
ar
X

iv
:2

30
8.

08
00

2v
2

 [
cs

.D
C

]
 1

7
A

ug
 2

02
3

Quantifying OpenMP:

Statistical Insights into Usage and Adoption

Tal Kadosh1,2, Niranjan Hasabnis3, Timothy Mattson3, Yuval Pinter1 and Gal Oren4, 5

1Department of Computer Science, Ben-Gurion University, Israel
2Israel Atomic Energy Commission

3Intel Labs, United States
4Scientific Computing Center, Nuclear Research Center – Negev, Israel

5Department of Computer Science, Technion – Israel Institute of Technology, Israel

talkad@post.bgu.ac.il, niranjan.hasabnis@intel.com,

timothy.g.mattson@intel.com, pintery@bgu.ac.il, galoren@cs.technion.ac.il

Abstract—In high-performance computing (HPC), the demand
for efficient parallel programming models has grown dramati-
cally since the end of Dennard Scaling and the subsequent move
to multi-core CPUs. OpenMP stands out as a popular choice
due to its simplicity and portability, offering a directive-driven
approach for shared-memory parallel programming. Despite its
wide adoption, however, there is a lack of comprehensive data
on the actual usage of OpenMP constructs, hindering unbiased
insights into its popularity and evolution.
This paper presents a statistical analysis of OpenMP usage
and adoption trends based on a novel and extensive database,
HPCORPUS, compiled from GitHub repositories containing C,
C++, and Fortran code. The results reveal that OpenMP is the
dominant parallel programming model, accounting for 45% of
all analyzed parallel APIs. Furthermore, it has demonstrated
steady and continuous growth in popularity over the past decade.
Analyzing specific OpenMP constructs, the study provides in-
depth insights into their usage patterns and preferences across
the three languages. Notably, we found that while OpenMP has
a strong “common core” of constructs in common usage (while
the rest of the API is less used), there are new adoption trends
as well, such as simd and target directives for accelerated
computing and task for irregular parallelism.
Overall, this study sheds light on OpenMP’s significance in
HPC applications and provides valuable data for researchers
and practitioners. It showcases OpenMP’s versatility, evolving
adoption, and relevance in contemporary parallel programming,
underlining its continued role in HPC applications and beyond.
These statistical insights are essential for making informed de-
cisions about parallelization strategies and provide a foundation
for further advancements in parallel programming models and
techniques.
HPCORPUS, as well as the analysis
scripts and raw results, are available at:
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus

Index Terms—HPCorpus, BigQuery, GitHub, C, C++, Fortran,
OpenMP, MPI, OpenCL, CUDA, TBB, Cilk, OpenACC, SYCL

I. INTRODUCTION

With the end of Dennard Scaling [1], multicore CPUs sharing

a cache-coherent address space are ubiquitous. To exploit the

parallelism available from multicore systems, programmers

use multithreaded programming models. Programming models

that support multithreaded execution include pThreads [2] for

low-level and OS-level operations, TBB [3] or Cilk [4] for

task-level parallelism in C++, and OpenMP [5] for directive-

driven parallelism.

Despite the popularity of multithreaded models, little empirical

data is available to assess the actual usage of the various

programming constructs from these models. While anecdotal

data and feedback from user-support teams at supercomputing

centers exist [6], a large-scale analysis has yet to be conducted.

In this paper, we perform a statistical analysis of repositories

from GitHub to study the usage of parallel programming

models. Our analysis reveals that OpenMP is the dominant

programming model for writing multithreaded applications.

We also go inside applications to gather usage data on specific

OpenMP constructs. Finally, we consider the evolution of

OpenMP and the adoption of newly included constructs as

OpenMP Specifications are released.

II. OPENMP FUNDAMENTALS VS. OTHER PARALLEL

PROGRAMMING APIS

In this section, we provide a brief overview of OpenMP

and other parallel programming APIs. OpenMP [7] defines

a simple and portable approach to shared-memory parallel

programming. OpenMP makes parallel programming more

accessible by offering a directive-based approach, where

directives inserted into the code guide the compiler as it

generates parallel code. These directives provide high-level

abstractions to specify parts of a code to execute in parallel.

OpenMP uses the fork-join model of parallelism, where a

single thread (the PRIMARY thread) on encountering a parallel

directive forks a team of threads, each of which executes

the code in a parallel region independently. Synchronization

constructs, such as barriers, coordinate multithreaded exe-

cution, while shared variables facilitate data sharing among

threads. OpenMP emphasizes portability with a standardized

API that can be used across different platforms, hardware, and

programming languages. These features make it easier to write

parallel code that can be compiled and executed on systems

supporting OpenMP.

http://arxiv.org/abs/2308.08002v2
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus

1 WITH selected_repos as (

2 SELECT f.id, f.repo_name as repo_name, f.ref as

ref, f.path as path→֒

3 FROM `bigquery-public-data.github_repos .files` as

f→֒

4 JOIN `bigquery-public-data.github_repos .licenses`

as l on l.repo_name = f.repo_name→֒

5),

6 deduped_files as (

7 SELECT f.id, MIN(f.repo_name) as repo_name,

MIN(f.ref) as ref, MIN(f.path) as path→֒

8 FROM selected_repos as f

9 GROUP BY f.id

10)

11 SELECT

12 f.repo_name, f.ref, f.path, c.copies, c.content,

13 FROM deduped_files as f

14 JOIN `bigquery-public-data.github_repos .contents`

as c on f.id = c.id→֒

15 WHERE

16 NOT c.binary

17 AND (f.path like '%.c' OR f.path like '%.cpp' OR

f.path like '%.f' OR f.path like '%.f90' OR

f.path like '%.f95')

→֒

→֒

Fig. 1. HPCORPUS data acquisition from Google’s BigQuery.

OpenMP differs from other parallel APIs in several ways.

Unlike Cilk and TBB, which focus on task-based paral-

lelism, OpenMP is more general and addresses loop-level

parallelism, task-parallelism, and general, multi-threaded par-

allelism through explicit thread-level programming. OpenMP

differs from MPI [8], which is designed for distributed-

memory parallelism by targeting shared-memory parallelism

within a single program. Compared to CUDA [9] and

OpenCL [10], which are geared towards throughput-optimized

accelerators (and in the case of CUDA, a specific ven-

dor), OpenMP provides a portable solution that works across

different platforms, including general-purpose CPUs, accel-

erators [11], GPUs [12]–[14], and FPGAs [15]. Addition-

ally, OpenMP’s compatibility with multiple programming lan-

guages (specifically C, C++, Fortran, and partially Python [16],

[17]) sets it apart from other GPU programming languages

such as SYCL [18] (C++ only) and OpenCL (C and C++).

OpenACC [19] is similar to OpenMP in its directive-based

approach, but it specifically targets GPUs only. OpenACC

emphasizes descriptive semantics, meaning constructs describe

what should be accomplished, not how it is done. OpenMP,

on the other hand, emphasizes prescriptive semantics, which

allows the programmer to control how code maps onto a

system explicitly. With the loop-construct added in OpenMP

version 5.0, however, OpenMP is moving to include descrip-

tive semantics, thereby supporting OpenACC’s approach for

programmers who prefer yielding more control to the compiler.

III. HPCORPUS: A NOVEL DATABASE OF HPC CODE

FROM GITHUB

To study the usage of parallel programming APIs, we compiled

a novel database called HPCORPUS. It collects C, C++, and

Fortran codes from every publicly visible GitHub repository

that was accessible via BigQuery with the suffixes c, cpp, f,

Repos (#) Size (GB) Files (#) Functions (#)

C 144,522 46.23 4,552,736 87,817,591

C++ 150,481 26.16 4,735,196 68,233,984

Fortran 3,683 0.68 138,552 359,272

TABLE I
TOTAL NUMBER OF REPOSITORIES IN HPCORPUS BY LANGUAGE.
NOTE: REPOSITORIES MAY USE MULTIPLE LANGUAGES, AND 5.5K

REPOSITORIES IN HPCORPUS CONTAINED NO CODE.

f90, and f95 (Figure 1, line 17). These languages are widely

recognized as the dominant languages in HPC [20]–[28]. In the

data acquisition process, we followed [29], [30] but selected

the C, C++, and Fortran files within those projects in an

unrestricted way. We structured HPCORPUS with a JSON

format using the script presented in Figure 1.1

A breakdown of the repository statistics is presented in Table I.

Fortran has far less data than the C and C++ sub-corpora. The

C sub-corpus is almost twice as large as the C++ sub-corpus.

HPCORPUS aims to achieve two main objectives: first, to

facilitate statistical analyses on the popularity and usage of

various parallel programming APIs, and second, to serve as

a robust training resource for the next generation of Large

Language Models (LLMs) [32] designed to automate complex

high-performance tasks [33]. Of these tasks, parallelization is

most notable [34]–[38], since current rule-based compilers for

such purposes are not optimal or robust [39], [40]. By offering

a diverse and vast array of code snippets, HPCORPUS has the

potential to significantly enhance research and development

efforts in advanced AI models that address intricate paralleliza-

tion challenges.

IV. ANALYSIS

We divide our analysis into two parts. First, we compare the

popularity of OpenMP as a function of total usage and usage

over time relative to other parallel programming APIs. Next,

we present specific statistics about OpenMP constructs and the

extent to which users adopt them.

A. OpenMP vs. Other Parallel Programming APIs

In this section, we elaborate on the usage statistics of

OpenMP vs. other common parallel programming APIs, such

as MPI, CUDA, OpenCL, TBB, Cilk, OpenACC, and SYCL

(Figure 22). We find that not only is OpenMP by far the

most popular API, but it accounts for almost half (45%) of

all the repositories using parallel programming APIs in this

analysis. Over the last decade (since 2013), there has been

steady growth in new OpenMP repositories. When combined

with absolute usage numbers for OpenMP, it maintains a clear

popularity advantage relative to other APIs (Figure 3).3 We

also observe that MPI, as a distributed-memory parallelization

1Although the script does not contain code to obtain repository timestamps,
we did collect them separately using perceval [31]. We store these timestamps
separately to keep HPCORPUS to a more reasonable size.

2See code @ aggregate paradigms.
3See code @ get paradigms per year.

https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L100
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L179

API, and OpenMP, as a shared-memory parallelization API,

are well integrated over time (Figure 4),4 indicating the grow-

ing need for MPI+X as parallel clusters with multicore nodes

grow in scale [41].

O
pen

M
P

M
PI

CU
DA

O
pen

CL

O
pen

ACC

SY
CL

TBB
Cilk

0

1,000

2,000

3,000

4,000

5,000

3
,
8
8
1

2
,
3
4
0

8
7
9

9
5
6

6
1

2
4

3
7
4

9
7

#
R

ep
o

s

OpenMP

45%

MPI

27.1%

OpenCL

11.1%
CUDA

10.2%
Others

6.6%

Fig. 2. Parallel programming API usage in HPCORPUS.

B. Breakdown of OpenMP Directives Usage

In this section, we discuss the detailed usage breakdown

of elements from OpenMP as presented in Figure 95. This

data breaks down usage statistics by language (C, C++, and

Fortran) and by the version of the OpenMP specification

(versions 2.5 to 5.2).6. The counts measure each clause’s

usage, with a higher count suggesting more prevalent usage in

C, C++, and Fortran codes from HPCORPUS.

Generally, over the years, we see that while new directives

were well received and adopted (Figure 6),7 the common core

of OpenMP v2.5-3, specifically OpenMP’s parallel for

constructs (Figure 7),8 dominate the usage. In addition to

this analysis, we also analyze HPCORPUS for the growth in

complexity of OpenMP specifications (Figure 5).9

for loops: for loops are commonly-used iterative control

structures in programming. In C codes from HPCORPUS,

there are 21,822,609 occurrences of for loops, followed by

19,841,237 in C++ codes and 1,203,773 (do loops) in Fortran.

Fortran leads in parallelizing a proportion of for loops with

OpenMP, with 2.2% of all loops parallelized, compared to

0.54% in C++ and 0.16% in C.

4See code @ get omp mpi usage.
5See code @ aggregate versions.
6For complete OpenMP specification and the differences between versions,

see https://www.openmp.org/spec-html/5.0/openmp.html and [42].
7See code @ get version per year.
8See code @ get loops.
9We refer the reader to a previous, well-known graph, which measured the

growth in complexity by the specification page count (for example, reference
[7], Figure 3.1, page 37.)

2 013 2 016 2 019 2 022

10
0

10
1

10
2

10
3

Year

#
R

ep
o

s
(l

o
g

sc
al

e)

OpenMP MPI OpenCL CUDA

TBB Cilk OpenACC SYCL

Fig. 3. Parallel programming API usage trends in HPCORPUS over the last
decade.

Scheduling: Static scheduling is the preferred kind of schedule

across all languages, with C codes from HPCORPUS having

8,705 occurrences, followed by C++ codes with 4,897 and

Fortran codes with 2,013. Dynamic scheduling is less prevalent

but still used more than advanced methods such as guided,

runtime, and auto.

Data-sharing: C++ codes from HPCORPUS demonstrate

higher usage of data-sharing constructs (private,

firstprivate, lastprivate, shared, and

reduction) compared to C and Fortran. However,

the nowait construct, for eliminating synchronization

barriers, is used less frequently in all languages.

Irregular Parallelism: In HPCORPUS, the task construct

for explicit tasks and the sections construct for parallel

sections are moderately prevalent. C++ codes from HPCOR-

PUS have the highest counts with 4,169 task occurrences and

7,038 sections occurrences.

Vectorization: C++ codes from HPCORPUS have significantly

higher usage of the simd directive for enabling vectorization,

with 54,557 occurrences. In comparison, C and Fortran codes

have 9,942 and 1,199 occurrences, respectively.

Offloading: The target construct for offloading computa-

tions to accelerators is prominently used in C++ codes in

HPCORPUS, with 78,930 occurrences. C and Fortran codes,

on the other hand, show 6,199 and 2,532 occurrences, resp.

Synchronization: The barrier construct for synchroniza-

tion varies in usage, with C, C++, and Fortran codes from

HPCORPUS having 2,825, 2,728, and 858 occurrences respec-

tively. The atomic construct for atomic operations is mod-

erately used, with C++, C, and Fortran codes, having 5,360,

3,601, and 2,005 occurrences, respectively. Other constructs

such as flush, single, and master have relatively lower

counts across all languages in HPCORPUS.

https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L193
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L275
https://www.openmp.org/spec-html/5.0/openmp.html
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L204
https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus/blob/121b0f088f3187cf82a54016e82992400cfcfe2c/generate_stats.py#L239

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

0

200

400

600

800

1000

1200

1
1

4
0

6
7

7
0

4
5

3
9

3
3

3
3

5
1

7
6 1
9
3

6
1

2
1
5

3
1
0

2
6
5

1
7
7

1
1
0

1
2
4

1
0
9

1
6
3

2
5
8

5
4
6

7
2

2
4
9 4
0
7

3
8
8

2
7
2

1
9
9

1
9
1

2
1
7

2
6
7

5
2
6

1
,
0
9
3

Year

#
R

ep
o

s

MPI+OpenMP MPI OpenMP

Fig. 4. MPI, OpenMP, and MPI+OpenMP usage in HPCORPUS over the last decade.

2005/2.5 2008/3.0 2011/3.1 2013/4.0 2015/4.5 2018/5.0 2020/5.1 2021/5.2

0

20

40

60

80

100

120

1
5

1
7

1
8

4
4 5
0

6
8 7
5 8
5

8 8 8 9 1
3

1
5

1
7 2
2

2
2 3
1

3
2 4
0

5
6

7
2

9
1

9
2

4 8 9 1
3

1
4 2
0

2
3

2
4

Year/OpenMP version

N
u

m
b

er

Directives/Constructs Clauses Runtime Library Routines Environmental variables

Fig. 5. Growth in OpenMP complexity over time. (The X-axis shows OpenMP specifications 2.5 to 5.2 and the years they were released. The Y-axis shows
the absolute number of various OpenMP elements in each specification.)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

10
1

10
2

10
3

10
4

10
5

10
6

10
7

3
.
4 4
.
0
8

4
.
6
4

4
.
6

4
.
6
3

4
.
1
8

4
.
3
6

4
.
2
2

4
.
4
3

4
.
8
6

5
.
4
5

1
.
6
4

2
.
3
5

3
.
0
5

3
.
2
4

3
.
1
9

2
.
0
8

2
.
6
1

2
.
6
1

2
.
6
1

3
.
7
7

4
.
1
1

2
.
3
8 3
.
2
6

3
.
6
9 4
.
7
9

2
.
3
4

3
.
0
1

2
.
4
9 3
.
3
9 4
.
4
6 5
.
5
3

1
.
3
6 2
.
4
8

2
.
6
7

3

3
.
8
5 4
.
9
1

Year

N
u

m
b

er
(l

o
g

sc
al

e)

OpenMP v2.5 (2005) v3 (2008) v4 (2013) v5 (2018)

Fig. 6. Absolute number of occurrences of various OpenMP elements for each version of OpenMP in HPCORPUS over the the last decade. Bar labels
represent powers of 10 (e.g., for 2013, various elements of OpenMP v2.5 had 2508 occurrences (i.e., 103.4)). For a detailed breakdown of the number of
occurrences of OpenMP elements organized by the version of OpenMP where they were introduced, see Figure 9.

for/d
o loops

omp paral
lel for/d

o
omp for/d

o

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

7
.
3
4

4
.
4
7

3
.
8
6

7
.
3

4
.
9
5

4
.
2
66
.
0
8

4
.
2
4

3
.
9
7

N
u

m
b

er
(l

o
g

sc
al

e)

C C++ Fortran

Fig. 7. Total numbers of for/do loops, OpenMP combined parallel
worksharing loops, and OpenMP worksharing loops in HPCORPUS.

stati
c
dynam

icguide
d
runti

me auto

10
2

10
3

10
4

3
.
9
4

3
.
3
7

2
.
5
3

2
.
2
1

1
.
7
3

3
.
6
9

3
.
5
8

3
.
1
8

2
.
5
8

2
.
3
8

3
.
3

2
.
9
1

2
.
4
5

2
.
1
2

1
.
4
3

#
R

ep
o

s
(l

o
g

sc
al

e)

C C++ Fortran

Fig. 8. Schedule kinds found in HPCORPUS.

p
r
i
v
a
t
e

c
o
p
y
i
n

s
e
c
t
i
o
n

o
r
d
e
r
e
d

a
t
o
m
i
c

r
e
d
u
c
t
i
o
n

s
h
a
r
e
d

c
r
i
t
i
c
a
ll
a
s
t
p
r
i
v
a
t
e

t
h
r
e
a
d
p
r
i
v
a
t
en
o
w
a
i
t

s
e
c
t
i
o
n
s

m
a
s
t
e
rf
i
r
s
t
p
r
i
v
a
t
eb
a
r
r
i
e
r

f
o
r

d
e
f
a
u
l
t

s
i
n
g
l
e

p
a
r
a
l
l
e
ln
u
m
_
t
h
r
e
a
d
s
f
l
u
s
h

p
a
r
a
l
l
e
l
s
e
c
t
i
o
n
s

c
o
p
y
p
r
i
v
a
t
e

p
a
r
a
l
l
e
l
f
o
r

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

4.05

2.27

3.14

2.97

3.56

3.53

3.96

3.68

3.26

2.52

3.04

3.04

3.09

3.36

3.45

4.47

3.85

3.01

4.53

3.36

2.77

2.6

1.2

4.35

4.15

2.69

3.4

3.41

3.73

4.28

3.9

3.94

3.88

3.5

3.35

3.85

3.89

3.98

3.44

4.95

3.88

3.54

5.06

3.65

3.13

3.53

2.38

4.85

4.1

1.99

2.76

2.67

3.3

3.42

3.51

3.03

2.67

2.88

1.08

2.59

2.75

3.17

2.93

3.67

2.73

4.14

2.93

2.31

2.11

0

Number v2.5

a
t
o
m
i
c
c
a
p
t
u
r
e

t
a
s
k

t
a
s
k
w
a
i
t

a
t
o
m
i
c
r
e
a
d

a
t
o
m
i
c
u
p
d
a
t
e

a
t
o
m
i
c
w
r
i
t
e

c
o
l
l
a
p
s
e

t
a
s
k
y
i
e
l
d

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

2.63

3.28

2.81

2.52

2.29

2.73

3.46

1.46

3.17

3.62

3.01

2.38

2.74

2.46

3.71

2.85

2.25

2.82

2.49

2.38

2.29

2.41

3.68

1.04

Number v3.0-1

d
e
c
l
a
r
e
s
i
m
d

t
e
a
m
s
d
i
s
t
r
i
b
u
t
e
s
i
m
d

c
a
n
c
e
l

s
i
m
d

t
a
s
k
g
r
o
u
p

d
e
c
l
a
r
e
t
a
r
g
e
t

t
a
r
g
e
t
t
e
a
m
s
d
i
s
t
r
i
b
u
t
e

t
a
r
g
e
t
u
p
d
a
t
ep
r
o
c
b
i
n
d

s
i
m
d
l
e
nd
i
s
t
r
i
b
u
t
e
s
i
m
d

c
a
n
c
e
l
l
a
t
i
o
n

d
e
c
l
a
r
e
r
e
d
u
c
t
i
o
n

t
a
r
g
e
t

t
a
r
g
e
t
t
e
a
m
s
t
e
a
m
s

d
i
s
t
r
i
b
u
t
et
a
r
g
e
t
d
a
t
a

m
a
p

t
e
a
m
s
d
i
s
t
r
i
b
u
t
e

t
a
r
g
e
t
t
e
a
m
s
d
i
s
t
r
i
b
u
t
e
s
i
m
d

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

3.03

2.85

2.8

3.99

2.68

2.47

3.07

2.34

2.6

2.92

3.32

2.78

2.47

3.79

3.12

3.49

3.5

2.72

3.22

3.19

2.76

2.64

4.22

2.69

4.74

3.05

2.97

4.26

3.41

2.84

3.09

4.38

2.33

2.77

4.9

4.34

4.68

4.63

3.67

4.16

4.49

3.98

2.12

2.2

2.43

3.05

2.37

2.52

2.36

2.61

1.9

1.95

2.37

2.3

2.27

3.4

2.55

2.82

2.75

2.74

3

2.53

2.01

Number v4.0

l
i
n
e
a
r

t
a
s
k
l
o
o
p
s
i
m
d

t
a
r
g
e
t
e
x
i
t
d
a
t
a

i
f

t
a
r
g
e
t
e
n
t
e
r
d
a
t
a

d
e
f
a
u
l
t
m
a
p

d
e
p
e
n
d

t
a
s
k
l
o
o
p

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

2.99

2.75

2.13

3.26

2.17

2.26

2.91

3.1

3.65

3.76

3.13

3.91

3.11

3.19

3.69

4.04

2.48

2.09

1.74

2.8

1.97

2.17

2.49

Number v4.5

a
l
l
o
c
a
t
e

d
e
c
l
a
r
e
m
a
p
p
e
r

t
a
s
k
r
e
d
u
c
t
i
o
n

t
a
s
k
l
o
o
p
s
i
m
d

t
a
r
g
e
t
p
a
r
a
l
l
e
l
l
o
o
p

p
a
r
a
l
l
e
l
t
a
r
g
e
t

m
a
s
t
e
r
t
a
s
k
l
o
o
p

r
e
q
u
i
r
e
s

d
e
c
l
a
r
e
v
a
r
i
a
n
t

p
a
r
a
l
l
e
l
m
a
s
t
e
r
t
a
s
k
l
o
o
p

p
a
r
a
l
l
e
l
m
a
s
t
e
r

i
n
r
e
d
u
c
t
i
o
n

t
a
r
g
e
t
s
i
m
dt
e
a
m
s
l
o
o
pc
o
p
y
p
r
i
v
a
t
e

s
c
a
n

l
o
o
pt
a
r
g
e
t
t
e
a
m
s
l
o
o
p

m
a
s
t
e
r
t
a
s
k
l
o
o
p
s
i
m
d

p
a
r
a
l
l
e
l
l
o
o
pm
a
s
k
e
d

p
a
r
a
l
l
e
l
m
a
s
t
e
r
t
a
s
k
l
o
o
p
s
i
m
d

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

2.56

1.71

1.83

2.75

1

3.11

2.68

1.85

2.79

2.21

2.31

2.22

3.18

1.32

1.2

2.15

2.29

0.9

2.31

1.45

1.53

1.38

3.12

2.13

2.92

3.76

4.36

3.68

2.06

3.02

3.36

3.49

3.07

4.26

2.38

2.41

1.4

3.41

1.46

3.08

2.27

1.57

2.09

0.95

2.41

1.81

1.9

2.37

1.49

1.63

1.75

2.14

1.28

0

1.72

2.06

0.95

1.58

1.45

1.97

1.26

Number v5.0-1

m
e
r
g
e
a
b
l
e

t
o

t
h
r
e
a
d
l
i
m
i
te
n
t
e
r

s
a
f
e
l
e
n

u
n
i
f
o
r
m

u
s
e
d
e
v
i
c
e
a
d
d
r

d
o
a
c
r
o
s
s
f
i
n
a
l

m
a
t
c
h

i
s
d
e
v
i
c
e
p
t
rfr
o
m

a
s
s
u
m
e
s

u
n
t
i
e
d

d
e
v
i
c
e

a
l
i
g
n
e
dg
r
a
i
n
s
i
z
e

e
x
c
l
u
s
i
v
e

a
l
l
o
c
a
t
o
r
a
l
i
g
n

a
t

n
o
n
t
e
m
p
o
r
a
lf
i
l
t
e
ri
n
i
t
i
a
l
i
z
e
r

d
e
s
t
r
o
yn
u
m
t
a
s
k
sn
o
g
r
o
u
pp
r
i
o
r
i
t
yi
n
c
l
u
s
i
v
e

1
0
1

1
0
3

1
0
5

1
0
7

1
0
9

1.79

2.28

2.47

2.18

2.96

2.81

1.48

1.93

2.08

2.73

2.38

2.03

2.06

2.63

2.68

3.29

1.9

1.84

1.15

1.11

1.52

2.63

1.43

2.12

1.3

1.84

1.9

2.01

1.85

1.99

3.28

3

3.11

3.36

1.67

1.67

2.59

2.97

3.37

2.94

1.75

2.29

3.02

3.52

2.54

1.62

2.25

1.41

0

2.03

1.2

2.37

1.59

2.58

2.18

2.68

1.83

1.59

2.48

2.16

2.01

1.98

1.57

2.19

1.36

1.7

2.36

1.45

2.34

1.38

1.76

2.43

1.93

1.79

1.3

1.59

1.66

1.71

1.63

2.12

1.08

1.64

1.81

1.63

1.49

Number v5.2

C
C

+
+

F
o

rtran

F
ig

.
9
.

A
b
so

lu
te

n
u
m

b
er

o
f

d
ifferen

t
O

p
en

M
P

clau
ses

(fro
m

O
p
en

M
P

v
2
.5

-
v
5
.2

)
fo

u
n
d

in
H

P
C

O
R

P
U

S
(N

o
te:

Y
-ax

is
is

a
lo

g
scale.)

V. DISCUSSION

These results show that OpenMP is the dominant parallel

programming model for C, C++, and Fortran in the publicly

visible repositories in GitHub. The usage of items within

OpenMP, however, is not evenly spread between the different

versions of the OpenMP specification. These results largely

confirm the subset of 21 items from the OpenMP Common

Core [7] with one notable exception. The Common Core

omitted the lastprivate clause. It was felt that this clause

was rarely used. Clearly, that is not the case. Future updates

of the Common Core should include it.

While the Common Core is an important simplification of

OpenMP, programmers often gravitate towards even greater

simplicity. The third most common construct used in OpenMP

is parallel for. This supports a style of programming

where you find the time-consuming loops and then parallelize

them with a simple parallel for directive. Much greater

performance is available by explicitly managing parallel re-

gions inside of which are worksharing loops (i.e., using the

for construct). The popularity of parallel for is a

reminder to programming model designers; people often seek

good-enough performance, not ultimate performance.

Finally, we wish to comment on the insights from the HP-

CORPUS data set on the adoption of new releases of OpenMP.

These new releases are not ignored. New features of OpenMP

find programmers that use them. The fact of the matter is,

however, that most OpenMP programmers work with items

from OpenMP 4.0 or earlier (note: OpenMP 4.0 came out

over 10 years ago). The adoption of new features is uneven

across the programming community.

VI. CONCLUSIONS AND FUTURE OUTLOOK

The central conclusion of this paper is that OpenMP is far

more popular than we anticipated. We expected the popularity

of programming models in HPCORPUS to mirror that found

in workloads at various supercomputer centers. For example,

a 2015 talk at OpenMPcon [6] reported that over 90% of

applications programs running at NERSC used MPI, while

only 40% used OpenMP.

We found, however, that for code in GitHub, OpenMP is by far

the most popular parallel programming model for C, C++, and

Fortran, with 45% of repositories containing OpenMP code

while only 27% containing MPI. This result is so surprising

that we can’t help but wonder if we did something wrong. We

have made HPCORPUS available and shared the query used to

generate it. We are eager for peer review to help ensure that

our conclusions are correct.

In retrospect, however, perhaps we should not have been

so surprised. Programs running at supercomputer centers are

designed to run on large scalable machines. These programs

obviously need a distributed memory API such as MPI. On

GitHub, however, you would expect to find distributed memory

programs but also multithreaded programs for a wide range

of multicore CPUs. In other words, the scope for OpenMP

extends from edge devices to laptops, to servers, to massive

supercomputers. The number of systems that benefit from

OpenMP dwarfs the number of large-scale clusters or even

GPU-based systems; hence it is not surprising that the data

from HPCORPUS shows so much usage of OpenMP.

When you work with an MPI program, you know it. The

program is launched as an MPI program (with mpiexec or

runmpi). The code is, in most cases, structured around a

single program multiple data (SPMD) pattern, with a copy of

the program running on each node of the system. You know

you are running an MPI job. With OpenMP, it is easy to

use it and not even know it. A library routine buried deep

in your code could use OpenMP. It’s much lower overhead

to experiment with OpenMP compared to MPI. Hence, the

use of MPI stands out, and frankly, it is easy to forget about

OpenMP. This factor could also play a role in expectations of

MPI usage relative to OpenMP.

There is much work yet to do with HPCORPUS. To drive

the development of new programming models, we need to

understand how programming models are used. To do this

we need to move beyond counts for the different constructs

and explore the different ways they are combined into distinct

design patterns of parallel programming [43]. From these

patterns, we can better understand the cognitive issues of

programmers working with different parallel programming

models and guide how they should evolve.

Our interest in HPCORPUS goes well beyond studying which

constructs are used in different parallel programming models.

HPCORPUS can be used to train LLMs to support AI solutions

for machine programming. Even with the amazing results

from generative AI applied to programming, we are in the

early days of this technology. We are interested in training

LLMs to address different programming problems. While the

“black box” that is current AI technology is fascinating, we see

the line of research growing out of HPCORPUS going much

further into models that combine neural networks with sym-

bolic systems to reason about correctness while working with

high-level structures based on fundamental design patterns of

parallel programming. Only by combining neural networks

with symbolic reasoning will we be able to crack the machine

programming problem.

In closing, we call on others to carry out studies similar

to the one described in this paper. For example, other than

the talk about workloads at NERSC [6], we were unable to

find detailed studies of programming model usage at major

supercomputing centers. We focused on C, C++, and Fortran,

but it would be interesting to repeat this work for Python,

Rust, and Julia. Code repositories have become the standard

way to manage complex software projects. The data is “out

there”. We should learn what programmers are actually using

and then drive the evolution of programming models based on

hard data, not anecdotes.

ACKNOWLEDGMENTS

This research was supported by the Israeli Council for Higher

Education (CHE) via the Data Science Research Center, Ben-

Gurion University of the Negev, Israel; Pazy grant 226/20;

Intel Corporation (oneAPI CoE program); and the Lynn and

William Frankel Center for Computer Science. Computational

support was provided by the NegevHPC project [44], Intel

Developer Cloud [45], and Google Cloud Platform (GCP). The

authors thank Re’em Harel, Yehonatan Fridman, Israel Hen,

and Gabi Dadush for their help and support.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-

ceedings of the 38th annual international symposium on Computer

architecture, 2011.

[2] D. Buttlar, J. Farrell, and B. Nichols, Pthreads programming: A POSIX
standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.

[3] A. Kukanov and M. J. Voss, “The Foundations for Scalable Multi-core
Software in Intel Threading Building Blocks.” Intel Technology Journal,
vol. 11, no. 4, 2007.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
ACM SigPlan Notices, vol. 30, no. 8, 1995.

[5] T. Mattson and R. Eigenmann, “OpenMP: An API for writing portable
SMP application software,” in SuperComputing 99 Conference, 1999.

[6] OpenMPCon, “Using OpenMP at NERSC,”
https://openmpcon.org/wp-content/uploads/openmpcon2015-helen-he-nersc.pdf,
2015.

[7] T. G. Mattson, Y. H. He, and A. E. Koniges, The OpenMP common

core: making OpenMP simple again. MIT Press, 2019.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al.,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Recent Advances in Parallel Virtual Machine and

Message Passing Interface: 11th European PVM/MPI Users’ Group
Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11.
Springer, 2004.

[9] D. Luebke, “CUDA: Scalable parallel programming for high-
performance scientific computing,” in 2008 5th IEEE international
symposium on biomedical imaging: from nano to macro. IEEE, 2008,
pp. 836–838.

[10] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL

programming guide. Pearson Education, 2011.

[11] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Müller,
“Assessing the performance of OpenMP programs on the Intel Xeon
Phi,” in European Conference on Parallel Processing. Springer, 2013.

[12] R. Van der Pas, E. Stotzer, and C. Terboven, Using OpenMP# the next
step: affinity, accelerators, tasking, and simd. MIT press, 2017.

[13] T. Deakin and T. G. Mattson, Programming Your GPU with OpenMP:

Performance Portability for GPUs. MIT Press, 2023.

[14] Y. Fridman, G. Tamir, and G. Oren, “Portability and Scalability of
OpenMP Offloading on State-of-the-art Accelerators,” arXiv preprint

arXiv:2304.04276, 2023.

[15] F. Mayer, M. Knaust, and M. Philippsen, “OpenMP on FPGAs—a
survey,” in OpenMP: Conquering the Full Hardware Spectrum: 15th

International Workshop on OpenMP, IWOMP 2019, Auckland, New

Zealand, September 11–13, 2019, Proceedings 15. Springer, 2019.

[16] T. A. Anderson and T. G. Mattson, “Multithreaded parallel Python
through OpenMP support in Numba,” in Proc. 20th Python Sci. Conf.,
2021.

[17] T. G. Mattson, T. A. Anderson, and G. Georgakoudis, “PyOMP: Mul-
tithreaded parallel programming in Python,” Computing in Science &
Engineering, vol. 23, no. 6, 2021.

[18] R. Reyes and V. Lomüller, “SYCL: Single-source C++ accelerator
programming,” in Parallel Computing: On the Road to Exascale. IOS
Press, 2016.

[19] R. Farber, Parallel programming with OpenACC. Newnes, 2016.

[20] C. Guillen and R. Bader, “HPC Compil-
ers https://www.admin-magazine.com/HPC/Articles/Selecting-Compilers-for-a-Supercomputer,”
2017.

[21] L. Computing, “Compilers at LC ”https://hpc.llnl.gov/software/development-environment-software/compilers-lc,”
2022.

[22] IBM, “IBM Compilers https://www.ibm.com/products/ibm-compilers,”
2023.

[23] Arm, “Arm Compiler for Linux https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Linux.”
[24] NVIDIA, “NVIDIA HPC SDK https://developer.nvidia.com/hpc-sdk.”
[25] Intel, “Intel oneAPI HPC Toolkit https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html.”
[26] Clang, “CLANG COMPILER USER’S MAN-

UAL ”https://clang.llvm.org/docs/UsersManual.html.”
[27] GNU, “GCC, the GNU Compiler Collection https://gcc.gnu.org.”
[28] T. P. Group, “PGI Compilers https://www.pgroup.com/index.htm.”
[29] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-

supervised translation of programming languages,” arXiv preprint
arXiv:2006.03511, 2020.

[30] M. Research, “Little guide to download source
code data from Github using Google Big Query,”
https://github.com/facebookresearch/CodeGen/blob/2c9dbe52a92cbf2dfa4e702442f47451813dce5d/docs/googlebigquery.md,
2021.

[31] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona,
“Perceval: software project data at your will,” in Proceedings of the
40th International Conference on Software Engineering: Companion

Proceeedings. ACM, 2018.
[32] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic

evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
2022.

[33] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani,
and B. de Supinski, “LM4HPC: Towards Effective Language
Model Application in High-Performance Computing,” arXiv preprint

arXiv:2306.14979, 2023.
[34] R. Harel, Y. Pinter, and G. Oren, “Learning to parallelize in a shared-

memory environment with transformers,” in Proceedings of the 28th

ACM SIGPLAN Annual Symposium on Principles and Practice of

Parallel Programming, 2023.
[35] T. Kadosh, N. Schneider, N. Hasabnis, T. Mattson, Y. Pinter, and

G. Oren, “Advising OpenMP Parallelization via a Graph-Based Ap-
proach with Transformers,” arXiv preprint arXiv:2305.11999, 2023.

[36] N. Schneider, T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, and
G. Oren, “MPI-rical: Data-Driven MPI Distributed Parallelism Assis-
tance with Transformers,” arXiv preprint arXiv:2305.09438, 2023.

[37] W. F. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and J. S.
Vetter, “Evaluation of OpenAI Codex for HPC Parallel Programming
Models Kernel Generation,” arXiv preprint arXiv:2306.15121, 2023.

[38] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele,
“Modeling Parallel Programs using Large Language Models,” arXiv
preprint arXiv:2306.17281, 2023.

[39] R. Harel, I. Mosseri, H. Levin, L.-o. Alon, M. Rusanovsky, and G. Oren,
“Source-to-source parallelization compilers for scientific shared-memory
multi-core and accelerated multiprocessing: analysis, pitfalls, enhance-
ment and potential,” International Journal of Parallel Programming,
vol. 48, 2020.

[40] I. Mosseri, L.-o. Alon, R. Harel, and G. Oren, “ComPar: optimized
multi-compiler for automatic OpenMP S2S parallelization,” in OpenMP:
Portable Multi-Level Parallelism on Modern Systems: 16th International

Workshop on OpenMP, IWOMP 2020, Austin, TX, USA, September 22–

24, 2020, Proceedings 16. Springer International Publishing, 2020.
[41] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler,

S. Kumar, E. Lusk, and J. L. Träff, “MPI at Exascale,” Procceedings of

SciDAC, vol. 2, 2010.
[42] B. R. de Supinski, T. R. Scogland, A. Duran, M. Klemm, S. M. Bellido,

S. L. Olivier, C. Terboven, and T. G. Mattson, “The ongoing evolution
of OpenMP,” Proceedings of the IEEE, vol. 106, no. 11, 2018.

[43] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming. Addison Wesley, 2004.

[44] R. I. Park, “NegevHPC Project,” https://www.negevhpc.com, 2019.
[45] Intel, “Intel Developer Cloud,” https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html,

2023.

https://openmpcon.org/wp-content/uploads/openmpcon2015-helen-he-nersc.pdf
https://www.admin-magazine.com/HPC/Articles/Selecting-Compilers-for-a-Supercomputer
https://hpc.llnl.gov/software/development-environment-software/compilers-lc
https://www.ibm.com/products/ibm-compilers
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Linux
https://developer.nvidia.com/hpc-sdk
https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit.html
https://clang.llvm.org/docs/UsersManual.html
https://gcc.gnu.org
https://www.pgroup.com/index.htm
https://github.com/facebookresearch/CodeGen/blob/2c9dbe52a92cbf2dfa4e702442f47451813dce5d/docs/googlebigquery.md
https://www.negevhpc.com
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html

	Introduction
	OpenMP Fundamentals vs. Other Parallel Programming APIs
	HPCorpus: A Novel Database of HPC Code from GitHub
	Analysis
	OpenMP vs. Other Parallel Programming APIs
	Breakdown of OpenMP Directives Usage

	Discussion
	Conclusions and Future Outlook
	References

