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Abstract—Defending community-owned cyber space requires
community-based efforts. Large-scale network observations that
uphold the highest regard for privacy are key to protecting our
shared cyberspace. Deployment of the necessary network sensors
requires careful sensor placement, focusing, and calibration
with significant volumes of network observations. This paper
demonstrates novel focusing and calibration procedures on a
multi-billion packet dataset using high-performance GraphBLAS
anonymized hypersparse matrices. The run-time performance
on a real-world data set confirms previously observed real-
time processing rates for high-bandwidth links while achieving
significant data compression. The output of the analysis demon-
strates the effectiveness of these procedures at focusing the traffic
matrix and revealing the underlying stable heavy-tail statistical
distributions that are necessary for anomaly detection. A simple
model of the corresponding probability of detection (pd) and
probability of false alarm (pfa) for these distributions highlights
the criticality of network sensor focusing and calibration. Once a
sensor is properly focused and calibrated it is then in a position
to carry out two of the central tenets of good cybersecurity:
(1) continuous observation of the network and (2) minimizing
unbrokered network connections.

Index Terms—Internet defense, packet capture, streaming
graphs, hypersparse matrices

I. INTRODUCTION

Our community-owned cyber space (industry, government,
and academia) requires community-based protections involv-
ing significant data sharing [1]–[5]. Large-scale network ob-
servations with the highest regard for privacy are key [6]–
[8]. In the cyber domain, observatories and outposts have
been constructed to gather data on Internet traffic and provide
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Fig. 1. Network Sensor Placement. Traffic matrix view of the Internet
depicting selected network sensors and their notional proximity to various
types of network traffic [9]–[15]. The location of a sensor determines the
expected distributions of the observations. Figure adapted from [6].

a starting point for exploring community-based approaches
[9]–[15] (see Figure 1). Effective deployment of a sensor
requires careful sensor placement, focusing, and calibration
with significant volumes of observations. This is particularly
important for distributed sensors [16].

The data volumes, processing requirements, and privacy
concerns of analyzing a significant fraction of the Internet
have been prohibitive. The North American Internet generates
billions of non-video Internet packets each second [17], [18].
The GraphBLAS standard provides significant performance
and compression capabilities which improve the feasibility of
analyzing these volumes of data [19]–[31]. Specifically, the
GraphBLAS is ideally suited for both constructing and ana-
lyzing anonymized hypersparse traffic matrices. Prior Graph-
BLAS work has demonstrated rates of 200 billion packets
per second (pps) on a supercomputer [32], while achieving
compressions of 1 bit per packet [15], and enabling the
analysis of the largest publicly available historical archives
with over 40 trillion packets [33].

GraphBLAS anonymized hypersparse traffic matrices rep-
resent one set of design choices for analyzing network traffic.
Specifically, the use case requiring some data on all packets
(no down-sampling), high performance, high compression,
matrix-based analysis, anonymization, and open standards.
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There are a wide range of alternative graph/network anal-
ysis technologies and many good implementations achieve
performance close to the limits of the underlying computing
hardware [34]–[44]. Likewise, there are many network analysis
tools that focus on providing a rich interface to the full
diversity of data found in network traffic [45]–[47]. Each of
these technologies has appropriate use cases in the broad field
of Internet traffic analysis.

The ability to rapidly process enormous volumes of
anonymized network traffic enables detailed analysis, which
is dependent upon proper focusing (understanding precisely
where the sensor is) and calibration (understanding the
expected statistical distributions of data). This work ex-
plores novel focusing and calibration procedures on a multi-
billion packet dataset using high-performance GraphBLAS
anonymized hypersparse matrices.

The outline of the rest of the paper is as follows. First,
some basic network quantities are defined in terms of traffic
matrices. Next the focusing and calibration procedures are
described and demonstrated on a gateway dataset revealing
the underlying heavy-tail statistical distributions. A simple
model of the corresponding probability of detection (pd)
and probability of false alarm (pfa) for these distributions
is presented that highlights the criticality of network sensor
focusing and calibration. The paper concludes with a summary
and discussion of future work.

II. TRAFFIC MATRICES AND NETWORK QUANTITIES

Internet data must be handled with care. The Center for
Applied Internet Data Analysis (CAIDA) based at the Uni-
versity of California’s San Diego Supercomputer Center has
pioneered trusted data sharing best practices that combine
anonymizing source and destinations using CryptoPAN [48]
with data sharing agreements. These data sharing best practices
include the following principles [6]

• Data is made available in curated repositories
• Using standard anonymization methods where needed:

hashing, sampling, and/or simulation
• Registration with a repository and demonstration of le-

gitimate research need
• Recipients legally agree to neither repost a corpus nor

deanonymize data
• Recipients can publish analysis and data examples nec-

essary to review research
• Recipients agree to cite the repository and provide pub-

lications back to the repository
• Repositories can curate enriched products developed by

researchers
Network traffic data can be viewed as a traffic matrix where

each row is a source and each column is a destination (see
Figure 1). A primary benefit of constructing anonymized hy-
persparse traffic matrices with the GraphBLAS is the efficient
computation of a wide range of network quantities via matrix
mathematics. Figure 2 illustrates essential quantities found
in all streaming dynamic networks. These quantities are all
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Fig. 2. Streaming Network Traffic Quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets. Figure adapted from [49].

TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from traffic matrix At at time t in
both summation and matrix notation. 1 is a column vector of all 1’s, T is the
transpose operation, and | |0 is the zero-norm that sets each nonzero value of
its argument to 1 [50]. These formulas are unaffected by matrix permutations
and will work on anonymized data. Table adapted from [15].

Aggregate Summation Matrix
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets (dmax) maxij At(i, j) max(At)

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Packets from source i

∑
j At(i, j) At1

Max source packets (dmax) maxi
∑

j At(i, j) max(At1)
Source fan-out from i

∑
j |At(i, j)|0 |At|01

Max source fan-out (dmax) maxi
∑

j |At(i, j)|0 max(|At|01)
Unique destinations

∑
j |

∑
i At(i, j)|0 |1TAt|01

Destination packets to j
∑

i At(i, j) 1T|At|0
Max destination packets (dmax) maxj

∑
i At(i, j) max(1T|At|0)

Destination fan-in to j
∑

i |At(i, j)|0 1T At

Max destination fan-in (dmax) maxj
∑

i |At(i, j)|0 max(1T At)

computable from anonymized traffic matrices created from the
source and destinations found in Internet packet headers.

The network quantities depicted in Figure 2 are computable
from anonymized origin-destination traffic matrices that are
widely used to represent network traffic [51]–[54]. It is com-
mon to filter the packets down to a valid set for any particular
analysis. Such filters may limit particular sources, destinations,
protocols, and time windows. To reduce statistical fluctuations,
the streaming data should be partitioned so that for any chosen
time window all data sets have the same number of valid
packets [55]. At a given time t, NV consecutive valid packets
are aggregated from the traffic into a hypersparse matrix At,
where At(i, j) is the number of valid packets between the
source i and destination j. The sum of all the entries in At is
equal to NV ∑

i,j

At(i, j) = NV

Constant packet, variable time samples simplify the statistical
analysis of the heavy-tail distributions commonly found in
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Fig. 3. Multi-temporal streaming traffic matrices. Efficient computation of
network quantities on multiple time scales can be achieved by hierarchically
aggregating data in different time windows. Figure adapted from [15].

network traffic quantities [49], [56], [57]. All the network
quantities depicted in Figure 2 can be readily computed from
At using the formulas listed in Table I. Because matrix opera-
tions are generally invariant to permutation (reordering of the
rows and columns), these quantities can readily be computed
from anonymized data. Furthermore, the anonymized data can
be analyzed by source and destination subranges (subsets when
anonymized) using simple matrix multiplication. For a given
subrange represented by an anonymized hypersparse diagonal
matrix Ar, where Ar(i, i) = 1 implies source/destination i is
in the range, the traffic within the subrange can be computed
via: ArAtAr. Likewise, for additional privacy guarantees that
can be implemented at the edge, the same method can be used
to exclude a range of data from the traffic matrix

At −ArAtAr

Efficient computation of network quantities on multiple time
scales can be achieved by hierarchically aggregating data in
different time windows [55]. Figure 3 illustrates a binary
aggregation of different streaming traffic matrices. Computing
each quantity at each hierarchy level eliminates redundant
computations that would be performed if each packet window
was computed separately. Hierarchy also ensures that most
computations are performed on smaller matrices residing in
faster memory. Correlations among the matrices mean that
adding two matrices each with NV entries results in a matrix
with fewer than 2NV entries, reducing the relative number of
operations as the matrices grow.

One of the important capabilities of the SuiteSparse Graph-
BLAS library is direct support of hypersparse matrices where
the number of nonzero entries is significantly less than ei-
ther dimensions of the matrix [58]. If the packet source
and destination identifiers are drawn from a large numeric
range, such as those used in the Internet protocol, then a
hypersparse representation of At eliminates the need to keep
track of additional indices and can significantly accelerate the
computations [59].

III. NETWORK SENSOR FOCUSING & CALIBRATION

The process for rapid construction and analysis of Graph-
BLAS hypersparse traffic matrices is described in [30], [31]
and briefly summarized here. The first step in the GraphBLAS
hypersparse traffic matrix pipeline is to capture a packet,
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Fig. 4. Parallel Performance. Single-node parallel performance of the
hypersparse GraphBLAS construction program running on multiple distinct
PCAP files both with and without direct CryptoPAN anonymization.

discard the data payload, and extract the source and destination
Internet Protocol (IP) addresses. For the purposes of the
current testing, only IPv4 packets are used which are stored as
32 bit unsigned integers. Collections of NV = 217 consecutive
packets can each be anonymized with CryptoPAN directly
or using a CryptoPAN generated anonymization table. The
resulting anonymized source and destination IPs are then
used to construct a 232×232 hypersparse GraphBLAS matrix.
64 consecutive hypersparse GraphBLAS matrices are each
serialized in compressed sparse rows (CSR) format with ZSTD
[60] compression and saved to a UNIX TAR file.

This procedure [30] was applied to a 246 GB packet capture
(PCAP) dataset collected at a gateway for several minutes
consisting of 231 = 2, 147, 483, 648 packets. The hypersparse
GraphBLAS matrices were constructed by running the afore-
mentioned procedure on a 32 core 2.3 GHz Xeon 6314 server
with 128 GB of RAM and a 7.8 TB NVMe storage device.
The resulting 256 compressed GraphBLAS TAR files, each
encompassing 64×217 = 8,388,608 packets, had an average
file size of 7.4MB corresponding to < 1 byte per packet. These
files were further analyzed [31] to compute all the network
quantities in Table I for packet windows NV = 217, . . . , 227

over a 4×4 set of sub-ranges resulting in a single 4.7MB
file corresponding to < 0.01 bits per packet. Both of these
steps highlight the significant compression (100x and 5000x)
of these GraphBLAS analysis procedures on a real-world data
set. The single-core single-thread GraphBLAS processing time
for this dataset (including IO) was ≈ 3x faster than real-
time for this 6.8 Gigabit/second network gateway. Figure 4
shows the single-node parallel performance of the hypersparse
GraphBLAS construction program running on multiple dis-
tinct PCAP files both with and without direct CryptoPAN
anonymization.

The focusing procedure begins with understanding the ex-
pected location of the network sensor with respect to the
various sub-ranges. Figure 5 illustrates a typical position
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for a gateway sensor. The expectation of such a sensor is
that it will primarily see traffic outbound and inbound from
the rest of the world. Our test data set is processed using
4 subranges corresponding to internal nonroutable (224 +
2 + 220 + 216 = 17,891,328 IP addresses), internal bogon
(222+217+216+6×28 = 4,392,448 IP addresses), assigned to
the gateway (≈ 3.6million IP addresses), and other addresses
corresponding to the rest of the Internet (≈ 4.2 billion IP
addresses). A focused traffic matrix will have an observed
statistical distribution of packets that is consistent with the
location of the sensor.

The focusing procedure can be illustrated in Figure 6 by
determining the “endianness” of the data, which may not
be apparent in extremely large samples. Generally, network
traffic is big-endian in flight, but can be either big-endian or
little-endian when stored for processing. Incorrect endianness
will defocus the data and make it look more like a random
distribution. The big-endian and little-endian representations
of the observed data indicate that big-endian is less random
and little-endian is more random, thus the underlying data
is big-endian given that the sensor is expected to be at a
gateway that sees mostly assigned to/from other traffic. The
above focusing procedure can be used to correct/check for
any distortions in the data and is repeated until the expected
distribution is consistent with the known location of the sensor.
Likewise, the procedure can be used to quickly determine if a
sensor is in a location different from what is expected, which
can easily happen when a large number of network sensors are
deployed. Once a sensor is focused, the appearance of traffic
in sub-ranges where none is expected can be a simple way to
detect anomalies. For example, an emerging best-practice is to
limit unbrokered network connections [61], which can imply
that all traffic must pass through a defined gateway and no
other traffic should be observed.

Once the network sensor has been focused, the data in

other 51 0 1127642330 50466076
assigned 8165 132 408221 968958388
bogon 0 0 0 0

nonroutable 0 0 205 81
Big Endian nonroutable bogon assigned other

other 86474214 1190723 4307759 1939495783
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bogon 72697 8 37 1996758
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Fig. 6. Traffic Matrix Focus Table. A focused traffic matrix will have an
observed statistical distribution of packets that is consistent with the location
of the sensor. This can be illustrated with determining the “endianness” of the
data. It is possible to estimate the expected distribution of these packets if they
are randomly distributed (bottom). Incorrect endianness will defocus the data
and make it look more like a random distribution. The big-endian (top) and
little-endian (middle) representations of the observed data indicate that big-
endian is less random and little-endian is more random, thus the underlying
data is big-endian given that the sensor is expected to be at a gateway that
sees mostly assigned to/from other traffic.

each of the sub-ranges can be analyzed. Figure 7 shows the
distribution of the number of packets going over specific links
(source/destination pairs) for different sub-ranges (assigned-to-
other and other-to-assigned) and packet window sizes NV =
217, 227. These results show the widely observed heavy-tail
distributions that are well modeled by the Zipf-Mandelbrot
distribution [49], [57]

p(d) ∝ 1/(d+ δ)α

where d is the number packets observed traversing a link and
δ and α are best-fit parameters. Figure 7 highlights the strong
dependence on the statistical distributions on the sub-range and
the packet window size. Given that effective anomaly detection
depends upon accurate models of the expected distribution it
is worth considering the detection theory implications of these
observations.

IV. HEAVY-TAIL DETECTION THEORY

Heavy-tail distributions are widely observed [56], but only
recently have these distributions become sufficiently precise
that they can be used as background models for detection.
Heavy-tail distributions (like Zipf-Mandelbrot) differ signifi-
cantly from their more commonly known light-tail counter-
parts (e.g., Gaussian, Poisson, ...), and have many surpris-
ing properties: high-likelihood of extreme events, divergent
higher-order moments (e.g., infinite variance), and no cen-
tral limit theorem. In order to understand the implications
of heavy-tail distributions on detection, a simple model is
presented of the corresponding probability of detection (pd)
and probability of false alarm (pfa) for these distributions.



100 101 102 103 104 105

link packets

10 -4

10 -3

10 -2

10 -1

100

fr
ac

tio
n 

of
 li

nk
s

! NV = 217

! NV = 227

A NV = 217

A NV = 227

p(d) / 1/(d + /),

Fig. 7. Observed Heavy-Tail Distributions. Fraction of observed links that
have a specified number of packets (d) showing the strong dependence on
the size of the packet window (NV ) and direction of the traffic: assigned-to-
other (→) and other-to-assigned (←). Solid black lines show best fit Zipf-
Mandelbrot distributions as a function of d.

100 101 102 103 104 105 106 107

10-6

10-5

10-4

10-3

10-2

10-1

100

- - - pzm(d)/(1 - cerr)
pzm(d) µ 1/(d + d)a

- - - (1 - cerr) pzm(d)

- - - pgauss(d)/(1 - cerr)
pgauss(d) µ exp(-(d + 1)2/s2)

- - - (1 - cerr) pgauss(d)

network quantity (d)

fra
ct

io
n

Fig. 8. Heavy-Tail and Light-Tail Background Model. Heavy-tail distri-
bution (solid blue line) given by a Zipf-Mandelbrot distribution pzm(d) with
offset δ = 0 and exponent α = 2. Light-tail distribution (solid black line)
given by a Gaussian distribution pgauss(d) with mean µ = 1 and variance
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Figure 8 shows representative heavy-tail and light-tail dis-
tributions that are each best-fits to underlying heavy-tail obser-
vations of the type observed in Figure 7 (clearly the light-tail
distribution would be a poor fit). The simple detection theory
model begins by specifying upper and lower bounds of the
models within which all background and target observations
are expected to be found. These ranges are specified by the
single parameter cerr. The bounds are defined in terms of mul-
tiplicative factors to represent equal logarithmic spacing which
is more consistent with the high dynamic range observed in
heavy-tail distributions. Within this range a simple triangular
model is used for the expected distribution of background and
target observations (see Appendix A). These models can be
used with a single threshold parameter ccut to compute the
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expected probability of detection pd(ccut) and probability of
false alarm pfa(ccut) to produce the standard receiver operating
characteristic (ROC) curves [62], [63] (see Appendix B).

A simple baseline model covers the case when the back-
ground model and the observations are in agreement (see
Figure 9). Given the frequency of heavy-tail observations (see
Figure 7) and that light-tail statistics are the more common



analysis tool, it is important to explore the implications of
using an incorrect model on the ROC curve. Assuming the
heavy-tail observations have a maximum value of dmax and are
logarithmically binned into log2(dmax) bins, a simple model of
the effect of using a light-tail distribution on the heavy-tail data
is to assume the light-tail distribution is correct for a single bin
and incorrect for all others (Figure 8). Effectively, this means
that the light-tail model will have a fractional accuracy of
fdmax = 1/ log2(dmax). For a typical value of dmax ≈ 220, this
implies a fractional accuracy of fdmax

≈ 0.05, which places the
ROC curve in either the “all detections” or the “no detections”
regime. The corresponding ROC curves for the all detections
and no detections cases are shown in Figure 9.

Figure 7 also highlights the importance of correctly sam-
pling and splitting the data to compare with the correct heavy-
tail distribution. If the data is not sampled and split correctly,
a heavy tail distribution may be observed with significantly
different parameters than the appropriate background model.
A simple model for this effect can be extrapolated from
the previous analysis. Suppose using the incorrect heavy-tail
model mischaracterizes half the bins, this is the same as setting
fdmax ≈ 0.5 in the previous analysis, whose corresponding
ROC curve is also shown in Figure 9.

These simple models provide precise estimates of ROC
curves, but the real-world is far more complicated. A notional
representation of these ROC curves, which is perhaps more
accurate, but less precise is shown in Figure 10. The overall
interpretation of Figure 10 is that using the correct model
on the correctly split data provides good results (heavy-tail
statistics with properly split heavy-tail data), using a partially
correct model degrades the performance (heavy-tail statistics
with mixed heavy-tail data), and that using an entirely incor-
rect model results in very poor performance (light-tail statistics
with heavy-tail data).

V. CONCLUSIONS AND FUTURE WORK

Community-owned cyber space requires community-based
efforts to defend. A key to protecting our shared cyberspace
are large-scale network observations that uphold the highest
regard for privacy. Careful sensor placement, focusing, and
calibration with significant volumes of data are necessary
for the deployment network sensors. Novel focusing and
calibration procedures using high-performance GraphBLAS
anonymized hypersparse matrices are demonstrated on a multi-
billion packet dataset. Observed real-time processing rates are
consistent with high-bandwidth links and show significant data
compression, confirming previously reported measurements.
The effectiveness of these procedures at focusing the traffic
matrix is shown. The underlying stable heavy-tail statistical
distributions are also confirmed. Effective anomaly detection
depends upon accurate models of the expected distribution
and the detection theory implications of these observations are
explored with a simple model of the corresponding probability
of detection (pd) and probability of false alarm (pfa). This
model highlights the criticality of network sensor focusing
and calibration. In practical terms, once a sensor is properly

focused and calibrated it can continuously observe the network
and minimize unbrokered network connections, which are two
of the central tenets of good cybersecurity.
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APPENDIX A: BACKGROUND AND TARGET DISTRIBUTIONS

Simple triangular models of the expected distributions
around the background model can be created with just two
parameters: cerr and ccut. Let x be observed distance from the
expected background distribution p(d), where d is a measured
network quantity (see Table I). cerr sets the minimum and
maximum values of the domains of these distributions.

0 < cerr < 1

xmin = (1− cerr)

xmax = 1/(1− cerr)

where xmin < x < xmax. ccut sets the minimum and
maximum cut values used within the cumulative distributions
to label background and targets

0 < ccut < cerr

xcut
min = (1− ccut) > xmin

xcut
max = 1/(1− ccut) < xmax

For a given value of ccut, observations where xcut
min < x <

xcut
max are declared as background and observations where

x < xcut
min or x > xcut

max are declared as targets. From
these definitions, the relative, normalized, and cumulative
lower/higher background and target models can be computed.
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Fig. 11. Relative Background and Target Probabilities. The expected
distribution of background and targets as a function of the distance x from the
background model p(d) for cerr = 2/3. plow/high

back/tar
(x) is the probability of a

background/target being lower/higher that the model. Background is expected
to peak around the background model while targets are more likely away from
the background model.

(1) Relative, normalized, cumulative lower background model

plowback(x) ∝ (x− xmin)/cerr = 1 + (x− 1)/cerr

plowback(x) = 2(x− (1− cerr))/c
2
err

P low
back(x) = (1− x)(2cerr + x− 1)/c2err

(2) Relative, normalized, cumulative higher background model

phighback(x) ∝ 1− (x− 1)/(xmax − 1) = x+ (1− x)/cerr

phighback(x) = (2/cerr)(1− cerr)(x+ (1− x)/cerr)

P high
back(x) = (1− cerr)(x− 1)(cerrx+ cerr − x+ 1)/c2err

(3) Relative, normalized, cumulative lower target model

plowtar (x) ∝ 1− (x− xmin)/cerr = (1− x)/cerr

plowtar (x) = 2(1− x)/c2err

P low
tar (x) = (x− 1)2/c2err

(4) Relative, normalized, cumulative higher target model

phightar (x) ∝ (x− 1)/(xmax − 1) = (1− cerr)(x− 1)/cerr

phightar (x) = (2/c2err)(1− cerr)
2(x− 1)

P high
tar (x) = (cerr − 1)2(x− 1)2/c2err

Figure 11 and Figure 12 shows the above distributions for the
specific values of cerr = 2/3 and ccut = 1/3.

APPENDIX B: BACKGROUND AND TARGET LABELING

The four outcomes of labeling targets and background can
be computed from the corresponding cumulative probabilities
P

low/high
back/tar (x >/< xcut

min/max). The definitions of the outcomes
and their corresponding formula are [63]
TT True target labeled as a target (correct detection)

p(TT) = (1−P low
tar (x > xcut

min)+1−P high
tar (x < xcut

max))/2
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Fig. 12. Cumulative Background and Target Probabilities. The expected
probability of background and targets relative to xcut threshold for cerr =

2/3 and ccut = 1/3. P low/high
back/tar

(x >/< xcut
min/max

) is the probability of a
background/target being lower/higher than the corresponding cut threshold
xcut
min/max

. From these probabilities the four outcomes of labeling can
be computed: true targets labeled as targets (TT), true targets labeled as
background (TB), true background labeled as target (BT), and true background
labeled as background (BB).

TB True target labeled as background (missed detection)

p(TB) = (P low
tar (x > xcut

min) + P high
tar (x < xcut

max))/2

BT True background labeled as target (false alarm)

p(BT) = (1−P low
back(x > xcut

min)+1−P high
back(x < xcut

max))/2

BB True background labeled as background (correct nonde-
tection)

p(BB) = (P low
back(x > xcut

min) + P high
back(x < xcut

max))/2

From these definitions, baseline formulas for the probability
of detection (pdet) and probability of false alarm (pfa) can be
derived that are ultimately a function of the single parameter
ccut via xcut

min/max

pdet(ccut) =
N(TT)

N(TT) +N(TB)
= p(TT)

pfa(ccut) =
N(BT)

N(BT) +N(BB)
= p(BT)

where N() is the count of the corresponding outcome. Plotting
pdet(ccut) versus pfa(ccut) for different values of ccut produces
the standard receiver operating characteristic (ROC) curve [62]
(see Figure 9).

A standard enhancement to this model is to integrate over
time and assert that true detections are coherent over Nsamp

consecutive samples. This does not change pdet but can have a
significant effect on pfa. Assuming the background is random
and observations are binomially distributed between BB and
BT, the probability that a true background will be randomly
categorized as a detection in k out of Nsamp is given by

p(n(BB) = k) =

(
Nsamp

k

)
p(BB)k(1− p(BB)Nsamp−k

If an observation must appear as a detection in all Nsamp to
be a true detection, then a false alarm requires k = 0 resulting
in

pfa(ccut) = p(n(BB) = 0)

= (1− p(BB))Nsamp

= p(BT)Nsamp

since p(BT) = 1 − p(BB). This has a significant positive
impact on the shape of the ROC curve (see Figure 9).

The baseline model covers the case when the background
model and the observations are in agreement. Given the
frequency of heavy-tail observations (see Figure 7) and that
light-tail statistics are the more common analysis tool, it is
important to explore the ROC curve implications of using
a light-tail model on heavy-tail observations. Assuming the
heavy-tail observations have a maximum value of dmax and are
logarithmically binned into log2(dmax) bins, a simple model
of the effect of using a light-tail distribution on the heavy-
tail data is to assume the light-tail distribution is correct for a
single bin and incorrect for all others (Figure 8). Effectively,
this means that the light-tail model will have a fractional
accuracy of fdmax

= 1/ log2(dmax). For a typical value of
dmax ≈ 220, this implies a fractional accuracy of fdmax

≈ 0.05,
which places the ROC curve in either the “all detections” or
the “no detections” regime. The all detections regime can be
estimated by declaring all observations not in the correctly
modeled bin as detections because they satisfy the x < xcut

min

or x > xcut
max criteria. Only fdmax

of the observations could
possibly be categorized with the model and the remaining
1− fdmax

will be declared detections

pdet(ccut) = p(TT)fdmax
+ 1− fdmax

pfa(ccut) = p(BT)fdmax
+ 1− fdmax

Likewise, the no detections regime can be estimated by
declaring all observations not in the correct bin as non-
detections because they lie outside the domain of the model
the xmin < x < xmax. Only fdmax of the observations could
possibly be categorized with the model and the remaining
1− fdmax

will be declared non-detections

pdet(ccut) = p(TT)fdmax

pfa(ccut) = p(BT)fdmax

The corresponding ROC curves for the all detections and no
detections cases are shown in Figure 9.
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