
Deployment of Real-Time Network Traffic Analysis
using GraphBLAS Hypersparse Matrices

and D4M Associative Arrays
Michael Jones1, Jeremy Kepner1, Andrew Prout1, Timothy Davis2, William Arcand1, David Bestor1,

William Bergeron1, Chansup Byun1, Vijay Gadepally1, Micheal Houle1, Matthew Hubbell1, Hayden Jananthan1,
Anna Klein1, Lauren Milechin1, Guillermo Morales1, Julie Mullen1, Ritesh Patel1, Sandeep Pisharody1,

Albert Reuther1, Antonio Rosa1, Siddharth Samsi1, Charles Yee1, Peter Michaleas1
1MIT, 2Texas A&M

Abstract—Matrix/array analysis of networks can provide sig-
nificant insight into their behavior and aid in their operation
and protection. Prior work has demonstrated the analytic, per-
formance, and compression capabilities of GraphBLAS (graph-
blas.org) hypersparse matrices and D4M (d4m.mit.edu) asso-
ciative arrays (a mathematical superset of matrices). Obtaining
the benefits of these capabilities requires integrating them into
operational systems, which comes with its own unique challenges.
This paper describes two examples of real-time operational
implementations. First, is an operational GraphBLAS implemen-
tation that constructs anonymized hypersparse matrices on a
high-bandwidth network tap. Second, is an operational D4M
implementation that analyzes daily cloud gateway logs. The
architectures of these implementations are presented. Detailed
measurements of the resources and the performance are collected
and analyzed. The implementations are capable of meeting their
operational requirements using modest computational resources
(a couple of processing cores). GraphBLAS is well-suited for
low-level analysis of high-bandwidth connections with relatively
structured network data. D4M is well-suited for higher-level
analysis of more unstructured data. This work demonstrates that
these technologies can be implemented in operational settings.

Index Terms—network analysis, packet capture, streaming
graphs, hypersparse matrices, associative arrays, real-time anal-
ysis

I. INTRODUCTION

Matrix/array-based analysis of graphs and networks can
provide significant insight into their behavior and aid in
their operation and protection [1]–[19]. Extensive prior work
has demonstrated the analytic, performance, and compression
capabilities of the open standard GraphBLAS – Graph Basic
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Fig. 1. Generic Streaming Network Traffic Quantities. Network traffic
streams of NV valid packets are divided into a variety of quantities for anal-
ysis: source packets, source fan-out, unique source-destination pair packets
(or links), destination fan-in, and destination packets. Figure adapted from
[38].

Linear Algebra Subprograms – (graphblas.org) hypersparse
matrices and D4M – Dynamic Distributed Dimensional Data
Model – (d4m.mit.edu) associative arrays (a mathematical
superset of matrices) [20]–[37].

A primary benefit of matrix/array-based analysis of graphs
and networks is the efficient computation of a wide range
of analytics quantities via simple mathematical formulas.
Figure 1 illustrates essential quantities found in all streaming
dynamic networks. In real-world applications of streaming
graph/network data, it is common to filter the events/packets
to a valid set for any particular analysis. Such filters may limit
particular sources, destinations, protocols, and time windows.
At a given time t, NV consecutive valid events/packets are
aggregated from the traffic into a hypersparse matrix or
associative array At, where At(i, j) is the number of valid
events/packets between the source i and destination j. The
sum of all the entries in At is equal to NV∑

i,j

At(i, j) = NV

All the network quantities depicted in Figure 1 can be readily
computed from At using the formulas listed in Table I. If
the events/packets are mostly unique, an N×N matrix with a
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TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES/ARRAYS

Formulas for computing network quantities from traffic matrix/array At at
time t in both summation and matrix notation. 1 is a column vector of all
1’s, T is the transpose operation, and | |0 is the zero-norm that sets each
nonzero value of its argument to 1 [39]. These formulas are unaffected by
permutations and will work on anonymized data. Table adapted from [40].

Aggregate Summation Matrix/Array
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets maxij At(i, j) max(At)

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Packets from source i

∑
j At(i, j) At1

Max source packets maxi
∑

j At(i, j) max(At1)
Source fan-out from i

∑
j |At(i, j)|0 |At|01

Max source fan-out maxi
∑

j |At(i, j)|0 max(|At|01)
Unique destinations

∑
j |

∑
i At(i, j)|0 |1TAt|01

Destination packets to j
∑

i At(i, j) 1T|At|0
Max destination packets maxj

∑
i At(i, j) max(1T|At|0)

Destination fan-in to j
∑

i |At(i, j)|0 1T At

Max destination fan-in maxj
∑

i |At(i, j)|0 max(1T At)

given number of events/packets NV can be denoted as dense
(NV ∼ N2), sparse (NV ∼ N ), or hypersparse (NV ≪ N )
[41]. Associative arrays are a superset of matrices and extend
the index and value sets of matrices to be any strict totally
orderable set, which allows using unstructured data, such as
strings, as either indices or values. By design, associative
arrays are almost always hypersparse. Mathematically, both
hypersparse matrices and associative arrays are defined as
mappings from row keys I and column keys J to a value
set V

A : I×J → V

In this context, the hypersparse matrices have I = J =
{0, . . . , 232 − 1}; V are real numbers approximated as double
precision floating point values. Likewise, the associative arrays
have I = J = V that are all strict totally ordered sets
approximated as strings.

The ability to handle hypersparse and/or unstructured data
allows simple algebraic equations to be used to analyze
streaming network data. Obtaining the benefits of these ca-
pabilities in real-world applications requires integrating them
into operational systems, which comes with its own unique
challenges. This paper describes two such instances of real-
time operational implementations as follows. First, building
on prior work [30], an operational GraphBLAS implemen-
tation that constructs anonymized hypersparse matrices on
a high-bandwidth network tap. Second, an operational D4M
implementation that analyzes daily cloud gateway logs. The
architectures of these implementations are presented. De-
tailed measurements of the resources and the performance
are collected and analyzed. The goal is to illustrate to others
some effective architectures for deploying matrix/array-based
analysis on streaming networks and to set the expectations on
the potential rates and resources required.
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Fig. 2. GraphBLAS Real-Time Deployment - Flow. The Internet subrange
is announced by the operator, and routed there, where an optical splitter routes
traffic to a server containing an Endace DAG 10X2-P capture card which
filters out do-not-observe traffic before multicasting it onto a private VLAN.
LibTrace [42] multicast clients on servers and VMs with interfaces on that
private VLAN can subscribe to a multicast group and receive the raw feed
split up into 8 separate streams.
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Fig. 3. GraphBLAS Real-Time Deployment - LibTrace. A program running
in a VM on an analysis cloud can use the LibTrace software to subscribe to
a multicast group providing trace streams of the network traffic data. The full
feed is broken up into 8 separate streams, which can be processed by separate
threads in an application implementing the LibTrace API. The per-packet API
callback is used to extract the source and destination IP addresses from each
individually arriving packet and append them into a per-thread/per-stream
packet buffer. When 217 packets are received by one of these per-packet
stream processing threads, it publishes this block to a single reporter thread,
which appends newly-arriving blocks of 217 packets together in a larger buffer.
After 223 packets (64 published blocks) are received by the reporter thread, it
loops through each element of this larger block, anonymizing each IP address
before building (row, col, packet count) vectors out of them. The vectors
for each set of 217 packets are then used to build a 232×232 anonymized
hypersparse GraphBLAS matrix. The GraphBLAS matrices are serialized,
compressed using Zstd level 1, and the result is saved to disk as 64 files
inside a single UNIX TAR file representing 223 packets.

II. GRAPHBLAS REAL-TIME DEPLOYMENT

The data volumes, processing requirements, and privacy
concerns of analyzing a significant fraction of the Internet
have been prohibitive. The North American Internet generates
billions of non-video Internet packets each second [43], [44].
The GraphBLAS standard provides significant performance
and compression capabilities which improve the feasibility
of analyzing these volumes of data. Specifically, the Graph-
BLAS is ideally suited for both constructing and analyzing
anonymized hypersparse traffic matrices. Prior work with the
GraphBLAS has demonstrated rates of 200 billion hypersparse
matrix entries per second on a supercomputer [45], while
achieving compressions of 1 bit per packet [31], and enabling
the analysis of the largest publicly available historical archives
with over 40 trillion packets [46].

It should be noted, that GraphBLAS anonymized hy-
persparse traffic matrices represent only one set of design
choices for analyzing network traffic. Specifically, the use
case requiring some data on all packets (no down-sampling),
high performance, high compression, matrix-based analysis,
anonymization, and open standards. There are a wide range



of alternative graph/network analysis technologies and many
good implementations achieve performance close to the limits
of the underlying computing hardware [47]–[57]. Likewise,
there are many network analysis tools that focus on providing
a rich interface to the full diversity of data found in network
traffic [58], [59]. Each of these technologies has appropriate
use cases in the broad field of Internet traffic analysis.

The operational implementation described here builds on
prior work [30] that demonstrated the ability of GraphBLAS
to construct anonymized hypersparse traffic matrices at rates
consistent with terabit networks using a few processing cores.
The mathematical functionality is briefly summarized as fol-
lows.

A. Mathematics and Anonymization

An essential aspect of this implementation is the use of
constant packet, variable time sample windows, each with the
same number of events/packets (denoted NV ). Network traffic
is dynamic and exhibits varying behavior on a wide range of
time scales. A given packet window size NV will be sensitive
to phenomena on its corresponding timescale. Determining
how network quantities scale with NV provides insight into
the temporal behavior of network traffic. Constant packet,
variable time samples simplify the statistical analysis of the
heavy-tail distributions commonly found in network traffic
quantities [60]. The contiguous nature of these data allows the
exploration of a wide range of packet windows typically from
NV = 217 (sub-second) to NV = 227 (minutes), providing a
unique view into how network quantities depend upon time.
Efficient computation of network quantities on multiple time
scales can be achieved by hierarchically aggregating data in
different time windows [31].

Internet data must be handled with care requiring trusted
data sharing best practices that combine anonymizing source
and destinations with data sharing agreements. These data
sharing best practices are the basis of the architecture pre-
sented here and include the following principles [61]

• Data is made available in curated repositories
• Using standard anonymization methods where needed:

hashing, sampling, and/or simulation
• Registration with a repository and demonstration of le-

gitimate research need
• Recipients legally agree to neither repost a corpus nor

deanonymize data
• Recipients can publish analysis and data examples nec-

essary to review research
• Recipients agree to cite the repository and provide pub-

lications back to the repository
• Repositories can curate enriched products developed by

researchers
Collection at the network source allows the data owner to
construct and own the anonymization scheme and only share
anonymized data under trusted data sharing agreements with
the parties tasked with analyzing the data [62].

One of the important capabilities of the SuiteSparse Graph-
BLAS library is efficient support of hypersparse matrices

raw endpoint records
timestamp SrcIP DstIP SrcPort DestPort user ID

t1 0.0.0.1 0.0.0.2 49754 53 1001

t2 0.0.0.1 0.0.0.3 56873 53 1003

t3 0.0.0.1 0.0.0.4 56960 53 1002

t4 0.0.0.1 0.0.0.2 34404 53 1001
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Fig. 4. D4M Real-Time Deployment. Internet-connected hosts on a compute
cloud have netfilter rules which log the details of all newly originated IP
sessions with external (Internet) destinations. The logs include the user ID of
the connection’s owner. These connection details are forwarded to a central
log server in near real-time where they are logged to disk, and a nightly cron
job parses them into tabular (TSV) format. A secondary process reads this
tabular data into a D4M environment, converts them to associative arrays, and
performs analytics to produce a daily report.

where the number of nonzero entries is significantly less
than either dimensions of the matrix. If the packet source
and destination identifiers are drawn from a large numeric
range, such as those used in the Internet protocol, then a
hypersparse representation of At eliminates the need to keep
track of additional indices and can significantly accelerate the
computations [31].

Because matrix operations are generally invariant to permu-
tation (reordering of the rows and columns), these quantities
can readily be computed from anonymized data. Further-
more, the anonymized data can be analyzed by subranges
represented as subsets of IPs using simple matrix multipli-
cation. For a given subrange represented by an anonymized
hypersparse diagonal matrix Ar, where Ar(i, i) = 1 implies
source/destination i is in the range, the traffic within the sub-
range can be computed via: ArAtAr. Likewise, for additional
privacy guarantees that can be implemented at the edge, the
same method can be used to exclude a range of data from the
traffic matrix

At −ArAtAr

B. Implementation

The operational implementation of the above functionality
is depicted in Figure 2 and Figure 3. In this implementation an
Internet subrange is announced by the operator, and routed to
the operator, where an optical splitter routes traffic to a server
containing an Endace DAG 10X2-P capture card which filters
out do-not-observe traffic before multicasting it onto a private
VLAN (virtual local area network). The LibTrace library [42]
multicasts the stream to clients running on servers in VMs
(virtual machines) that have interfaces on the private VLAN.
These clients can subscribe to a multicast group and receive the
raw feed round-robin split into 8 separate streams to maintain
performance.



Inside the clients, the per-packet LibTraceAPI callback is
used to extract the source and destination of 32-bit IPv4
addresses from each individually arriving packet and append
them into a per-thread/per-stream packet buffer. When 217

packets have been received by one of these per-packet stream
processing threads, it publishes this block to a single reporter
thread, which appends newly-arriving blocks of 217 packets
together in a larger buffer. After 223 packets (64 published
blocks) have been received by the reporter thread, it loops
through each element of this larger block, anonymizing each
IP address before building (row, col, packet count) vectors out
of them. The anonymization of the source and destinations
is performed using CryptoPAN [63] either directly or via a
pre-populated 232 element lookup table. This is a simple size-
speed trade-off. If speed is important, and a lookup table
can fit in memory, the lookup table is faster. If memory
is important, CryptoPAN can be run directly on the data,
resulting in an ∼100x less memory usage at the cost of
a ∼10x slowdown. Other anonymization schemes can be
chosen that offer different trade-offs [64]. The anonymized
vectors for each set of 217 packets is then used to build a
232×232 anonymized hypersparse GraphBLAS matrix. The
GraphBLAS matrices are serialized, compressed using Zstd
level 1, and the result is saved to disk as 64 files inside a
single UNIX TAR file representing 223 packets. The TAR files
are then transmitted to another system for archiving and more
in-depth off-line analysis. The time to save compress and save
to disk is negligible and not a factor in overall performance.

III. D4M REAL-TIME DEPLOYMENT

The D4M library (d4m.mit.edu) implements associative ar-
ray mathematics in multiple languages (Python, Julia, Matlab,
and Octave) [32], [65]–[67]. As described earlier, associative
arrays are a generalization of matrices that allow unstructured
data to be used as rows, columns, or values. D4M is particu-
larly useful in analyzing log data or interfacing with databases.
Many firewalls and cloud systems maintain raw connection
logs to support operational capability and provide visibility
into potentially unwanted behavior on or by the system.
These connection logs often contain diverse unstructured data.
Figure 4 shows an operational example of how D4M is used to
analyze the daily connections logs of a cloud system. Internet-
connected hosts on a compute cloud have netfilter rules that
log the details of all newly originated sessions with external
(Internet) destinations. The logs include the user ID of the
connection’s owner. These connection details are forwarded to
a central log server in near real-time where they are logged to
disk, and a nightly cron job parses them into to tabular (TSV)
format. A secondary process reads this tabular data into a D4M
analysis environment, converts them to associative arrays, and
performs analytics to produce a daily report

Mathematically, the tabular log data is transformed to a
associative array E where the rows are the event records and
the columns are unique values of the record. Such an event
array tends to be very sparse since each unique value has is a
column. Tallying records can then be done easily with array
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Fig. 5. GraphBLAS Results - Overview. Packets/second processed, total
memory, active memory, and processing load of over a 30 minute monitoring
period (in the midst of a several month run) for the GraphBLAS real-time
deployment showing the stability of the processing pipeline during this period.

multiplication. For example, creating a user ID by destination
array is done be multiplying sub-arrays holding the appropriate
fields of data

AuserID×DstIP = ET
userID EDstIP

Top connection counts and destination counts by userID can be
calculated by applying the appropriate formulas from Table I

AuserID×DstIP1 and |AuserID×DstIP|01

Likewise, top connections and userID by destination can be
calculated by multiplying by 1⊤ on the left instead of the right

1TAuserID×DstIP and 1T|AuserID×DstIP|0

IV. RESULTS

The goal of this work is to illustrate some effective architec-
tures for deploying matrix/array-based analysis on streaming
networks and to set the expectations on the potential rates
and resources required. For both of the implementations mea-
surements were taken of their rates of execution and resource
consumption during operation.

A. GraphBLAS Real-Time Deployment

Performance measurements for the GraphBLAS real-time
deployment were collected on a 8-core VM with 32 GB of
RAM hosted on a research compute cloud. Measurements were
collected at 1-second intervals for 30 minutes with psrecord,
a small Python utility that uses the psutil library to record the
CPU and memory activity of a process by polling statistics
from the Linux /proc filesystem, using the command

psrecord --interval 1 --duration 1800
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Fig. 6. GraphBLAS Results - Detail. (top left) Packets/second varies from 7×105 to 2.1×106. The discrete levels are a result of the 1 second granularity
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right) Total memory used. (bottom right) Total memory used minus the 16 GB anonymization table. The memory fluctuations are consistent with memory
allocation requirements of the packet buffers.

--log psrecord-real.txt <PID>

In addition, the timestamps of each TAR file created were
recorded. These data were collected on an instance of the
program that had been running for many months without
interruption and represent a good example of the sustained
resource requirements for the capability.

Figure 5 presents and overview of rates, total memory,
active memory, and processing load over the time of the
collection. The rates are computed by counting the number
events/packets in a file and dividing that by the differences in
the time stamps between successive files. The active memory
is the total memory minus the 17 GB CrypoPAN lookup table.
Each of the quantities is relatively stable over the collection
period. Figure 6 provides more detailed looks at each of
the measured quantities. Packets/second varies from 7×105

to 2.1×106. The discrete levels are a result of the 1 second
granularity of the timer. CPU load is shown as a percentage

of core utilization. The CPU load varies distinctly from fully
using one (100%) or two (200%) cores. Profiling indicates that
the dominant operation is the GraphBLAS hypersparse matrix
constructor. The observed load is consistent with 8 threads
running on the 8 available cores with a maximum effective
GraphBLAS hypersparse matrix constructor duty cycle of
25%. The memory fluctuations are consistent with memory
allocation requirements of the packet buffers and the natural
fluctuations of the underlying LibTrace buffers as it reacts to
spikes in packet volume over time. These memory requests are
<0.1% of the peak memory bandwidth and have a negligible
impact on performance.

B. D4M Real-Time Deployment

Performance measurements for the D4M analysis were
taken using a dual Intel Xeon Platinum 8260 server with
192GB of RAM. A single-process single-threaded instance
of D4M running GNU Octave version 6.3.0 was used. The
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rates are in the 4×104 per second range.

execution of the parse and analysis steps were timed separately
over 30 days of daily log analysis. Figure 7 shows the number
of connection records that were logged each day, which varies
significantly between 3×104 and 3×106 records per day.
Figure 8 shows the parse and analysis rates in terms of records
per second. These are consistent with benchmarked single-
process single-thread performance rates for the D4M analy-
sis framework [32], [65], [67] which are set by underlying
performance of their language provided variable length string
sorters.

V. CONCLUSIONS AND FUTURE WORK

Significant insight into the behavior, operation, and protec-
tion of networks can be gained via matrix/array-based analyses
techniques. This paper builds on prior work on GraphBLAS
(graphblas.org) hypersparse matrices and D4M (d4m.mit.edu)
associative arrays (a mathematical superset of matrices) by
integrating them into two operational systems. First, an opera-
tional GraphBLAS implementation that constructs anonymized
hypersparse matrices on a high-bandwidth network tap. Sec-
ond, an operational D4M implementation that analyzes daily
cloud gateway logs. The architectures of these implemen-
tations can be viewed as starting points for others trying
to deploy matrix/array-based network analyses techniques.
Detailed measures of the resources and performance of these
implementations indicate they are capable of keeping up with
their operational requirements using modest computational
resources (a couple of processing cores). GraphBLAS is well-
suited for low-level analysis of high-bandwidth connections
with relatively structured network data. D4M is well-suited
for higher-level analysis of more unstructured data.

Future work in this area could expand the ecosystem for
matrix/array-based network analyses by incorporating these
methods into next generation cloud operating systems, pro-
grammable network technologies [68], [69], the hierarchical
integration of low-level network with high-level network data,
and privacy-preserving network protection strategies.
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