ||U(l)||
13: U(l) = U(l)

σ(l)

14: else
15: U(l)= SVD 1D (X, ε)
16: V (l) = AT@U(l)

17: σ(l) = ||V (l)||
18: V (l) = V (l)

σ(l)

Ensure: U ∈ Rm×k ,σ ∈ Rk , V ∈ Rn×k

Ensure: UUT = Im×m,V V T = In×n where I is Identity matrix and diag(Σ)
= σ where σ = {σ1, σ2, ...σk} and Σ ∈ Rk×k

SVD provides an advantage in decomposing large-scale
datasets into low-dimensional factors, thus allowing com-

ar
X

iv
:2

20
8.

08
41

0v
1

 [
cs

.D
C

]
 1

7
A

ug
 2

02
2

Algorithm 2 SVD 1D(X ,ε)
Require: X ∈ Rm×n

+ and a scalar ε.
1: m,n = shape(X)
2: k = min(m,n)
3: x ≈ N(0, 1) where x, 0, 1 ∈ Rk

+ . Sample x from a multivariate normal
distribution of mean 0 and variance 1

4: x = x
||x|| . Normalize x

5: set v0 = x
6: if m > n then
7: B=XT@X . @ is matrix multiplication operator
8: else
9: B=X@XT

10: while true do
11: v1 = B@v0
12: v1 = v1

||v1||
. ||.|| represents l2 norm

13: if |v0@v1| ≥ 1− ε then . |.| is modulus operator
14: return v1
15: v0=v1

pressed representations. As computing power has increased
with the introduction of modern GPUs and TPUs, SVD (along
with many other ML frameworks) has seen significant accel-
eration on this hardware. However, the ever-growing volume
of data produced by social networks, medical applications,
and experimental simulations has led to SVD decomposition
bottlenecks in single computing hardware as the data does not
fit in memory. In addition to these memory constraints, decom-
position of such large-scale datasets requires significant com-
putational resources along with data storage and movement.
Almost every work in the relevant literature aims to solve only
one or two of these challenges where the results do not show
good scalability. This is due to the significant communication
cost associated with data movement across different computing
elements, which often exceeds the computation cost of these
algorithms.

This mandates the need for distributed algorithms with the
additional ability for out-of-memory computation that would
enable performing computation over distributed hardware ef-
ficiently without memory bottleneck while also computing the
singular vectors. In such a design, the data blocks not used in
computation reside on the external disk or outside the memory
of each node’s modern GPU/TPU hardware. Furthermore,
to make an efficient design, there is a need to overlap the
data IO with computation operation to minimize the overall
latency in performing decomposition. In this work, we devise
a novel parallel SVD framework called pyDSVD-GPU, which
combines batching for out-of-memory and tiling for distributed
computation of large-sized sparse/dense datasets while reduc-
ing the communication and data movement cost on CPU/GPU
heterogeneous hardware. The main contributions of this paper
include:

• The first novel distributed algorithm with out-of-memory
support for SVD for sparse and dense matrices on
CPU/GPU hardware.

• The first NCCL Communicator accelerated SVD decom-
position tool in distributed GPUs.

• Custom SVD algorithm for decomposition of extra large,
sparse datasets of sizes up to 128 PB and dense datasets
of size up to 1TB.

II. RELATED WORK

SVD is an integral component of many machine learning
algorithms involving dimensionality reduction, data compres-
sion [3], knowledge graphs [4], and information retrieval
[5]. With the growing volume of data from social networks,
autonomous driving, and simulations, regular SVD algorithms
cannot perform the decomposition over a single processor due
to memory constraints. To address this memory bottleneck,
various out-of-memory algorithms and distributed algorithms
have been devised in either CPU or GPU hardware. [10]
provides an overview of different large-scale SVD frameworks
designed to decompose large-scale datasets. The work in
papers [8], [9], [14], [17] demonstrate the out-of-memory
SVD implementation for CPU hardware whereas papers [6],
[11], [12], [16] demonstrate the implementation for the GPU
hardware. A majority of the existing out-of-memory (OOM)
and distributed implementation of SVD emphasize computing
only the singular values, which is insufficient for applications
such as tensor networks, which need accurate computation
of a substantial number of singular vectors. In addition, a
majority of them can only decompose a matrix of size m×n
when m � n or m � n as the data partitioning is done
along one axis. However, most real-world datasets such as
knowledge graphs tend to have symmetrical matrix shapes,
i.e., m ≈ n, and one can’t apply such distributed/OOM
implementations. Furthermore, most of the OOM and the
distributed implementations exist in the CPU. Still, the data
size becomes a bottleneck given the hardware constraint for
these implementations. Also, the distributed implementations
for GPU reported in [15], [18] do not report the scalability
for very large datasets. Hence it is vital to take advantage of
both the out-of-memory ability combined with the distributed
implementation to decompose matrices of unprecedented sizes
at an accelerated pace on GPU. This approach has recently
been utilized in our distributed out-of-memory non-negative
matrix factorization (NMF) paper [7] for complexity 0 out-
of-memory situations(discussed later). In such distributed out-
of-memory implementation, the distributed axis splits one of
the co-factor matrices. In contrast, the batched axis splits the
other co-factor matrix enabling the decomposition of massive
sparse datasets. Furthermore, our distributed implementation is
optimized with NCCL [1] communicator for accelerated inter
and intra GPU communication. In contrast, CUDA streams
accelerate the data movement between GPU and CPU for out-
of-memory implementation.

III. RATIONALE FOR AN ALGORITHM FOR THE
OUT-OF-MEMORY DISTRIBUTED SVD

The proposed implementation of SVD is for heterogeneous
HPC systems, with the ability to handle OOM scenarios, where
the data is too big to be cached on combined GPU memory. A
serial algorithm for the truncated SVD is given in Algorithm
1, from which we can estimate the memory complexity of
SVD for a given matrix A of size SA (in bytes) to be
SSV D ≈ 4×SA, assuming k << (m,n). Starting counting at
line 6 of Algorithm 1, two buffers of size SA are required for

(a) Problem partition and data locality (b) Parallel batch/tile implementation

Fig. 1: Illustration of the truncated SVD of A in a distributed setting consisting of N = 5 GPUs. Row partition of problem
is illustrated in (a) and data locality is indicated by colored zones, coded with the given legend at the bottom. Green color
(all) indicates a replication of the same data across all GPUs. Vertical solid lines illustrate the segmentation of local A into 4
batches/tiles, and parallel implementation is illustrated in (b).

the copyX = A (∼ 2×SA total), the memory utilization will
peak at line 8 of Algorithm 1, where two additional buffers
of size SA will be required to compute the residual X =
X − U [: l]diag(σ[: l])V [: l]T (totalling ∼ 4 × SA). Note
that when A is sparse, choosing to represent A in a sparse
format, such as Compressed Sparse Row(CSR) or Coordinate
Format(COO), can dramatically reduce the memory required
to store A. This memory reduction can skew the calculation
of SSV D because the resulting co-factors U and V are dense,
and most importantly, the residual X is now dense with the
same shape as A, and now SSV D ≈ 2×SA, where SA is the
size of the dense representation of A.

When performing SVD on GPUs, OOM situations can arise
in various scenarios with different degrees of complexity.
We distinguish three main degrees of complexity for OOM
scenarios. Scenarios of complexity degree 0 concern practical
problems where the input data A and its co-factors U ,

∑∑∑
,

and V can easily be stored on GPU memory, but an explosion
of memory requirement occurs when computing intermediate
results. This is often the case when computing the intermediate
results X = X − UΣV T (line 8 of Algorithm 1), when
A is a large sparse matrix of very low density and the
factors are dense. The matrix X resulting from the operation
becomes dense and very likely impossible to store on GPU.
For instance, if A ∈ R106×106 is a sparse matrix, with density
of δ ≈ 10−3, the size ofA in dense format, in single precision,
is SA ≈ 4TB, however representing A in CSR sparse format
can lower the size of A down to Ss ∼ SA × δ ≈ 4GB,
consequently SSV D ≈ 2× SA ≈ 4TB. Assuming very small
k, A and all co-factors can be stored on GPU, however the
calculation of the residual X from X = X −UΣV T would
still require a whopping ∼ 8000GB of GPU memory (line 9
of Algorithm 1) make this scenario a degree 0 OOM complex
problem. Below we propose a solution to address this bottle-
neck, where we avoid the direct matrix-matrix multiplications
that would result in such a large dense matrix. Instead, we

perform a series of matrix-vector computations to minimize
the overall computation and memory cost.

A higher degree of complexity, degree 1, arises in cases
where matrix A and at most two of its co-factors cannot
be cached on GPU memory; this is typically the case when
dealing with a largeA that is dense or sparse with high density.
Scenarios of complexity degree 2 are the most complex and
consist of practical cases where neither A, nor its co-factors
can be stored on GPU memory. Note that more complexity
can arise in cases where data cannot fit on host RAM memory,
but that still is of degree 2 as the complexity here is measured
with respect to GPU RAM memory. In other words, in degree
0 complex scenarios, all the data can be cached on GPU; in
degree 1 complex scenarios, the data can partially be cached
on GPU, and in degree 2 complex scenarios, none of the data
can be cached on GPU.

The treatment of degree 2 complex scenarios is out of the
scope of this study. We propose tiling and batching techniques
to deal with OOM problems for degree 0 and degree 1. Both
Tiling and batching are block-based computation techniques
that operate the same way; however, in the interest of clarity,
we differentiate the two base on the employed data transfer
pipelines. Tiling takes place on GPU and employs GPU data
transfer pipelines such as global memory to shared memory
data transfer pipelines, while batching takes place between
host (CPU) and device (GPU) and uses the host to device
data transfer pipelines and vice-versa. Optimization of Tiling
techniques relies on GPU architecture and features such as
memory speed, available VRAM, etc. In contrast, the opti-
mization of batching techniques depends more on the speed
of busses connecting host and device, such as PCIe or NV-Link
bus speeds, as well as the number of CUDA streams, which
can be exploited in an asynchronous approach to overlap data
transfer and compute operation to hide data copy latency. We
adopt tiling techniques to deal with problems of complexity
degree 0, and batching technique to handle degree 1 complex

problems. In extreme cases, we will complement batching by
tiling to further reduce memory footprint. Bellow, we discuss
our implementation and design choices.

IV. OUT OF MEMORY ALGORITHM DESIGN FOR LARGE
SPARSE DATASETS

The power method approach to performing truncated SVD
is a popular approach that is based on repeatedly performing
a linear projection on an initial vector until it converges to
the direction of each desired eigenvector. A serial version
of the truncated SVD algorithm is given in Algorithm 1,
which relies on Algorithm 2 for estimating k singular vectors
where each singular vector is estimated one at a time. The
algorithm’s major computational/memory bottlenecks are in
the computation of the Gram matrix (i.e., lines 7 and 9)
in Algorithm 2. In addition, the computation of line 9 in
Algorithm 1 requires the computation of the product of the
SVD factors requiring additional memory. The distributed
realization of the Gram matrix computation is presented in
Algorithm 3. We utilize this distributed gram-based realization
of Algorithm 2 for dense datasets. However, due to the
bottleneck associated with computing the gram of residual
matrix from very large dense cofactors for the sparse dataset,
we avoid this distributed realization for the sparse dataset and
propose a new realization discussed next. We reduce memory
complexity using the analytical derivation below:
From the line 8 of Algorithm 1, we have the following
expression.

X ′ = X −U [: l]diag(σ[: l])V [: l]T

let U = U [: l], V = V [: l] and Σ = diag(σ[: l]).
Then for m > n, we have

B = X ′TX ′ = (X −UΣV T)T (X −UΣV T)

= (XT − V ΣTUT)(X −UΣV T)

= XTX − V ΣTUTX −XTUΣV T + V ΣTUTUΣV T

= XTX − V ΣTUTX −XTUΣV T + V Σ2V T ,
(1)

since UTU = I and ΣΣT = Σ2 as Σ is a diagonal matrix.
Still, Equation 1 is computationally and memory expensive

due to matrix-matrix multiplications and requirement to store
n × n dense matrix. So we avoid the direct computation of
Equation 1, but instead, we multiply the expression with vector
v0 as shown in line 11 of Algorithm 2. So we can represent

v1 = Bv0

= (XTX − V ΣTUTX −XTUΣV T + V Σ2V T)v0

= XTXv0 − V ΣTUTXv0 −XTUΣV Tv0+

V Σ2V Tv0,
(2)

where each product is computed in the right-to-left order.
Similarly, for m < n, we have:

v1 = XXTv0 −UΣTV TXTv0 −XV ΣTUTv0+

UΣ2UTv0.
(3)

Algorithm 3 dist gram(X, nb, N)
Require: X ∈ Rm×n

+ . Require: X distributed across N GPUs where Xij ∈
Rm/N×n if m > n otherwise Xij ∈ Rm×n/N . Locally to each GPU, Xij can
be split into nb batches following a co-linear batching strategy where the batch size is
bs = max(m,n)/(N ∗ nb), or an orthogonal batching strategy where the batch is
bs = min(m,n)/nb.
1: mi, nj = shape(Xij) . Depending upon m > n or m < n, the

GPU partitions m or n yielding index i or j at the first stage and than collinear or
orthogonal batching strategy dictates index at second stage

2: Initialize local array B, SQUEUE, a queue of CUDA-streams of size qs, and tile
size q = min(m,n)/N

3: for j in nb do
4: jo, j1 = j ∗ bs, (j + 1) ∗ bs
5: A = H2D(X[:, j0 : j1]) . H2D stands for copy from host to GPU
6: for i in j + 1 do
7: SQUEUE − > stream . De-queue stream from SQUEUE
8: AT = AT

9: i0, i1 = i ∗ bs, (i+ 1) ∗ bs
10: A = H2D(X[:, i0 : i1])
11: B = AT@A . Compute Gram locally
12: B = Reduce sum(B, root) . Reduce B along the communicator with

root=j for lower diagonal elements and with root=i otherwise
13: stream − > SQUEUE . En-queue stream back into SQUEUE
14: return B

Equations 2 and 3 mean that we significantly reduce mem-
ory complexity by avoiding the direct calculation of the resid-
ual X as well as the calculation of the Gram B = X ′TX ,
and instead computing directly the kth singular vector skipping
lines 6-9 in Algorithm 2. Evaluating the expression in Equa-
tions 2 or 3 right to the left would replace the matrix-matrix
multiplications with a series of matrix-vector multiplications,
thus significantly lowering memory complexities. The newly
devised algorithm’s distributed implementation is presented in
Algorithm 4. This can, however, increase the time complexity
of the degree 1 OOM complex problem due to the need
to batch in each iteration any of the matrices that are not
cached on GPU. While this data movement cost is reasonable
for a sparse dataset, the cost can be a significant bottleneck
for dense datasets due to the considerable data movement
for OOM implementation. Consequently, a design trade-off
between time and memory complexity needs to be assessed
based on the available hardware, i.e., this can be a viable
option with modern GPUs with high-bandwidth SXM/NVLink
interfaces.

V. PYDSVD FOR DISTRIBUTED HETEROGENEOUS
SYSTEMS

A. Implementation of SVD for distributed heterogeneous sys-
tems

The proposed implementation of SVD for distributed hetero-
geneous systems partitions large SVD problems into smaller
distributed problems using strong considerations for data local-
ity, such as avoiding inefficiencies associated with communica-
tion (data transfer) in the distributed system. Additional trade-
offs are considered in OOM scenarios; for instance, to reduce
communication, it is sometimes better to replicate data over
the distributed grid, while other times, it is acceptable to use
batching/tiling techniques that can increase communication
latency to lower the memory footprint. Bellow, we discuss
the problem partition strategies in subsection(V-B), followed

Algorithm 4 dist Compute v0(X,U ,Σ,V , nb, N)
Require: X ∈ Rm×n

+ , U ∈ Rm×k
+ ,V ∈ Rm×k

+ and Σ ∈ Rk×k
+

Require: X distributed across N GPUs where Xij ∈ R
m
N
× n

nb
+ if m > n otherwise

Xij ∈ R
m
nb
× n

N . If m > n, then U is distributed across N GPUs where Ui ∈
R

m
N
×k

+ while V and Σ are the same across every GPU where V is batched such that

Vj ∈ R
n
nb
×k

+ . Similarly, if m < n, then V is distributed across N GPUs where

Vi ∈ R
n
N
×k

+ while U and Σ are the same across every GPU where U is batched

such that Ui ∈ R
m
nb
×k

+

1: if m >= n then
2: I = m/N and b = n/nb

3: (Xv0)ij = Xij@(v0)j . Multiply a batch of X of size I × b with a
batch of v0 of size b× 1 so that a batch of Xv0 is of size I for nb batches.

4: (Xv0)i =
∑b

j=1(Xv0)ij . Reduction along batches so that (Xv0)i is of
size I

5: (XTXv0)i,j = XT
ij@(Xv0)i . (XTXv0)i,j is of size b× 1 for nb

batches for N GPUS.
6: (XTXv0)j =

∑N
i=1(X

TXv0)i,j . All reduce sum along the GPUs i.e.
i axis such that (XTXv0)j is of size b× 1 for nb batches along each GPU.

7: (UTXv0)i = UT
i @(Xv0)i . (UTXv0)i is of size k × 1

8: UTXv0 =
∑N

i=1(U
TXv0)i . All reduce sum along the GPUs so that

UTXv0 is of size k × 1 and same for all GPUs
9: ΣTUTXv0 = ΣT@UTXv0 . ΣTUTXv0 is of size k × 1

10: (V ΣTUTXv0)j = Vj@ΣTUTXv0 . V ΣTUTXv0 is of size
b× 1 for nb batches.

11: (V T v0)j = Vj@(v0)j . Multiply a batch of V T of size k × b with a
batch of v0 of size b× 1 so that a batch of V T v0 is of size k for nb batches.

12: V T v0 =
∑b

j=1(V
T v0)j . Reduction along batches so that V T v0 is of

size b, which is the same for every GPU.
13: ΣV T v0 = Σ@V T v0 . ΣV T v0 is of size k × 1
14: (UΣV T v0)i = Ui@ΣV T v0 . (UΣV T v0)i is of size I × 1
15: (XTUΣV T v0)ij = XT

ij@(UΣV T v0)i . (XTUΣV T v0)ij is of
size b× 1 for nb batches different values on each GPU.

16: (XTUΣV T v0)j =
∑N

i=1(X
TUΣV T v0)ij . (XTUΣV T v0)j is

of size b× 1 for nb batches same values on each GPU.
17: ΣTV T v0 = Σ@ΣV T v0 . ΣTV T v0 is of size k × 1
18: (XTUΣV T v0)j = Vj@ΣTV T v0 . (V ΣTV T v0)j is of size b× 1

for nb batches.
19: (v1)j = (XTXv0)j - (V ΣTUTXv0)j - (XTUΣV T v0)j +

(XTUΣV T v0)j . Using 6,10,16 and 18, compute (v1)j for nb batches
20: return (v1)j

by a discussion of our tiling and batching approaches in
subsection(V-C).

B. Partition of computational work on the distributed HPC
system

Our implementation considers two one-dimensional data
partition strategies based on the shape of matrix A (m × n).
A column (vertical) partition, CSVD employed when n > m,
and a row (horizontal) partition, HSVD, used otherwise.

Assuming a distributed system with N GPUs, where each
GPU is indexed by its global rank gID. In the RSVD approach
illustrated in Figure 1a, the ith GPU with gID = i will work
on array partitions A[i0 : i1, :], U [i0 : i1, :], Σ, and V , where
i0 = i×I , i1 = (i+1)×I , and I = m/N (partition size). Each
GPU gets a full copy of Σ and V (Σ and V are replicated)
and a unique partition of A and U . This translates into a
segmentation of arrays A and U on global memory, as we
illustrate for the case N = 5 in Figure 1a. The colored zones
indicate local partitions of A on each GPU in global memory
(data locality), and consequently help conceptualize communi-
cation requirements whenever information is exchanged from
one zone to another.

(a) Gram B = ATA (b) Distributed B

(c) B computation task list
(d) B computation task
scheduling

Fig. 2: Illustration of distributed Gram product B = ATA in
(a) for A distributed across 5 GPUs, color-coded with same
colors shown in the legend of Figure 1a. Vertical solid lines
illustrate the segmentation of local A into 4 batches and a
possible distributed partition of B (when B is too big) across
different GPUs in (b). Chosen task organization for computing
B is shown in (c) and the corresponding asynchronous task
scheduling for different queue sizes is shown in (d).

C. Out-of-memory implementation

In out-of-memory situations where the available GPU mem-
ory SG is insufficient (SG < SSV D), light arrays are cached on
GPU memory, and heavier arrays are kept on host memory. We
further split the local blocks of data into smaller batches/tiles
in a way that is either collinear to the direction of the
larger dimension A, i.e., m in RSVD where m > n, or
in a way that is orthogonal to the direction of m. In the
former method, we talk about adopting a collinear batch-
ing/tiling technique; in the latter, we talk about adopting an
orthogonal batching/tiling technique. To illustrate, let bs be
a batch size control parameter, and let’s assume we have a
RSV D (CSV D) partition scenario. The number batches in
an orthogonal batching technique is then given by nB = n/bs
(nB = m/bs), andU [I, :] (V [:, J]) is cached on GPU memory
whereas, heavier arrays A[I, b0 : b1] (A[b0 : b1, J]) and
V [:, b0 : b1] (U [b0 : b1, :]) are batched to their respective
GPUs as needed, such that for the bth batch, b0 = b × bs
and b1 = (b + 1) × bs. Cartoons in Figure 1b illustrate the
orthogonal tiling strategy of a RSV D partition of A among 5
GPUS. Data locality is indicated by colored zones, coded with
the legend at the bottom. V and Σ are replicated on all GPUs,
as indicated by green color. Vertical solid lines illustrate the
segmentation of local data into batches/tiles, as is the case
for A and V . Note that these scenarios assume a problem of
OOM complexity of degree 0 because all data blocks are on
GPU memory. In degree 1 A and V would have been on host

RAM memory.
Figure 2 and Algorithm 3 highlights the important aspects

of computing the Gram product B = ATA, in a distributed
setting, and possibly for OOM scenarios. In this illustration,
the distributed HPC system has 5 GPUs among which A is
distributed (A may or may not be cached on GPU), data lo-
cality is color coded same as in subsection (V-B), and vertical
white lines delineates batch/tile boundaries. The distributed
and batched/tilled Gram product B = ATA is illustrated in
Figure 2a, and the resulting distributed matrix B is illustrated
in Figure 2b. The distributed matrix B is here of size n×n. It
may not be possible to replicate on the different GPUs in OOM
scenarios, in which case B can be distributed as indicated
by the colored rectangles in Figure 2b, showing a possible
distribution of B among the five different GPUs. Note that the
white and colored lines do not overlap because the number of
batches nb is not divisible by the number of GPU N . B can
be computed using nT = nb× nb = 4× 4 = 16 independent
tasks, each with an independent results Bij of shape bs × bs
represented by the grey squares forming B. In degree 1
complex problem, each task Tij involves a H2D(Ai, Aj) of
the local batches Ai and Aj followed by the computation
of AT

i , then Bij = AT
i × Aj and subsequently, the copy

D2H(Bij) back to the host if B is not cached on device. Each
Task can be queued to a non-default CUDA stream Stmij

as the tasks are independent, for an asynchronous calculation
of B. Controlling the queue size qs allows controlling the
number of concurrent tasks running on each GPU, which
in turn allows controlling the GPU memory utilization since
we can also control the batch size bs. Further, note that B
can be computed with nrT = 10 < nT fewer tasks if we
were to reuse data already uploaded to the GPU: The lower
triangular part of B is symmetric to the upper triangular part
by transposition. Consequently each task Tij computing non-
diagonal Bij can save an extra H2D(Aj , Ai), and D2H(Bji)
by computing the symmetricalBji = [AT

i ×Aj]
T = AT

j ×Ai,
which is then sent to the GPUs responsible for storing it.
Figure 2c illustrates the reduced number of tasks needed
to compute distributed B ordered in colored and numbered
circles, overlaying the respective data segment Bij they are
responsible for. Each off-diagonal task will is also responsible
for computing the symmetrical Bji not overlaid in the figure.
A side effect of using a reduced number of tasks is that tasks
now have different execution times; off-diagonal Tasks will
run much longer, and in Figure 2d we illustrate (not to scale)
the task scheduling for various queue sizes. Each queue has as
many CUDA streams as its size qs, which are ordered along
the vertical axis, and the horizontal axis represents execution
time. This shows how using CUDA streams helps hide latency
by overlapping compute and data copy, as we can see larger
queues with more streams execute in a shorter time. Finally,
there is an All-reduce communication (AR) between tasks of
the same number on the different GPUs to sum the local Bij

or Bij results and to obtain the global results. All (AR) are
handled with optimized and low latency NVIDIA communi-
cation collectives Library (NCCL) base communicators. The

advantage of using NCCL over MPI is discussed in detail by
Awan [1].

In the sparse case, where the product of dense factors U ,
V , and Σ is a significant memory bottleneck even for an out-
of-memory implementation, we avoid such computation by
performing all the computation at the final stage as detailed in
SectionIV, which reduces to a series of matrix-vector operation
instead of a matrix-matrix operation, which is efficient both
computation as well as memory wise. Although pushing the
computation at the later stage would require more D2H and
H2D communications, these communications are smaller in
size in the sparse case while enabling the decomposition of
huge sparse matrices. The algorithm is presented in Algo-
rithm 4.

D. Hardware and computing environment

Benchmark tests were performed on Chicoma, a LANL
internal HPC cluster composed of 118 compute nodes, with
2 AMD EPYC 7713 Processors and 4 NVIDIA Ampere
A100 GPUs each. The AMD EPYC 7713 CPUs have 64
cores peaking at 3.67 GHz and 256 GB RAM memory.
Each of the four NVIDIA A100 GPUs in each node pro-
vides a theoretical double-precision arithmetic capability of
approximately 19.5 teraflops with 40GB VRAM memory. The
nodes are networked with HPE/Cray slingshot 10 interconnect
with 100Gbit/s bandwidth. Chicoma runs Shasta 1.4 OS and
SLURM Job manager.

VI. BENCHMARKS AND RESULTS

A. Scaling benchmarks

20 21 22 23 24 25

Number of Nodes

24

25

26

Ti
m

e(
s)

Strong
Weak

(a)

20 21 22 23 24 25

Number of Nodes(4 GPUs/Node)

28
Ti

m
e(

s)

Strong
Weak

(b)

Fig. 3: SVD Scaling results for dense A in (a), and sparse A
in (b). Strong scaling results shown with blue solid line, and
weak scaling results with brown dashed line.

The first set of benchmark experiments was performed
to assess the proposed implementation’s strong and weak
scaling characteristics on a distributed heterogeneous sys-
tem. To this end, we used a dense matrix A of shape
(m,n) = [262144, 32768] and a sparse matrix of shape
(m,n) = [33554432, 33554432] per node. The former had
a size SA = 32GB in single precision, and the latter a size
SA = 4PB. For the strong scaling experiment in both sparse
and dense datasets, the largest data that fits in the GPU mem-
ory of a node was selected. The sparse matrix was randomly
generated with a density δ ≈ 10−6 and stored in a sparse

Compressed Sparse Row (CSR) format with size Ss ≈ 4GB.
For the strong scaling, the data shape per Nn node is given
as (m/Nn, n), whereas for the weak scaling, each node has
the same data shape of (m,n). The scaling experiments were
performed for various node counts Nn = [1,2,4,8,16,32], where
each node has 4 GPUs, so the minimum and the maximum
number of GPUs utilized were N = 4 and N = 128,
respectively. The largest data size for weak scaling in dense
scenario is 32× 32GB = 1TB for 32 nodes whereas for the
sparse scenario is 32×4PB = 128 PB with compressed size
of 32 × 4 = 128 GB. The truncated SVD was evaluated for
k = 32, and both batch size and queue size were set to 1
making these implementations purely distributed without out
of memory feature. Early loop termination in Algorithm 2(line
10-15) due to convergence is avoided by disabling convergence
criterion at lines (13-14) of Algorithm 2. When A is dense,
the distributed Gram is directly computed using Algorithm 3,
and when A is sparse, Algorithm 4 is used to avoid computing
the distributed Gram directly.

Strong and weak scaling benchmark results for dense A
are shown in the graph of total execution time vs. number of
nodes in Figure(3a). Similarly, the strong and weak scaling
benchmark results for sparse A are shown in Figure(3b).
Weak scaling results (brown dashed line) for dense and sparse
A indicate good scaling maintained up to a node count of
Nn ≈ 8. The performance drop at higher node counts typically
indicates latency due to communication becoming increasingly
significant at higher node counts. Further, weak and strong
scaling results obtained for dense A appear to be better
than those obtained with sparse A. This is to be expected
as Algorithm 3 computes the Gram matrix just once and
reuses it in every iteration at line 11 of Algorithm 2. On the
other hand, by avoiding computing ATA with Algorithm 4,
communication takes place when performing the two separate
All-reduce-sum operations at lines 6 and 8 of Algorithm 4
aggregate with each iteration. Also, note that additional latency
resulting from having to batch V In OOM degree 1 scenarios
will affect the performance of the Algorithm 4.

B. Out of Memory benchmarks

Next, we assess the effectiveness of the proposed batching
technique for OOM scenarios and the use of the CUDA stream
queues to reduce communication in Algorithm 4. To this end,
the proposed implementation using Algorithm 4 is tested in an
OOM scenario of degree 1, where the same sparse matrix used
in the benchmarks above is decomposed up to k = 32 with
the number of iterations in Algorithm 2(line 10-15) fixed to
100. Light arrays A, U , Σ are cached on GPU memory, and
heavy co-factor V is stored on the host. This means that during
block-operations, A residing on GPU will be tiled, while V
residing on the host is batched to GPU. For this experiment,
the number of nodes is fixed to Nn = 2 to ensure that the
algorithm is distributed with inter-node communication taking
place and being accounted for in performance evaluation. The
execution time of the SVD algorithm and the corresponding
peak memory utilization per GPU as a function of number

21 22 23 24

Number of Batches

22

23

24

Pe
ak

 M
em

or
y(

G
B

)

qSize = 1
qSize = 2
qSize = 4
qSize = 8

(a)

21 22 23 24

Number of Batches

211

Ti
m

e(
s)

qSize = 1
qSize = 2
qSize = 4
qSize = 8

(b)

Fig. 4: (a) OOM SVD peak memory vs number of batches
for different queue sizes and (b) OOM SVD time vs number
of batches for different queue sizes . The two figures dictate
the selection of the right batch size and queue size for faster
decomposition, given a peak memory requirement for given
data size.

of batches (nb = [2, 4, 8, 16]) for various queue sizes (qs =
[1, 2, 4, 8]) are reported in Figure(4).

In Figure(4a), we show Peak memory utilization vs number
of batches for various queue sizes. First, we note that results
are reported such that the queue size is at most equal to
the number of batches; this is to avoid unnecessary buffer
reservation when qs > nb, which will skew the peak memory
utilization. Second, we note a decrease in Peak memory
utilization with an increasing number of batches for any fixed
queue size, which is expected as increasing the number of
batches results in processing smaller batches. Third, we also
observe an increased peak memory utilization with increased
queue size for any fixed batch number, which we can under-
stand as the aggregated peak memory utilization caused by
the different batches. The takeaway is that when an SVD is
not possible with given batch size, increasing the number of
batches can lower the peak memory per GPU down to levels
where SVD becomes feasible. One thing to keep in mind is
that ultimately all the curves in Figure(4a) will asymptotically
decay to a minimum equal to the cumulative sum of the sizes
of all arrays cached on GPU. In Figure(4b) we show SVD
time vs number of batches for various queue sizes. First, we
see that it is, in all cases, a good idea to choose a queue
size qs > 1 if one wants to speed up the SVD calculation.
This is explained by using large stream queue sizes makes
more streams available to overlap memory copies, all-reduce
communications, and compute concurrently. It is, however,
not the case that more streams will always make this process
better, as we can see it not being the case when nb = 8,
where the SVD time when qs = 2 is lower than when qs = 4
which in turn is lower than when qs = 8. This is explained
by the fact that CUDA core counts are finite and that some
streams will block and wait when all cores are busy processing
other streams, causing load balancing delays. Consequently, it
is important to adequately try to fine-tune qs and nb for optimal
performance.

VII. CONCLUSION

We have presented a distributed out-of-memory implemen-
tation of the truncated SVD based on the power method. The
potential memory utilization hot spots of the original power
method were discussed and found to occur while computing
the residual or the Gram matrix. We addressed this concern
analytically, redesigning the algorithm by directly updating
the singular vectors, eliminating the need to compute both
the residual and the gram matrices. Strong and weak scaling
results were presented to demonstrate the scalability of the
modified algorithm relative to the original implementation.
Benchmark results were shown for the case of a sparse matrix
of size 128 PB with density 10−6 compressed to a CSR
format of size 128 GB, decomposed to a rank k=32. The
efficacy of batching employed in the proposed implementation
to manage peak memory utilization and use of CUDA streams
to hide data transfer and communication latency were shown
and discussed through the benchmark results.

VIII. ACKNOWLEDGEMENTS

This research was funded by Laboratory Directed Research
and Development (20190020DR), and resources were provided
by the Los Alamos National Laboratory Institutional Comput-
ing Program, supported by the U.S. Department of Energy
National Nuclear Security Administration under Contract No.
89233218CNA000001. The work of Hristo Djidjev has been
also partially supported by Grant No. BG05M2OP001-1.001-
0003, financed by the Science and Education for Smart Growth
Operational Program (2014-2020) and co-financed by the
European Union through the European structural and Invest-
ment funds and by Grant No KP-06-DB-11 of the Bulgarian
National Science Fund.

REFERENCES

[1] Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and
Dhabaleswar K Panda. Efficient large message broadcast using NCCL
and CUDA-aware MPI for deep learning. In Proceedings of the 23rd
European MPI Users’ Group Meeting, pages 15–22, 2016.

[2] AH Bentbib and A Kanber. Block power method for svd decomposition.
Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matemat-
ica, 23(2):45–58, 2015.

[3] Manish Bhattarai, Gopinath Chennupati, Erik Skau, Raviteja Vangara,
Hristo Djidjev, and Boian S Alexandrov. Distributed non-negative
tensor train decomposition. In 2020 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–10. IEEE, 2020.

[4] Manish Bhattarai, Namita Kharat, Erik Skau, Benjamin Nebgen, Hristo
Djidjev, Sanjay Rajopadhye, James P Smith, and Boian Alexandrov.
Distributed non-negative rescal with automatic model selection for
exascale data. arXiv preprint arXiv:2202.09512, 2022.

[5] Manish Bhattarai, Ben Nebgen, Erik Skau, Maksim Eren, Gopinath
Chennupati, Raviteja Vangara, Hristo Djidjev, John Patchett, Jim Ahrens,
and Boian ALexandrov. pydnmfk: Python distributed non negative
matrix factorization, 2021.

[6] Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, and David E
Keyes. Batched qr and svd algorithms on gpus with applications in
hierarchical matrix compression. Parallel Computing, 74:19–33, 2018.

[7] Ismael Boureima, Manish Bhattarai, Maksim Eren, Erik Skau, Philip
Romero, Stephan Eidenbenz, and Boian Alexandrov. Distributed out-
of-memory nmf of dense and sparse data on cpu/gpu architectures
with automatic model selection for exascale data. arXiv preprint
arXiv:2202.09518, 2022.

[8] Hector Carrillo-Cabada, Erik Skau, Gopinath Chennupati, Boian Alexan-
drov, and Hristo Djidjev. An out of memory tsvd for big-data factoriza-
tion. IEEE Access, 8:107749–107759, 2020.

[9] Jack Dongarra. A framework for out of memory svd algorithms. In
High Performance Computing: 32nd International Conference, ISC High
Performance 2017, Frankfurt, Germany, June 18–22, 2017, Proceedings,
volume 10266, page 158. Springer, 2017.

[10] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr
Luszczek, Stanimire Tomov, and Ichitaro Yamazaki. The singular value
decomposition: Anatomy of optimizing an algorithm for extreme scale.
SIAM review, 60(4):808–865, 2018.

[11] Mark Gates, Stanimire Tomov, and Jack Dongarra. Accelerating the
svd two stage bidiagonal reduction and divide and conquer using gpus.
Parallel Computing, 74:3–18, 2018.

[12] Azzam Haidar, Khairul Kabir, Diana Fayad, Stanimire Tomov, and Jack
Dongarra. Out of memory svd solver for big data. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2017.

[13] Per Christian Hansen. Truncated singular value decomposition solutions
to discrete ill-posed problems with ill-determined numerical rank. SIAM
Journal on Scientific and Statistical Computing, 11(3):503–518, 1990.

[14] Khairul Kabir, Azzam Haidar, Stanimire Tomov, Aurelien Bouteiller,
and Jack Dongarra. A framework for out of memory svd algorithms.
In International Supercomputing Conference, pages 158–178. Springer,
2017.

[15] Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-
efficient distributed svd via local power iterations. In International
Conference on Machine Learning, pages 6504–6514. PMLR, 2021.

[16] Yuechao Lu, Ichitaro Yamazaki, Fumihiko Ino, Yasuyuki Matsushita,
Stanimire Tomov, and Jack Dongarra. Reducing the amount of out-of-
core data access for gpu-accelerated randomized svd. Concurrency and
Computation: Practice and Experience, 32(19):e5754, 2020.

[17] Eran Rabani and Sivan Toledo. Out-of-core svd and qr decompositions.
In PPSC, 2001.

[18] Stefano Zampini, Wajih Boukaram, George Turkiyyah, Omar Knio, and
David Keyes. H2opus: a distributed-memory multi-gpu software package
for non-local operators. Advances in Computational Mathematics,
48(3):1–32, 2022.

	I Introduction
	II Related work
	III Rationale for an algorithm for the Out-of-memory distributed SVD
	IV Out of Memory algorithm design for large sparse datasets
	V pyDSVD for distributed heterogeneous systems
	V-A Implementation of SVD for distributed heterogeneous systems
	V-B Partition of computational work on the distributed HPC system
	V-C Out-of-memory implementation
	V-D Hardware and computing environment

	VI Benchmarks and Results
	VI-A Scaling benchmarks
	VI-B Out of Memory benchmarks

	VII Conclusion
	VIII Acknowledgements
	References

