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Abstract—Internet analysis is a major challenge due to the
volume and rate of network traffic. In lieu of analyzing traffic
as raw packets, network analysts often rely on compressed
network flows (netflows) that contain the start time, stop time,
source, destination, and number of packets in each direc-
tion. However, many traffic analyses benefit from temporal
aggregation of multiple simultaneous netflows, which can be
computationally challenging. To alleviate this concern, a novel
netflow compression and resampling method has been developed
leveraging GraphBLAS hyperspace traffic matrices that preserve
anonymization while enabling subrange analysis. Standard multi-
temporal spatial analyses are then performed on each subrange
to generate detailed statistical aggregates of the source packets,
source fan-out, unique links, destination fan-in, and destination
packets of each subrange which can then be used for background
modeling and anomaly detection. A simple file format based
on GraphBLAS sparse matrices is developed for storing these
statistical aggregates. This method is scale tested on the MIT
SuperCloud using a 50 trillion packet netflow corpus from
several hundred sites collected over several months. The resulting
compression achieved is significant (<0.1 bit per packet) enabling
extremely large netflow analyses to be stored and transported.
The single node parallel performance is analyzed in terms of both
processors and threads showing that a single node can perform
hundreds of simultaneous analyses at over a million packets/sec
(roughly equivalent to a 10 Gigabit link).

Index Terms—network analyses, compression, streaming
graphs, hypersparse matrices

I. INTRODUCTION

Internet traffic analysis is crucial for billing, provisioning,
forecasting, and security reasons. While analyses of raw pack-
ets was attempted [1], [2], it was broadly accepted that such
analyses have inherent scalability problems that restrict their
deployment to lower speed links. Network Flow (netflow) [3],
[4] is a compressed data format that strikes a balance between
high-fidelity data and scalability. By sampling network traffic
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for a period of time, and aggregating measurements, netflows
provide a balance between scalability and fidelity. Such net-
flows usually contain: Input interface port, IP source address,
IP destination address, Source port number, Destination port
number, Layer 3 protocol field, and Type of service along
with the start and end times of the sampling window. While
netflow-based traffic analysis captures the needs of billing,
provisioning, and forecasting communities, it falls short of
satisfying all the needs the Internet security community.

Network analysis has emerged as important application area
for the protection and improvement of the Internet. These
analyses require a significant amount of network traffic from a
variety of observatories and outposts [5], [6]. Historically, the
data volumes, processing requirements, and privacy concerns
of analyzing a significant fraction of the Internet have been
prohibitive. The North American Internet generates billions of
non-video Internet packets each second [7], [8]. Novel com-
pression, anonymization, and analysis technique are required
to meet these challenges.

The GraphBLAS standard provides significant performance
and compression capabilities which improve the feasibility
of analyzing these volumes of data [9]–[23]. Specifically,
the GraphBLAS is ideally suited for both constructing and
analyzing anonymized hypersparse traffic matrices. Prior work
with the GraphBLAS has demonstrated rates of 75 billion
packets per second (pps) [24], while achieving compressions
of 1 bit per packet [25], and enabling the analysis of the
largest publicly available historical archives with over 40
trillion packets [26]. Analysis of anonymized hypersparse
traffic matrices from a variety of sources has revealed power-
law distributions [27], [28], novel scaling relations [25], [26],
and inspired new models of network traffic [29].

While some raw packet corpora and datasets exist, many
data taps prefer netflow, owing to the compression and scal-
ability it offers. However, many traffic analyses for security
applications benefit from temporal aggregation of multiple
simultaneous netflows into hypersparse traffic matrices, which
can be computationally challenging. To solve this problem a
novel netflow compression and resampling method has been
developed leveraging GraphBLAS hyperspace traffic matrices
that preserves anonymization. Furthermore, standard multi-
temporal spatial analyses are then performed on each subrange
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Fig. 1. Streaming network traffic quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets.

to generate detailed statistical aggregates of the source packets,
source fan-out, unique links, destination fan-in, and destination
packets of each subrange which can be used for background
modeling and anomaly detection. A simple file format based
on GraphBLAS sparse matrices is developed for storing these
statistical aggregates.

The outline of the rest of the paper is as follows. Section II
describes the standard anonymized hierarchical hypersparse
analytics for computing source packets, source fan-out, unique
links, destination fan-in, and destination packets. Next, the
generation of netflow traffic matrices and the novel netflow
time matrix list (TML) format is described. Subsequently, in
Section IV the netflow test data set is summarized along with
the corresponding MIT SuperCloud test hardware. Finally,
Section V captures the compression and performance results;
and Section VI captures conclusions, and directions for further
work.

II. ANONYMIZED HIERARCHICAL HYPERSPARSE
ANALYTICS

Network data must be handled with great care and privacy
is a paramount concern. A primary benefit of constructing
anonymized hypersparse traffic matrices with the GraphBLAS
is the efficient computation of a wide range of network
quantities via matrix mathematics [30]. Figure 1 illustrates
essential quantities found in all streaming dynamic networks.
These quantities are all computable from anonymized traffic
matrices created from the source and destination addresses
found in Internet packet headers.

The network quantities depicted in Figure 1 are computable
from anonymized origin-destination traffic matrices that are
widely used to represent network traffic [32]–[35]. To reduce
statistical fluctuations, the streaming data should be partitioned
such that any chosen time window all data sets have the
same number of valid packets [36]. At a given time t, NV

consecutive valid packets are aggregated from the traffic into
a hypersparse matrix At, where At(i, j) is the number of valid
packets between the source i and destination j. The sum of

TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from traffic matrix At at time t in
both summation and matrix notation. 1 is a column vector of all 1’s, T is the
transpose operation, and | |0 is the zero-norm that sets each nonzero value of
its argument to 1 [31]. These formulas are unaffected by matrix permutations
and will work on anonymized data.

Aggregate Summation Matrix
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets (dmax) maxij At(i, j) max(At)

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Packets from source i

∑
j At(i, j) At1

Max source packets (dmax) maxi
∑

j At(i, j) max(At1)
Source fan-out from i

∑
j |At(i, j)|0 |At|01

Max source fan-out (dmax) maxi
∑

j |At(i, j)|0 max(|At|01)

Unique destinations
∑

j |
∑

i At(i, j)|0 |1TAt|01
Destination packets to j

∑
i At(i, j) 1T|At|0

Max destination packets (dmax) maxj
∑

i At(i, j) max(1T|At|0)
Destination fan-in to j

∑
i |At(i, j)|0 1T At

Max destination fan-in (dmax) maxj
∑

i |At(i, j)|0 max(1T At)

all the entries in At is equal to NV∑
i,j

At(i, j) = NV

Constant packet, variable time samples simplify the statistical
analysis of the heavy-tail distributions commonly found in
network traffic quantities [27], [28], [37]. All the network
quantities depicted in Figure 1 can be readily computed from
At using the formulas listed in Table I. Because matrix
operations are generally invariant to permutation (reordering
of the rows and columns), these quantities can readily be
computed from anonymized data.

The contiguous nature of these data allows the exploration
of a wide range of packet windows from NV = 217 (sub-
second) to NV = 227 (minutes), providing a unique view into
how network quantities depend upon time. These observations
provide new insights into normal network background traffic
that could be used for anomaly detection, AI feature engineer-
ing, polystore index learning, and testing theoretical models of
streaming networks [38]–[40].

Network traffic is dynamic and exhibits varying behavior
on a wide range of time scales. A given packet window
size NV will be sensitive to phenomena on its corresponding
timescale. Determining how network quantities scale with NV

provides insight into the temporal behavior of network traffic.
Efficient computation of network quantities on multiple time
scales can be achieved by hierarchically aggregating data in
different time windows [36]. Figure 2 illustrates a binary
aggregation of different streaming traffic matrices. Computing
each quantity at each hierarchy level eliminates redundant
computations that would be performed if each packet window
was computed separately. Hierarchy also ensures that most
computations are performed on smaller matrices residing in
faster memory. Correlations among the matrices mean that
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Fig. 2. Multi-temporal streaming traffic matrices. Efficient computation of
network quantities on multiple time scales can be achieved by hierarchically
aggregating data in different time windows.

adding two matrices each with NV entries results in a matrix
with fewer than 2NV entries, reducing the relative number of
operations as the matrices grow.

One of the important capabilities of the SuiteSparse Graph-
BLAS library is direct support of hypersparse matrices where
the number of nonzero entries is significantly less than either
dimensions of the matrix. If the packet source and destination
identifiers are drawn from a large numeric range, such as those
used in the Internet protocol, then a hypersparse representation
of At eliminates the need to keep track of additional indices
and can significantly accelerate the computations [24].

It is common to filter the packets down to a valid set
for any particular analysis. Such filters may limit particular
source ranges, destinations ranges, protocols, and time win-
dows. Anonymized data can be analyzed by subranges of
IPs using simple matrix multiplication. For a given subrange
represented by an anonymized hypersparse diagonal matrix
Ar, where Ar(i, i) = 1 implies source/destination i is in the
range, the traffic within the subrange can be computed via:
ArAtAr. Likewise, for additional privacy guarantees that can
be implemented at the edge, the same method can be used to
exclude a range of data from the traffic matrix

At −ArAtAr

In this work, three source and destination subranges are
used corresponding to non-routable traffic, bogon traffic, and
all other traffic (see Figure 3). All network quantities are
computed on the entire traffic matrix and each of the 9 smaller
traffic matrices.

III. NETFLOW TRAFFIC MATRICES

Use of compressed netflow data to generate matrices of
exactly NV packets needs time normalization to align with
the constant packet, variable time matrix sizing approach
described above. With time normalization, the aggregated
netflow records are converted into a series of timestamped
flows that enable the grouping of netflows to build network
matrices with of fixed size. The time intervals associated
with flow entries are normalized into Unix epoch time with
a resolution of seconds. If a netflow record lasts for longer
than one second, an even data transfer rate is assumed, and
the packet counts (pkts) are divided evenly to each second
within the interval.
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Fig. 3. Traffic matrix ranges. Traffic matrices can be divided into subranges
of specific sources and destinations for analysis, which can be essential if
different subranges have different statistical distributions.

For flow records whose number of packets (pkts) do not
divide evenly by the number of 1-second time bins (tbins),
the number of bins that will contain an extra packet extra is
given by

extra = pkts−
(
b pkts
tbins

c × tbins

)
If extra ≤ 2, the extra bins are allocated to the first and

last bin in the interval. Otherwise, the remaining extra bins
are shuffled into the bins between the first and last bin. This
creates an even distribution of flows across the time interval.
All packets at a given time bin are then aggregate into traffic
matrix for that time bin.

The representation of network flow in a matrix coordinate
space opens up the possibility of further compressing netflow.
The Time Compressed Matrices List (TML) format leverages
the matrix coordinate space, and only stores the delta of coor-
dinates between time-adjacent matrices, as show in Figure 4.
Using a canonical ordering of the current coordinate space
(source-destination IP pairings), the deltas can then be used to
reconstruct the original matrix in a lossless fashion.

TML representation of a netflow is a stream of 5-vectors
〈(t0, s0, D0, I0, V0), ..., (tn, sn, Dn, In, Vn)〉 where t0 to tn
are signed 64-bits Unix epoch timestamps; s0 to sn are an
encoded pair of 32-bit signed delete-insert count; D0 to Dn

are the list of deleted coordinates, I0 to In are the list of
inserted coordinates, and V0 to Vn are the list of canonically
ordered coordinates associated with current coordinate set.

IV. TEST DATA AND HARDWARE

The test data set comprises of nearly 100 TB of netflow data
with over 50 trillion packets from many different locations for
a period of several months. The traffic patterns are representa-
tive of a large enterprise environments with bidirectional traffic
at the collection points. The collection points also covered a
range of traffic rates.
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The analysis code was implemented using Python Graph-
BLAS bindings with the pPython parallel library [41]. A
typical run could be launched in a few seconds using the
MIT SuperCloud triples-mode hierarchical launching system
[42]. The launch parameters were [Nnodes Nprocess Nthread],
corresponding to Nnodes nodes, Nprocess Python processes
per node, and Nthread OpenMP threads per process. On each
node, each of the Nprocess processes and their corresponding
Nthread threads were pinned to adjacent cores to minimize
interprocess contention and maximize cache locality for the
GraphBLAS OpenMP threads [43]. Within each Python pro-
cess, the underlying GraphBLAS OpenMP parallelism is used.
At the end of the processing the results were aggregated
using asynchronous file-based messaging [44]. Triples mode
makes it easy to explore horizontal scaling across nodes,
vertical scaling by examining combinations of processes and
threads on a node, and temporal scaling by running on diverse
hardware from different eras.

The computing hardware consists of four different types of
nodes acquired over a decade (see Table II). The nodes are all
multicore x86 compatible with comparable total memory. The
MIT SuperCloud maintains the same modern software across
all nodes, which allows for direct comparison of hardware
performance differences.

V. RESULTS

The use of GraphBLAS to represent network traffic matrices
has provided tremendous compression results [5]. Netflow
representation of raw data provides variable compression re-
sults, depending on the time intervals used for aggregation.
Aggregating one hour of raw traffic into a single netflow
will provide much greater compression than aggregating one

TABLE II
COMPUTER HARDWARE SPECIFICATIONS

MIT SuperCloud maintains a diverse set of hardware running an identical
modern software stack providing an unique platform for comparing perfor-
mance over different eras.

Server
Label

Processor Memory

Era Part Clock Cores Part Clock Size

xeon-p8 2019 Q2 Dual Xeon Platinum 8260 2.4 GHz 48 DDR4 2.93 GHz 192 GB

xeon-g6 2019 Q2 Dual Xeon Gold 6248 2.5 GHz 40 DDR4 2.93 GHz 384 GB

xeon64c 2016 Q2 Xeon Phi 7210 1.3 GHz 64 DDR4 1.20 GHz 192 GB

xeon-e5 2014 Q3 Dual Xeon E5-2683 v3 2.0 GHz 28 DDR4 2.13 GHz 256 GB

minute of raw traffic - with the gain in compression being
offset by the loss in data fidelity. The use of TML format
as described in Section III to represent netflow data provides
additional compression without any further loss in data fidelity.
Figure 5 plots the number of packets per megabyte for different
file formats in the analysis pipeline, with the TML format and
resulting network analyses providing 105x to 107x compres-
sion over the raw packets. For the dataset that was analyzed,
the TML representation of netflow achieved significant (93%)
compression on the 100 TB dataset that was used for analysis.

The benchmarking explores how different numbers of
GraphBLAS processes and threads perform on different mul-
ticore compute nodes. This type of benchmarking is generally
useful in most projects as it allows the determination of the
best combination processing and threads prior to significant
computation. The number of processes and threads used for a
given benchmark is denoted by Nprocess × Nthreads whose
product is equal to total number threads used in the computa-
tion. The GraphBLAS computation described in the previous
section was repeated for two sets of parameters: single-process
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and multi-process. In the single-process case the parameters
tested are

1×1, 1×2, 1×4, 1×8, ...

In the multi-process case the parameters tested are

1×1, 2×1, 4×1, 8×1, ...

Figure 6 shows the single node performance using different
numbers of processes and threads for the different servers
listed in Table II. In all cases, the multi-process scaling
provided greater aggregate performance and the single-process
scaling provided a maximum of a 4x speedup over 1×1 case.

VI. CONCLUSIONS AND FUTURE WORK

Analysis of traffic on the Internet has long been a major
challenge due to the volume and rate of network traffic. Recent
advances, combining the use of hypersparse matrix represen-
tation of network traffic coupled with GraphBLAS is proving
to be a key enabler of privacy-preserving network analytics.
The effort documented in this paper further advances the field
by demonstrating the ability to use compressed network flows
(netflows) in lieu of raw packet streams to conduct similar
analytics. Further, it introduces a novel netflow compression
and resampling method that preserves anonymization while
enabling subrange analysis. This method is scale tested on
the MIT SuperCloud using a 50 trillion packet netflow corpus
from several hundred sites collected over several months.
The resulting compression achieved is significant (<0.1 bit
per packet) enabling extremely large netflow analyses to be
stored and transported. The single node parallel performance
is analyzed in terms of both processors and threads showing
that a single node can perform hundreds of simultaneous
analyses at over a million packets/sec (roughly equivalent to
a 10 Gigabit link).

The success in the use of netflow in place of raw packets to
conduct analyses opens up a number of potential pathways for

future work; amongst which are cross-correlation of netflow
data from different observatories and outposts, comparing
gain/loss for using different netflow aggregation windows,
and exploring the gain/loss using expected utility theory and
prospect theory. Further analysis needs to be done to calibrate
AI algorithms for classification of background traffic to use
netflow.
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[12] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 643–652,
2017.

[13] J. Kepner, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, and H. Tufo,
“Enabling massive deep neural networks with the graphblas,” in 2017
IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–10, IEEE, 2017.
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