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Abstract—Expanding the scientific tools available to protect
computer networks can be aided by a deeper understanding
of the underlying statistical distributions of network traffic
and their potential geometric interpretations. Analyses of large
scale network observations provide a unique window into study-
ing those underlying statistics. Newly developed GraphBLAS
hypersparse matrices and D4M associative array technologies
enable the efficient anonymized analysis of network traffic
on the scale of trillions of events. This work analyzes over
100,000,000,000 anonymized packets from the largest Internet
telescope (CAIDA) and over 10,000,000 anonymized sources
from the largest commercial honeyfarm (GreyNoise). Neither
CAIDA nor GreyNoise actively emit Internet traffic and provide
distinct observations of unsolicited Internet traffic (primarily
botnets and scanners). Analysis of these observations confirms
the previously observed Cauchy-like distributions describing
temporal correlations between Internet sources. The Gull light-
house problem is a well-known geometric characterization of
the standard Cauchy distribution and motivates a potential
geometric interpretation for Internet observations. This work
generalizes the Gull lighthouse problem to accommodate larger
classes of coastlines, deriving a closed-form solution for the
resulting probability distributions, stating and examining the
inverse problem of identifying an appropriate coastline given
a continuous probability distribution, identifying a geometric
heuristic for solving this problem computationally, and applying
that heuristic to examine the temporal geometry of different
subsets of network observations. Application of this method to the
CAIDA and GreyNoise data reveals a several orders of magnitude
difference between known benign and other traffic which can lead
to potentially novel ways to protect networks.
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I. INTRODUCTION

As the role of the Internet in day-to-day activities within
modern civilization continually deepens its roots in existing
contexts and spreads its roots even further, the necessity
for—and complexity within—cybersecurity and cyber-defense
is correspondingly made ever more apparent [1]–[7]. An
important set of tools for supporting cyber-defense are In-
ternet measurements. Enabling some of those measurements
are internet observatories and outposts such as the Center
for Applied Internet Data Analysis (CAIDA) Telescope [8]
and the GreyNoise honeyfarm [9]. The CAIDA Telescope
monitors a continuous stream of packets from an unsolicited
darkspace making up approximately 1/256 of the Internet.
CAIDA Telescope traffic is dominated by likely malicious traf-
fic (e.g., vulnerability scanners and backscatter from denial-of-
service attacks). The GreyNoise honeyfarm engages in active
conversations with potentially malicious traffic in order to as-
sociate various meta-tags to those sources [9]. These network
sensors generate trillions of events where ensuring privacy
is a paramount consideration. Newly developed GraphBLAS
hypersparse matrices and D4M associative array technologies
enable the efficient anonymized analysis of these data at this
scale and have revealed a variety of phenomena [10]–[13].

Along with packet information and other raw measurements,
aggregate measurements can be computed and include the
computation of aggregate network-theoretic quantities like
source fan-out, destination fan-in, the degree distribution of
sources and destinations, and the numbers of packets sent from
sources to destinations. These aggregate network-theoretic
quantities often follow heavy-tailed probability distributions
given by the modified Zipf-Mandelbrot model [14], [15].
The ubiquity of such heavy-tailed distributions across fields—
financial [16]–[21], natural language analysis [22], [23], and
network analysis [24]–[29]—and the fact that many traditional
light-tailed statistical techniques like the use of finite-order
moments and the Central Limit Theorem fail badly in the
heavy-tailed case [30]–[36] has underlined the importance of
exploring the underlying statistical distributions describing the
Internet.
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Fig. 1. (left) Source self-correlations among sources observed by the CAIDA darknet telescope during 2022Q1 each point represent the sources drawn a
packet window with NV = 230 valid packets. (right) Self-correlations among different categories of sources (total, malicious, unknown, and benign) in the
GreyNoise honeyfarm from 2021Q2 thru 2022Q1. Corresponding modified Cauchy parameters and full-width-half-maximum time thalf = β1/α are shown
illustrating the significant difference between benign and other traffic.

In additional to localized statistics, long-term temporal cor-
relations can be computed between internet observatories and
outposts, such as what fraction of sources from one internet
observatory’s given collection period are seen by another
internet observatory as a function of time before and after the
first observatory’s initial collection period. Prior works [37]
examine these quantities in detail and find that they may be
described via a modified Cauchy distribution of the form

p(x) ∝ β

β + xα

for some values of α, β. When α = 2, this becomes the well-
known Cauchy distribution. A geometric interpretation for the
Cauchy distribution is phrased in terms of lighthouses and
coastlines. The empirical similarity between the models found
in [37] and the Cauchy distribution—as well as the potential
similarities between the function of lighthouses and the func-
tion of internet observatories/outposts—make it conceivable
that a similar geometric interpretation could be made for the
aforementioned modified Cauchy distributions; shedding light
on the underlying geometry of the Internet.

The outline of the remainder of the paper is as follows.
First, §II presents new GraphBLAS and D4M enabled cor-
relation analysis of recent large-scale CAIDA Telescope and
GreyNoise honeyfarm observations that affirm the previously
observed modified Cauchy distributions. Next, §III briefly
describes the definition and some relevant properties of the
Cauchy distribution and presents a derivation of the Cauchy
distribution based on the Gull lighthouse problem. In §IV we
define the probability density function for the distribution of
x-coordinates of points on a sufficiently nice curve y = f(x)
given uniformly random azimuths from a fixed point not on

the curve. In §V we examine the inverse problem—given a
continuous probability distribution determining an appropriate
coastline function that gives rise to the original distribution in
the manner described in §IV. Finally, §VI recaps the major
contributions and ideas discussed in this paper and future
directions. Appendices examine the mathematical derivations
and subtleties in more detail. For the remainder of the paper,
we assume all random variables X are continuous random
variables supported on some real interval, e.g., R, [0,∞), etc.
Given a random variable X , pX denotes the probability density
function, and FX denotes the complementary cumulative
distribution function.

II. LARGE-SCALE TEMPORAL CORRELATIONS

The CAIDA darknet telescope is a significant portion of a
globally routed /8 network carrying essentially no legitimate
traffic since it is an Internet darkspace, providing an ideal
vantage point by which to observe and study unsolicited
anomalous traffic. The GreyNoise honeyfarm is made up of
thousands of servers carrying out conversations with sources
scanning the Internet; based on these conversations GreyNoise
can associate various metadata with those sources to collec-
tively build a refined picture of the malicious sources regularly
scanning the Internet and the techniques they employ.

CAIDA collects over 1,000,000,000,000 unique packets
each month from hundreds of millions of unique sources,
while GreyNoise converses with several millions of unique
sources each month. The sheer amount of data requires
advanced technology to analyze [38]–[40], making essential
use of the MIT SuperCloud supercomputing center as well as
massively parallel GraphBLAS and D4M hierarchical hyper-
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Fig. 2. (left) CAIDA noon self-correlations amongst sources with 2i ≤ d < 2i+1 packets over the range 0 ≤ i ≤ 5 along with corresponding best-fit modified
Cauchy distribution. (right) CAIDA noon and midnight full-width-half-maximum time thalf over the source packet ranges corresponding to 0 ≤ i ≤ 20. The
correlation time is typically days, with a notable exception in the range 21 ≤ d < 22 which has a correlation time of a few minutes.

sparse matrices. The latter technologies have made it possible
to analyze hundreds of billions of packets in minutes [12],
[14], [41], [42]. These prior analyses have revealed consistent
scaling relations across both the space- and time-domains [14],
[15], [25], [37], [43].

Among these analyses is previous work examining and
modeling the temporal correlations between sources seen by
both CAIDA and GreyNoise [37]. Specifically, the cross-
correlation of CAIDA sources with varying numbers of pack-
ets 2i ≤ d < 2i+1 with GreyNoise data over a 15 month
span were computed. The source cross-correlations were fit to
Gaussian, Cauchy, and modified Cauchy distributions, with
the data being well-approximated by the modified Cauchy
distribution with exponent α ≈ 3/4.

Definition II.1 (modified Cauchy distribution). A modified
Cauchy distribution is any probability distribution with prob-
ability density function

p(x) ∝ β

β + |x|α

where α, β > 0, denoted ModCauchy(β, α).

When α ≤ 1, the integral
∫∞
−∞

β
β+xα dx diverges, necessitating

restriction of the distribution to a bounded domain. While
being supported on a bounded domain means that the notion
of being heavy-tailed does not apply, the fact that the Cauchy
distribution is heavy-tailed and ratio of the Cauchy distribution
to the modified Cauchy distribution

lim
x→±∞

β
β+|x|α

1
1+x2

= lim
x→±∞

β(1 + x2)

β + |x|α
=∞

whenever 0 < α < 2 suggests that the modified Cauchy
distribution acts like a heavy-tailed distribution. The full-

width-half-maximum xhalf of the modified Cauchy distribution
is given by

1

2
=

β

β + |xhalf |α

resulting in xhalf = β1/α and is a useful measure of correlation
decay rate.

While [37] examined the temporal correlations between
sources seen by two different internet observatories, the ap-
plicability of the modified Cauchy distributions can be seen to
extend to the self-correlations of sources within recent CAIDA
and GreyNoise data sets.

Figure 1 (left) shows self-correlations among anonymized
sources observed at noon or midnight by the CAIDA telescope
in 2022Q1. Each data point represents the sources drawn
from a valid packet window with NV = 230 CAIDA packets
collected over a few minutes. This sample represents over
100,000,000,000 packets in total. Such volumes of data are
ideal for GraphBLAS hierarchical hypersparse matrices to
process in a timely manner [14].

Figure 1 (right) shows self-correlations among different
categories of anonymized sources (total, malicious, unknown,
and benign) in the GreyNoise honeyfarm from 2021Q2 thru
2022Q1. The string format and smaller scale of the GreyNoise
sources (≈10,000,000) are well-suited for D4M hierarchical
associative arrays [14].

Both Figure 1 (left) and (right) show the parameters for
the modified Cauchy distributions which closely model the
self-correlation plots, producing modified Cauchy distributions
with exponents αtotal ≈ 0.45, αnoon ≈ 0.3, αmidnight ≈ 0.25,
αunknown ≈ 0.52, αmalicious ≈ 0.74, and αbenign ≈ 0.34. Sim-
ilarly shown are the corresponding full-width-half-maximum
time thalf for each distribution and illustrates the significant
difference in correlation time between benign traffic (years)
and other traffic (hours to days).



The CAIDA data has sufficient volume to be able to further
look at the self-correlations within ranges of packets. Figure 2
(left) shows the CAIDA self-correlations amongst sources with
2i ≤ d < 2i+1 packets over the range 0 ≤ i ≤ 5 along with
corresponding best-fit modified Cauchy distributions, further
affirming the model. Figure 2 (right) shows the corresponding
full-width-half-maximum time thalf over the source packet
ranges corresponding to 0 ≤ i ≤ 20, illustrating that the
correlation time is typically days, with a notable exception
in the range 21 ≤ d < 22, which has a correlation time of a
few minutes.

III. CAUCHY DISTRIBUTION—PROPERTIES & GEOMETRY

The standard Cauchy distribution has a geometric interpre-
tation often phrased in terms of lighthouses and coastlines,
which may offer geometric insight into Internet data. First,
recall the definition of the Cauchy distribution.

Definition III.1 (Cauchy distribution [30]). The Cauchy dis-
tribution is the continuous probability distribution with prob-
ability density function

p(x) =
1

π(1 + x2)

The Cauchy distribution is often used as a canonical example
of a “pathological” continuous distribution, having no finite
moments of order greater than or equal to 1 [30]–[32]. Addi-
tionally, the Cauchy distribution is a heavy-tailed distribution.

Definition III.2 (heavy-tailed [30]). A random variable X
is right heavy-tailed if its support contains [M,∞) for some
M ∈ R and its complementary cumulative distribution func-
tion FX satisfies, for any µ > 0,

lim sup
x→∞

FX(x)

e−µx
=∞

X is left heavy-tailed if −X is right heavy-tailed. X is heavy-
tailed if it is either left or right heavy-tailed. A statistical
distribution is heavy-tailed if any (equivalently, every) random
variable with that distribution is heavy-tailed.

Proposition 1 ( [30]). The Cauchy distribution is both left and
right heavy-tailed.

Proof. We use l’Hopital’s Rule to show that
limx→∞ eµx

(
1
2 −

1
π arctan(x)

)
= ∞, based on the observa-

tion that limx→∞
(
1
2 −

1
π arctan(x)

)
= limx→∞ e−µx = 0.

Indeed,

lim
x→∞

d
dx

(
1
2 −

1
π arctan(x)

)
d
dx (e−µx)

= lim
x→∞

− 1
π

1
1+x2

−µe−µx

= lim
x→∞

1

πµ

eµx

1 + x2

=∞

Showing the Cauchy distribution is left heavy-tailed is analo-
gous.

A traditional geometric interpretation of the Cauchy distri-
bution is by way of the Gull lighthouse problem (see Figure 3)
and is stated as follows

[44] A lighthouse is somewhere off a piece of
straight coastline at position x0 along the coast and a
distance y out to sea. It emits a series of short, highly
collimated flashes at random intervals and hence at
random azimuths [θ]. These pulses are intercepted
on the coast by photo-detectors that record only the
fact that a flash has occurred, but not the azimuth
from which it came. N flashes have so far been
recorded at positions xi (i = 1, 2, . . . , N ). Where
is the lighthouse?

While the original problem is concerned with finding the
location of the lighthouse given a finite sequence of recorded
positions, the Bayesian approach inverts the problem by first
determining what the probability distribution of coastline
positions is given the location of the lighthouse has been
fixed—this distribution is our Cauchy distribution. Carrying
out this analysis, the relation between the azimuth θ and
the corresponding coastline position x is x = x0 + y tan(θ)

or, alternatively, θ = arctan
(

x−x0

y

)
, as seen in Figure 4.

Let X and Θ be the random variables for coastline position
and azimuth, respectively. Making use of the probability
transformation rule, we then have

pX(x) = pΘ(θ)

∣∣∣∣ dθdx
∣∣∣∣ = 1

π

y

y2 + (x− x0)2

When x0 = 0 and y = 1, we get the familiar Cauchy
distribution. For the remainder of the paper we assume x0 = 0
for simplicity.
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Fig. 3. Gull lighthouse problem predicts the distribution of flashes seen at
any point on a coastline by a randomly flashing lighthouse.

IV. COASTLINES TO PROBABILITY DISTRIBUTIONS

A geometric derivation can be carried out similar to that
of the lighthouse-coastline interpretation of the Cauchy dis-
tribution that generalizes the situation to allow for a much
wider class of coastlines. Namely, we require that a real-valued



Fig. 4. Geometric setup for a straight coastline (y = 0) with respect to a
lighthouse located at (x0, y0). The azimuth θ and the corresponding coastline
position (x, 0) are related by the equations x = x0 + y0 tan(θ) and θ =
arctan((x− x0)/y0).

function f of a real variable satisfy the following condition
for the corresponding probability distribution to be defined.

Definition IV.1 (coastline condition). A differentiable function
f : (a, b) → R (where −∞ ≤ a < b ≤ ∞) satisfies the
coastline condition with respect to a point (0, y0) ∈ R2 if:

• (0, y0) does not belong to the graph of f .
• The function θ : (a, b)→ (−π, π) defined by

θ(x) : =


arctan

(
x

y0 − f(x)

)
if y0 ≥ f(x),

arctan

(
x

f(x)− y0

)
otherwise,

+sgn(x)
π

2

is injective.
In this case, the limits limx→a+ θ(x) and limx→b− θ(x) are
the azimuthal bounds of f .1

Given a point (0, y0) ∈ R2 as a stand-in for our light-
house and a coastline f : (a, b) → R satisfying the coastline
condition above, the following distribution has the geometric
interpretation that it is the probability distribution for the
random variable X which is the x-coordinate of a point on
the graph of f determined uniquely from an azimuthal angle
Θ chosen uniformly at random from some azimuthal bounds.
See Appendix A for more details about the derivation.

Definition IV.2 (generalized Cauchy distribution). Given a
point (0, y0) ∈ R2 and a differentiable function f : (a, b)→ R
satisfying the coastline condition with respect to (0, y0), a
random variable is GenCauchy(0, y0; f) if

pX(x) =
1

β − α

(y0 − f(x)) + xf ′(x)

x2 + (y0 − f(x))2
(1)

where −π ≤ α < β ≤ π are the azimuthal bounds of f .

1The limits limx→a+ θ(x) and limx→b− θ(x) automatically exist by
the Monotone Convergence Theorem as θ is bounded and monotonic (θ is
continuous since f is differentiable so injectivity implies monotonicity).

As a sanity check we can show that Equation 1 is consis-
tent with the motivating example of the Cauchy distribution.
Substituting the flat coastline f(x) : = 0, azimuthal bounds
−π/2 < θ < π/2, and lighthouse position (0, y0) = (0, 1) in
Equation 1 yields pX(x) = 1

π ·
1

1+x2 , as desired.
As an additional example, consider the case of a lower

unit semicircle coastline centered at the lighthouse position
(0, y0) : = (0, 1), so that f : [−1, 1] → R is defined by
f(x) : = 1 −

√
1− x2 and azimuthal bounds −π/2 ≤ θ ≤

π/2. Then

pX(x) =
1

π
·
1− (1−

√
1− x2) + x · −x√

1−x2

x2 + (1− (1−
√
1− x2))2

=
1

π
·
(√

1− x2 − x2

√
1− x2

)
=

1

π
· 1√

1− x2

Another characterization of this distribution
GenCauchy(0, 1; semicircle) is as an arcsine-distributed
random variable supported on [−1, 1], Arcsine(1, 1), and
agrees with existing geometric interpretations of arcsine-
distributed random variables in terms of the x-coordinate of
a point uniformly chosen from the circumference of a circle.

V. PROBABILITY DISTRIBUTIONS TO COASTLINES

Given a continuous probability distribution with probability
density function p supported on the interval I , when can we
express p in the form

p(x) ∝ (y0 − f(x)) + xf ′(x)

x2 + (f(x)− y0)2

for some appropriate coastline f and lighthouse position
(0, y0)? One method to do so makes use of the fact that (fixing
(0, y0) ∈ R and α, β ∈ (−π, π)) the existence of such an
f necessitates the existence of a solution to the first-order
differential equation

y′ =
1

x

(
y − (β − α)p(x)(x2 + y2)

)
(2)

where y = y0 − f(x). There are several difficulties with this
approach:

• Equation 2 is a nonexact, nonlinear ODE.
• The function

(x, y) 7→ 1

x

(
y − (β − α)p(x)(x2 + y2)

)
has an essential discontinuity on the line x = 0, prevent-
ing standard existence theorems like the Carathéodory’s
Existence Theorem from implying the existence of local
solutions on neighborhoods intersecting the line x = 0
which is problematic when 0 ∈ (α, β).

• Standard techniques like first order finite differences and
Runge-Kutta do not seem to address the general case well.

Even in the case where local solutions can be shown to
exist, to have a complete geometric interpretation of the
given probability distribution we must have a global solution



y = f(x) supported on the same interval I upon which our
probability distribution is supported. Moreover, f must be such
that the rays from the lighthouse position (0, y0) corresponding
to the azimuths α and β intersect the graph of f at the
endpoints of I .

Instead, a numerical approach making use of a geometric
heuristic is taken. First, some geometric setup: Suppose a
coastline f is known along with a lighthouse position (0, y0)
and azimuthal bounds α ≤ θ ≤ β. Given θ ∈ (α, β), let:

• P = (x, f(x)) is the point on the coastline f correspond-
ing to the azimuth θ;

• ℓ is the line tangent to f at P ;
• φ ∈ [0, π) is the measure of the angle swept from the ray−→

LP to ℓ, where L = (0, y0);
• ω ∈ [0, π/2] is the measure of the acute angle formed

between ℓ and the x-axis when ℓ is not horizontal and
ω = 0 when ℓ is horizontal.

Figure 5 illustrates this setup in the case where ℓ has positive
slope and P is in the upper-half-plane. When ℓ has positive
slope, we may calculate ω = θ + φ − π

2 while when ℓ has
negative slope we instead have ω = π

2 − θ − φ. When ℓ has
positive slope then f ′(x) = tan(ω); when ℓ has negative slope
then f ′(x) = − tan(ω) = tan(−ω); finally, when ℓ has zero
slope then θ = π

2−φ so tan(θ+φ− π
2 ) = tan(0) = 0 = f ′(x).

In all cases we find that

f ′(x) = tan
(
θ + φ− π

2

)
meaning that for 0 < δ small

f(x+ δ) ≈ f(x) + δ tan
(
θ + φ− π

2

)

Fig. 5. Illustration of the angle measures identified for use in the sine-squared
heuristic p(x) ∝ sin(φ(x))2, where x is the first coordinate of the point on
the coastline y = f(x) corresponding to the azimuth θ. The remaining angle
measures φ, ω are taken with respect to the line tangent to y = f(x) at
(x, f(x)).

With this setup in mind, we may approximate f by making
the assertion

p(x) = β−1 sin(φ(x))2

for some β > 0, or, since φ ∈ [0, π],

φ(x) = arcsin
(√

βp(x)
)

(∗)

and iteratively calculate f(xi + δi) from f(xi) and step-
sizes δi : = xi+1 − xi. Algorithm 1 computes a sequence
(fi)

N
i=1 from a predetermined lighthouse position (0, y0), a

probability density function p supported on [a, b], and a
partition a = x1 < x2 < · · · < xN = b of [a, b]; the sequence
(fi)

N
i=1 approximates a coastline function f : [a, b]→ R with

f(xi) : = fi for i = 1, 2, . . . , N . Appendix B examines some
of the limitations of this sine-squared heuristic.

input : lighthouse position (0, y0);
β a proportionality constant;
p a probability density function supported on

[a, b];
x = (xi)

N
i=1 ∈ [a, b]N a strictly increasing

sequence with x1 = a and xN = b;
output: f = (fi)

N
i=1 approximate coastline

y-coordinates;

1 initialization;
2 δ ← (xi+1 − xi)

N−1
i=1 ;

3 φ←
(
arcsin(

√
βp(xi))

)N
i=1

;

4 f ← (0)Ni=1;
5 θ ← (0)N−1

i=1 ;
6 for i← 1 to N − 1 do
7 if fi ≤ y0 then

8 θi ← arctan

(
xi

y0 − fi

)
;

9 else

10 θi ← arctan

(
fi − y0

xi

)
+ sgn(xi)

π

2
;

11 end
12 fi+1 ← fi + δi tan

(
θi + φi −

π

2

)
;

13 end
Algorithm 1: Approximation of coastline function f from
given probability density function p : [a, b] → R on parti-
tion a = x1 < x2 < · · · < xN = b using the sine-squared
heuristic φ(x) = arcsin(

√
βp(x)). A lighthouse position

(0, y0) and a proportionality constant β must be defined
ahead of time and the value f(0) is implicitly set to 0.

Applying this sine-squared heuristic to the self-correlations
shown in Figure 1 produces the coastlines seen in Figure 6.
This geometric representation of the CAIDA and GreyNoise
source correlations for different CAIDA collection times and
GreyNoise classifications illustrate the significant geometric
differences between coastlines of these observations. Most
apparent is the stark difference between sources classified
by GreyNoise as benign and all other sources. The 100x
separation seen in benign coastlines provides a potentially
useful geometric interpretation of this network traffic.

VI. CONCLUSION & FUTURE WORK

Large scale network observations provide a unique window
on the Internet. Newly developed GraphBLAS hypersparse
matrices and D4M associative array technologies enable the
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Fig. 6. Coastlines generated for the modified Cauchy distributions associated with CAIDA noon/midnight and GreyNoise malicious/unknown/benign
observations. The over 100x separation between GreyNoise benign and the other coastlines provides a potentially useful geometric interpretation of this
network traffic.

efficient anonymized analysis of these data at large scale. This
work analyzes over 100,000,000,000 anonymized packets from
the largest Internet telescope (CAIDA) and over 10,000,000
anonymized sources from the largest commercial honeyfarm
(GreyNoise). Extending the geometric interpretation of the
Cauchy distribution in terms of lighthouses and coastlines
provides new geometric interpretations of a much wider class
of distributions than seen previously. This paves the road
towards further geometric tools for studying fields based on
their statistical distributions, with a particular eye towards
temporal correlations in the cyber-sphere where it has been
consistently observed that Cauchy-like probability distribu-
tions (so-called modified Cauchy distributions) are ubiquitous.
We have examined the mathematical difficulties inherent in
this approach, namely in the direction of finding an appropriate
coastline function given a probability density function, and
suggested and evaluated a geometric heuristic for numerically
solving this problem. Applying this heuristic to CAIDA and
GreyNoise reveals 100x separation of benign coastlines which
may be a potentially useful geometric interpretation of this
network traffic.

Future work will focus on further refining the sine-squared
heuristic, including the identification of properties of proba-
bility density functions that might lead to better or worse per-
formance such as first and second derivative signs and deter-
mination of best practices addressing those properties. Further
examination of the first-order ordinary differential equation
Equation 2 is also needed in order to determine whether
any existing theory guarantees existence and/or uniqueness
of local solutions and under what conditions (if any) local
existence and uniqueness can be extended to global existence
and uniqueness. Likewise, further exploration of the landscape
of numerical techniques for solving ill-behaved ordinary dif-
ferential equations might lead to alternative numerical methods

for solving the aforementioned problem of finding a coastline
function given a probability density function.
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[35] M. Stehlı́k, R. Potocký, H. Waldl, and Z. Fabián, “On the
favorable estimation for fitting heavy tailed data,” Computational
Statistics, vol. 25, no. 3, pp. 485–503, Sep 2010. [Online]. Available:
https://doi.org/10.1007/s00180-010-0189-1

[36] F. Benaych-Georges, A. Guionnet, and C. Male, “Central limit theorems
for linear statistics of heavy tailed random matrices,” Communications
in Mathematical Physics, vol. 329, no. 2, pp. 641–686, Jul 2014.
[Online]. Available: https://doi.org/10.1007/s00220-014-1975-3

[37] J. Kepner, M. Jones, D. Andersen, A. Buluc, C. Byun, K. Claffy,
T. Davis, W. Arcand, J. Bernays, D. Bestor, W. Bergeron, V. Gadepally,
D. Grant, M. Houle, M. Hubbell, H. Jananthan, A. Klein, C. Meiners,
L. Milechin, A. Morris, J. Mullen, S. Pisharody, A. Prout, A. Reuther,
A. Rosa, S. Samsi, D. Stetson, C. Yee, and P. Michaleas, “Temporal
correlation of internet observatories and outposts,” in 2022 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2022, pp. 247–254.

[38] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing.” Parallel Processing Letters, vol. 17, pp.
5–20, 03 2007.

[39] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available:
https://doi.org/10.1137/07070111X
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APPENDIX A: GENERALIZED CAUCHY DISTRIBUTION

Let—as in the derivation of the Cauchy distribution—X and
Θ be random variables for the first coordinate of the coastline
position and the azimuth, respectively. This implies

pX(x) = pΘ(θ(x))

∣∣∣∣dθ(x)dx

∣∣∣∣
=

1

β − α
· (y0 − f(x)) + xf ′(x)

x2 + (f(x)− y0)2
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when the coastline is the image of a real-valued function of a
real variable f . Given the lighthouse is at position (0, y0), if
for each azimuth θ ∈ (α, β) the flash is seen on the coastline
at a distance of r(θ) away from the lighthouse’s position, then
we have

x = r(θ) sin(θ),

y = y0 − r(θ) cos(θ)

As such, x2 + (y0 − y)2 = r(θ)2, hence r(θ) =√
x2 + (y0 − y)2 since r(θ) ≥ 0 for all values of θ. With

this in mind, we may solve for θ to find

θ = arccos

(
y0 − y√

(y0 − y)2 + x2

)
For brevity, let ŷ : = y0 − y, noting that ŷ′ = dŷ

dx = − dy
dx .

Then

dθ

dx
= −

ŷ′
√

x2+ŷ2−ŷ 2xx′+2ŷŷ′

2
√

x2+ŷ2

x2+ŷ2√
1−

(
ŷ√

x2+ŷ2

)2

= −
ŷ′(x2+ŷ2)−ŷ(x+ŷŷ′)

(x2+ŷ2)3/2√
x2+ŷ2

x2+ŷ2 − ŷ2

x2+ŷ2

= −x2ŷ′ + ŷ2ŷ′ − xŷ − ŷ2ŷ′

(x2 + ŷ2)3/2
√

x2

x2+ŷ2

= − x

|x|
xŷ′ − ŷ

x2 + ŷ2

= sgn(x)
(y0 − y) + xy′

x2 + (y − y0)2

APPENDIX B: LIMITATIONS OF SINE-SQUARED HEURISTIC

As a mechanism for testing the applicability of our heuristic
(∗), Figure 7 (top) plots the probability density functions
of the Gaussian distribution (Gaussian(0, 1)), the Cauchy
distribution (Cauchy(1)), the modified Cauchy distribution
(ModCauchy(1, 3/4)), and the generalized Cauchy distribu-
tions obtained by using as coastline the lower unit semicircle
centered at (0, 1), the 45◦ line y = x, and the 135◦ line
y = −x. In addition, the generalized Cauchy distributions
obtained by using the lighthouse position (0, 1) and coastlines
generated from the sine-squared heuristic (∗) are plotted
against the original distributions. The values of β used within
the sine-squared heuristic have been chosen between 0 and
5 to minimize the L2 norm between the original and re-
obtained probability density functions. We observed that the
heuristic works best when the probability density function
p is decreasing, so for the generalized Cauchy distribution
corresponding to the lower unit semicircle centered at (0, 1)
the heuristic was applied on the interval [−0.9, 0] and flipped
horizontally across the y-axis. A similar approach was needed
for the generalized Cauchy distributions corresponding to the
coastlines y = x and y = −x by separating the intervals
[−5, 1/2], [1/2, 5] for the former ((1/2, 1/2) is the closest

point on y = x to (0, 1)) and [−5,−1/2], [−1/2, 5] for the
latter (similarly, (−1/2, 1/2) is the closest point on y = −x
to (0, 1)), though it was necessary to explicitly set the value
of f1 prior to the recursion in Algorithm 1 since otherwise the
algorithm sets f1 = 0 which would lead to a discontinuous
coastline.

For appropriately selected β, the heuristic qualitatively re-
obtained the probability density functions in all cases, and
obtained very closely matched quantitative results in the cases
of Gaussian(0, 1), Cauchy(1), GenCauchy(0, 1; y = x),
and GenCauchy(0, 1; y = −x). The quantitative differ-
ences in the heuristic re-obtained probability density func-
tion for ModCauchy(1, 3/4) are sufficiently small as to
not effective the overall geometric interpretation of the re-
sults in Figure 6. The decay rates were roughly propor-
tional and might be attributable to normalization difficul-
ties since ModCauchy(1, 3/4) is not supported on all of
R and hence normalization constants depend upon the arbi-
trarily declared domain. The larger differences seen in the
GenCauchy(0, 1; semicircle) probability density function are
perhaps due to its high positive concavity and warrant further
investigation.

randomly flashing 
rotating lighthouse
(Internet sources)

coastline 
shape

observed 
flashes

Gaussian
Gaussian (heuristic)
Cauchy
Cauchy (heuristic)
Modified Cauchy (alpha=3/4)
Modified Cauchy (alpha=3/4) (heuristic)
Semicircle coastline
Semicircle coastline (heuristic)
y=x coastline
y=x coastline (heuristic)
y=-x coastline
y=-x coastline (heuristic)

Fig. 7. (top) Plots of distributions Gaussian(0, 1),
Cauchy(1), ModCauchy(1, 3/4), GenCauchy(0, 1; semicircle),
GenCauchy(0, 1; y = x), and GenCauchy(0, 1; y = −x) (solid plots)
versus the generalized Cauchy distributions obtained by using the lighthouse
position (0, 1) and coastlines generated from the sine-squared heuristic (∗)
(dashed plots with same color as the corresponding original distribution).
The values of the proportionality constant β utilized in the heuristic (∗) were
chosen beween 0 and 5 to minimize L2 norm after normalizing the generated
generalized Cauchy distributions to agree with their corresponding original
distributions at the minimum x value. (bottom) Plots of the coastlines
generated from the solid-line probability distributions and generating the
dashed-line probability distributions illustrated in Figure 7, matched by color.
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