

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Under Secretary of Defense
for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2023 Massachusetts Institute of
Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

pPython Performance Study

Chansup Byun, William Arcand, David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell,
Hayden Jananthan, Michael Jones, Anna Klein, Peter Michaleas, Lauren Milechin, Guillermo Morales,

Julie Mullen, Andrew Prout, Albert Reuther, Antonio Rosa, Siddharth Samsi, Charles Yee, Jeremy Kepner
Massachusetts Institute of Technology

Abstract—pPython seeks to provide a parallel capability that
provides good speed-up without sacrificing the ease of
programming in Python by implementing partitioned global array
semantics (PGAS) on top of a simple file-based messaging library
(PythonMPI) in pure Python. pPython follows a SPMD (single
program multiple data) model of computation. pPython runs on
a single-node (e.g., a laptop) running Windows, Linux, or MacOS
operating systems or on any combination of heterogeneous
systems that support Python, including on a cluster through a
Slurm scheduler interface so that pPython can be executed in a
massively parallel computing environment. It is interesting to see
what performance pPython can achieve compared to the
traditional socket-based MPI communication because of its
unique file-based messaging implementation. In this paper, we
present the point-to-point and collective communication
performances of pPython and compare them with those obtained
by using mpi4py with OpenMPI. For large messages, pPython
demonstrates comparable performance as compared to mpi4py.

Keywords—Performance, Python, MPI, pPython, mpi4py

I. INTRODUCTION
Python is one of the most widely used programming

languages among developers around the world [1]. Python has
become popular among scientific and engineering computing
communities because Python is open source, its syntax is easy
to understand, and it has a rich ecosystem of scientific and
mathematical packages, such as NumPy [2] and SciPy [3].
Furthermore, many different approaches have been developed
for parallel programming with Python on shared and distributed
memory environments. A comprehensive list of parallel Python
libraries and software is available in Ref. 4.

Among the various approaches cited in Ref. 4, the message
passing approach [5-10] appears to be one of the most widely
used approaches. The message passing approach requires the
user to explicitly send messages within the code. These
approaches often implement a variant of the Message Passing
Interface (MPI) standard [11]. Message passing allows any
processor to directly communicate with any other processor and
provides the minimum required functionality to implement a
parallel program. Users that are already familiar with MPI find
these approaches powerful. However, the learning curve is steep
for the typical user because explicit message passing approaches
significantly lower the level of abstraction and require users to
deal directly with deadlocks, synchronization, and other low
level parallel programming concepts. In addition, the impact on
code size is significant. Serial programs converted to parallel

programs with MPI typically increase in size by 25% to 50%; in
contrast, OpenMP and PGAS approaches typically increase the
code size by only ~5% [12].

In spite of these difficulties, a message passing capability is
a requirement for other parallel programming approaches such
as client-server or global arrays for distributed memory
programming. Furthermore, message passing is often the most
efficient way to implement a program and there are certain
programs with complex communication patterns that can only
be implemented with direct message passing. Therefore, any
complete parallel solution must provide a mechanism for
accessing the underlying messaging layer. Among the available
Python message passing implementations, mpi4py [5] is widely
used [13] and is actively maintained.

Although a number of other parallelization approaches have
been developed for Python [4], there are a limited number of
published works on the parallelization of Python with global
arrays. The extensive list of work related to global arrays is
surveyed in Ref. 14. In particular, there have been a couple of
publications on implementing global arrays in Python [13,15].
Recently, we have published a PGAS implementation called
pPython [29] to provide a parallel capability with good speed-
up without sacrificing the ease of programming in Python.

 The MIT Lincoln Laboratory Supercomputing Center
(LLSC) has focused on developing a unique, interactive, on-
demand high-performance computing (HPC) environment to
support diverse science and engineering applications. This
system architecture has evolved into the MIT SuperCloud. MIT
SuperCloud not only continues to support parallel MATLAB
and Octave jobs, but also jobs in Python [16], Julia [17], R [18],
TensorFlow [19], PyTorch [20], and Caffe [21] along with
parallel C, C++, Fortran, and Java applications with various
flavors of message passing interface (MPI) [11].

One of the core software stacks at LLSC environment is
pMatlab [22,23], which implements Partitioned Global Array
Semantics (PGAS) [24] using standard operator overloading
techniques. pMatlab includes MatlabMPI [25], which provides
MPI point-to-point communication and the gridMatlab [26]
scheduler interface. pMatlab has subsequently inspired the
MathWorks parallel computing toolbox used by many
thousands of scientists and engineers around the world.
pPython seeks to provide all the benefits available with pMatlab,
MatlabMPI, and gridMatlab in a Python programming
environment.

The core data structure in pPython is a distributed numerical
array whose distribution onto multiple processors is specified
with a ‘map’ construct. Communication operations between
distributed arrays are abstracted away from the user and pPython
transparently supports redistribution between any block-cyclic-
overlapped distributions in up to four dimensions. pPython is
built on top of the PythonMPI communication library and runs
on any combination of heterogeneous systems that support
Python, which includes Windows, Linux, and MacOS operating
systems. In addition, pPython includes a scheduler interface that
enables users to submit their computing tasks via the scheduler.

In the past, we have compared pPython’s performance
against that of pMatlab’s (which is based on similar technology)
using the HPC Challenge parallel computing benchmarks
STREAM, FFT, High Performance Linpack (HPL), and
RandomAccess. The results are well matched between the two
different language implementations. [29]. As an extension of the
pPython performance study, we have conducted some additional
performance testing with basic MPI communications such as
point-to-point and collective communications such as broadcast
and aggregation. In pPython, PythonMPI library is used to
enable message communications among MPI processes
PythonMPI implements only a small set of MPI functions such
as MPI_Send and MPI_Recv for point-to-point communication
and MPI_Bcast for message broadcasting to all MPI processes.
In addition, an aggregation function called agg() is implemented
to aggregate a distributed array to the leader MPI process. In this
paper, we have studied the performance of those basic MPI
functions available in pPython and compared the results with
those obtained by using the mpi4py package, which implements
the MPI standard in Python with an underlying MPI library
available on the system.

II. PPYTHON INTERFACE AND ARCHITECTURE DESIGN
pPython interface and architecture design are implemented

in pure Python and provide ease-of-use, high performance, and
ease-of-implementation. Although the details of each of these
features are well discussed in the earlier work [29], a brief
summary is described below.

A. Ease-of-Use
pPython adopts a separation-of-concerns approach to make

program correctness and mapping a program to a parallel
architecture orthogonal. A serial program is made parallel by

adding maps to arrays. Maps only contain information about
how an array is broken up onto multiple processors and the
addition of a map does not change the functional correctness of
a program. A map (Fig. 1) is composed of a grid specifying how
each dimension is partitioned, a distribution that selects either a
block, cyclic or block-cyclic partitioning, and a list of processor
IDs that defines which processors actually hold the data.

 In Python, when an array is created, its default ordering is
row-major order (C-style). In order to provide flexibility with
ordering the processor grid, the keyword ‘order’ is introduced
with the map function. This allows it to support a processor grid
arranged in the column–major order (Fortran style). It is also
noted that the map function name itself is also changed to
‘Dmap’ because Python already has a ‘map’ function for a
different purpose. In pPython, when creating a distributed array
as shown in Fig. 1, the keyword ‘map’ is introduced for a
distributed array. Without the keyword ‘map’, the distributed
array functions, zeros, ones, and rand, will return as
standard NumPy arrays.

PGAS enables complex data movements to be expressed
compactly without making parallelism a burden to code. For
example, removing the maps from pPython code returns the
program to a valid serial program that simply uses standard
built-in operations. This is a direct result of the orthogonality of
mapping and functionality, and allows the pPython library to be
“turned off” by simply setting all the maps equal to the scalar
value of one.

B. High Performance
pPython adopts a coding style that uses fragmented PGAS

constructs (see Ref. 22 for definition of fragmented PGAS and
details about the choice). This style is less elegant but provides
strict guarantees on performance. More specifically, distributed
arrays are used as little as possible and only when interprocessor
communication is required.

However, PGAS constructs are not appropriate for all
circumstances. There are communication patterns that would be
more efficient if direct message passing could be employed.
Thus, it is important to have mechanisms that allow PGAS and
the underlying communication constructs to interact easily.
pPython provides this feature by allowing the user to directly
access the underlying PythonMPI library and its data structures.
Several of the HPC Challenge benchmarks fall into the class of
codes that do best by allowing some use of direct message
passing [22]. HPC Challenge parallel computing benchmarks
STREAM, FFT, High Performance Linpack (HPL), and
RandomAccess are implemented with pPython to demonstrate
this ability.

C. Ease-of-Implementation
Considering the need to achieve balance between ease-of-

use and high-performance [22], one of the key choices in
implementing a PGAS library is deciding which data
distributions to support. At one extreme, it can be argued that
most users are satisfied by 1-D block distributions. At the other
extreme, one can find applications that require truly arbitrary
distributions of array indices to processors. pPython has chosen
to support up to 4-D block-cyclic distributions with overlap
because the problem of redistribution between any two such
distributions is highly complex to program for the use but has

Fig. 1. Anatomy of a map. A map for a numerical array is an assignment of
blocks of data to processing elements. It consists of a grid specification (in
this case, {} implies that the default block distribution should be used), and a
processor list (in this case the array is mapped to processors, 0., 1, 2, and 3).
In pPython, grid specification can choose the ordering of processors in
column or row direction with the keyword, order.

mapA = Dmap([2,2], {}, range(4), order='F')

Grid specification together
with processor list describe
where the data is distributed.

A = zeros(4,6,map=mapA)

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Distribution specification
describe how the data is
distributed (default is block).

Python distributed array functions are
taking keyword, map, as an argument,
and return a Dmat, a distributed array
class object.

A =
P0
P1

P2
P3

been solved a number of times by different parallel computing
technologies. This allows pPython users to create four-
dimensional arrays with all four dimensions distributed.

III. PPYTHON IMPLEMENTATION
This section discusses the implementation of the pPython

library. pPython employs a layered architecture [22].
Additionally, pPython has added a scheduler interface for a grid
environment such as the LLSC environment. In the layered
architecture, the pPython library implements distributed
constructs such as distributed matrices and higher dimensional
arrays. pPython also provides parallel implementations of a
select number of functions such as redistribution and Fast
Fourier Transform (FFT).

The pPython library uses the parallelism through
polymorphism approach as discussed by Choy and Edelman
[27]. In addition, the polymorphism is further exploited by
introducing the map class object. Map objects belong to a
pPython Dmap class and are created by specifying the grid
description, distribution description, and the processor list (Fig.
1). The map object can then be passed to a pPython method, such
as rand, zeros, or ones. These methods are implemented in
a way that, when a map object is passed, the library creates a
distributed array class, Dmat, object.

Since all functions supported in pPython are implemented in
pure Python, pPython can run anywhere Python runs, given that
there exists a common file system, a constraint imposed on
pPython by the PythonMPI file-based messaging library. There
are some benefits with the file-based communications. It can
handle messages with very large sizes without any issues as long
as the underlying filesystem has the disk space. It is also
implemented as one-sided sends and eliminates many race
conditions, which are much easier for users. In addition, security
of messages is taken care of the underlying filesystem. A further
benefit of the layered architecture of pPython is that any other
communication library could be substituted for PythonMPI.
Further details about pPython implementation have been
discussed in Ref. [29].

IV. PERFORMANCE EXPERIMENT
In this performance study, we have set aside 16 compute

nodes from the TX-Green system [31] at the Lincoln
Laboratory. Each compute node has two-socket 24-core Xeon
Platinum 8269 at 2.40 GHz, 192 GB RAM memory, and 4 TB
local disk with 25 GigE network. The Lustre parallel filesystem

is running on a 14 petabyte DDN 14000 storage array for users’
home directory, which is directly connected to the core switch.

In order to measure and compare pPython communication
performance using the file-based messaging library, we have
chosen the mpi4py python package, which is widely used by
Python community for parallel Python programming. The
performance metrics we have chosen for this study are a couple
of basic MPI communication operations, point-to-point and
collective communications. For collective communication, both
aggregation and broadcasting performances are used.

Since mpi4py needs a MPI library, we have used the
OpenMPI version 4.1.3 library, which is built for the RDMA
over converged Ethernet (RoCE) protocol for better
performance as compared to Transmission Control Protocol
(TCP). The MPI communication performance comparison
between the two different protocols (TCP and RoCE) has
been performed using the point-to-point MPI communication
benchmark from OSU Micro-Benchmarks [30]. The results
are obtained by running two MPI processes, one process per
node and are compared in Fig. 2. As shown in Fig. 2, the
RoCE protocol outperforms the TCP protocol in bandwidth
and latency performance throughout the message sizes
ranging from 1 byte to 8 Mbytes. Thus RoCE protocol is
used when evaluating the communication performance for
mpi4py package.
A. Point-to-point Communication

In order to study the performance of point-to-point
communication, we have selected a couple of scenarios:
communication between the two MPI processes co-located on
the same node and between two processes, one process per each
node. Also, we have used two different filesystems: the Lustre

Fig. 2. MPI bandwidth and latency performance comparison when using
the TCP (Transmission Control Protocol) and RoCE (RDMA over
Converged Ethernet) protocol for the point-to-point message
communication with sizes ranging from 1 byte to 8 Mbytes. The osu
benchmark is used along with OpenMPI 4.1.3 and 25 GigE network.

(a) In-node point-to-point communication (b) Off-node point-to-point communication

Fig. 3. MPI bandwidth and latency performance comparison between pPython and mpi4py for the point-to-point message communication with sizes ranging
from 16 byte to 1 Gbytes. The pPython results are obtained by using the Lustre parallel filesystem and a Linux local filesystem.

parallel filesystem and the local filesystem as a medium for the
file-based message communication when studying pPython
communication performance. The message sizes range from 16
bytes to 1 Gbytes.

The results are presented in Fig. 3. We have measured the
performance data 5 times for each message size and used the
geometric means in the plot. Due to the overhead associated with
the file IO with the file-based message communication, pPython
performance is significantly lower, especially with smaller
messages, than that of mpi4py across the range of message sizes
we have studied in Fig. 3. In addition, OpenMPI shared memory
optimization of message communication between the two
processes on the same node should have contributed to the
excellent performance of mpi4py as shown in case (a) in Fig. 3.
It is interesting to note that the local filesystem performs better
than the Lustre filesystem with pPython when the two processes
are on the same node as shown in case (a). This is due to the
fact that, with the Lustre filesystem, the message file is actually
stored on a storage system (DDN 14K), which requires
additional time in data transition over network with write and
read operations as compared to same operations done on the
local filesystem. Furthermore, when the message size is big
enough, such as 10 Kbytes or larger, the performance gap
between pPython and mpi4py becomes significantly narrower as
shown in Fig. 3.

It should be noted that, in pPython triples mode [3], all the
MPI processes launched on the same node is managed by
dynamically-generated execution script with the process
pinning. In the above in-node case in Fig. 3 (a), since there are
two sockets on each machine, one MPI process is placed on
socket 0 and the other MPI process on socket 1.

However, when point-to-point communication is performed
between the two processes that are not on the same node as
shown in Fig. 3 (b), pPython performance shows that the Lustre
filesystem does better than the local filesystem. With the local
filesystem, a scp command is used to send the message file
across the network. This scp command introduces a large
overhead for the point-to-point communication. With the Lustre
filesystem, there is little change in the pPython point-to-point
communication performance since the message communication
overhead remains the same in both cases. It is important to note
that, since the security for transferring message files is entirely
handled by the scp tool and the file system permissions, no
additional security or ports are required other than those that are
typically required on an HPC system [32]. In this case, the

mpi4py performance has dropped slightly lower than the
performance observed in Fig. 3 (a) but not as much as what has
been observed with pPython performance drop with the local
filesystem-based messaging kernel. Based on this trend, in order
to obtain the best performance with pPython, it is desirable to
use the local filesystem when both processes are on the same
node and the Lustre filesystem when both processes are not on
the same node. Also, it is noted that there is sudden change in
the latency characteristics with mpi4py point-to-point
communication in Fig. 3 (b). This is a typical behavior with
OpenMPI RDMA implementation where it changes its
communication protocol beyond 12 Kbyte message size. [28]

B. Collective Communication
In pPython, we have implemented two commonly used MPI

collective communications: aggregation of data on a distributed
array among the MPI processes to a single MPI process and
broadcasting of data from a single MPI process to the rest of the
MPI processes. We have compared the performance of these
functions with those obtained by using equivalent functions in
mpi4py.

Fig. 4. pPython implementation of aggregation and broadcast operations.
The implementation is based on a node-aware algorithm and the operation
is separated into two levels: in-node operation and across-node operation.
The initial implementation used a binary-based aggregation but then used
serialized broadcasting at each stage of the operations.

C x: Communication between nodes, L x: Communication within a node

• Aggregation

P3

P1

P2

P4

P7

P5

P6

P8

P0

C 2
C 1

L 2

L 1

L 1

L 2

L 1

L 1

• Broadcast

P3

P1

P2

P4

P7

P5

P6

P8

P0

C 2
C 1

L 2

L 3

L 1

L 2

L 3

L 1

(a) Per-process message size: 8 bytes

(b) Per-process message size: 8 Kbytes

(c) Per-process message size: 8 Mbytes

Fig. 5. Aggregation performance comparison between pPython and
mpi4py in terms of globl bandwidth and time with three different message
sizes per process: 8 bytes, 8 Kbytes and 8 Mbytes, with various number of
MPI processes ranging from 2 to 768. The pPython results are obtained by
using the local filesystem-based message communication.

In an initial pPython implementation, both aggregation and
broadcasting operations are optimized to use a node-aware
algorithm with the triples mode jobs [31] where the operations
are separated into two levels of communications: in-node and
off-node communications as shown in Fig. 4. Furthermore,
aggregation operations between in-node and off-node processes,
is progressed in the order of the MPI processes determined in a
binary-tree based communication algorithm so that the
aggregation process can introduce concurrency and in turn
improve the performance. However, for the broadcast operation,
both in-node and off-node broadcast operations are done serially
as shown in Fig. 4.

1) Aggregation
In pPython, the agg() function aggregates a distributed array

across all MPI processes onto the leader MPI process. A similar
operation can be done using the MPI_gather() function available
in mpi4py. In order to study the aggregation performance of
pPython and compare its performance with the mpi4py gather()
function, we have selected three different message sizes to
represent small (8 bytes), medium (8 Kbytes) and large (8
Mbytes) messages. mpi4py outperforms pPython in aggregation
performance in all three different message sizes as shown in Fig.
5. However, as shown in Fig. 5 (c), the gap between the two has
narrowed significantly. For the medium and large message sizes,
the pPython performance increases while the mpi4py
performance decreases as the number of MPI processes scales
beyond a node boundary in the aggregation. In this benchmark
setup, the node boundary is 48 MPI processes. It would be
interesting to see what would happen if the aggregation is
performed on a scale with a much larger number of MPI
processes.

It should be noted that, from the result of pPython
aggregation study, there is a bandwidth performance drop as
soon as the aggregation happens beyond a node boundary for all
three message sizes, where the change is more severe with small
and medium messages. Furthermore, for both pPython and
mpi4py cases, the total time remains relatively the same for the
small message size when the aggregation scales beyond a node
boundary, which results in increasing the global bandwidth as
the number of MPI processes increases. But, for large message
sizes, the total time increases linearly as the number of MPI
processes increases, and in turn, this reduces the global
bandwidth performance. We believe this behavior is caused by
the fact that the message travel time through the network is more
dominant for small and medium messages when aggregation
happens beyond a node boundary.

2) Broadcast
While we are comparing pPython broadcast performance

with that of mpi4py, we have found that the initial
implementation of broadcast operation is not efficient because
both in-node and off-node broadcast operations are serialized. In
order to remove this performance bottleneck, the broadcast
operation is also updated with using a node-aware, binary-tree
based communication strategy as shown in Fig. 6. By
implementing this communication strategy, the broadcast
operation can be accomplished a lot faster in pPython as
demonstrated in Fig. 7.

The node-aware, binary-tree based broadcast strategy in
pPython shows comparable performance with mpi4py when the
message is large (8 Mbytes in size in the experiment) and is
broadcasted to the MPI processes within the same node. Also,
the optimized broadcast implementation has improved its
performance significantly as compared to the initial
implementation in pPython for all three message sizes across the
entire range of MPI processes studied in this experiment.
However, significant performance drop has been observed when
the broadcast operation is performed across more than a node
boundary. This is mainly caused by the overhead associated

Fig. 6. pPython optimization of broadcast operation using a node-aware,
binary-tree based broadcast at each stage of the two level operations, one
among the leader processes of nodes and the other among the processes
within each node.

• Broadcast (serial)

C x: Communication between nodes, L x: Communication within a node

• Broadcast (binary-tree)

P3

P1

P2

P4

P7

P5

P6

P8

P0

C 2
C 1

P3

P1

P2

P4

P7

P5

P6

P8

P0

C 1
C 2

L 1

L 2

L 2

L 2

L 3

L 1

L 2

L 3

L 1

L 1

L 2

L 2

(a) Per-process message size: 8 bytes

(b) Per-process message size: 8 Kbytes

(c) Per-process message size: 8 Mbytes

Fig. 7. Broadcast performance comparison between pPython and mpi4py
in terms of globl bandwidth and time with three different message sizes
per process: 8 bytes, 8 Kbytes and 8 Mbytes, for various number of MPI
processes ranging from 2 to 768. The pPython results were obtained with
the initial and optimized implementations by using the local filesystem as
a medium for message communications.

with remote copy of the message using scp. Although mpi4py
broadcast operation can benefit from RoCE protocol being used
by the OpenMPI library under the hood, scp operation is based
on TCP and is slower than RoCE protocol.

V. SUMMARY
Because of pPython’s unique approach with file-based

message communication, it is of interest to see what
communication performance pPython can achieve and how it
compares with traditional socket-based MPI communication. In
this paper, we have executed pPython performance study on the
MPI point-to-point and collective communications, which
supplements the earlier performance study [29]. Furthermore,
we have compared the results with those obtained by using
MPI4PY which is a Python wrapper for MPI API (Application
Programming Interface) and can be used any MPI library. In
this paper, we have obtained MPI4PY results using OpenMPI
4.1.3 library which is specially built for RoCE protocol. In
general, the RoCE protocol can provide better MPI
communication performance with lower latency and high
bandwidth as compared to TCP protocol.

Although pPython is slower than mpi4py in MPI
communications because pPython uses a file-based message
communication while mpi4py uses a socket-based message
communication, we have demonstrated that pPython’s
performance can be comparable with mpi4py under certain
conditions for both point-to-point and collective
communications. We have further optimized the pPython
broadcast communication by introducing a node-aware, binary
tree-based communication algorithm, which enables
comparable broadcast performance when all MPI processes are
on the same node. Finally, as a future task, we have identified
potential performance improvement opportunities with pPython
broadcast communication by utilizing Lustre parallel filesystem
for off-node process communication and local filesystem for in-
node process communication.

Overall, pPython provides a simple and maintainable way to
easily make Python programs run in parallel with reasonable
performance scalability and comparable performance as
compared to the traditional MPI communication available with
mpi4py.

ACKNOWLEDGMENTS
The authors wish to acknowledge the following individuals

for their contributions and support: Bob Bond, Alan Edelman,
Jeff Gottschalk, Charles Leiserson, Joseph McDonald, Heidi
Perry, Steve Rejto, Matthew Weiss, and Marc Zissman.

REFERENCES
[1] Stack Overflow 2021 Developer Survey. URL:

https://insights.stackoverflow.com/survey/2021.
[2] NumPy: The fundamental package for scientific computing with Python.

URL: https://numpy.org
[3] SciPy: Fundamental algorithms for scientific computing in Python. URL:

https://scipy.org
[4] Parallel Processing and Multiprocessing in Python. URL:

https://wiki.python.org/moin/ParallelProcessing
[5] MPI for Python, mpi4py. URL: https://mpi4py.readthedocs.io
[6] pyMPI: Putting the py in MPI. URL: http://pympi.sourceforge.net
[7] PyPar. URL: https://github.com/daleroberts/pypar

[8] torcpy: supporting task-based parallelism in Python. URL:
https://github.com/IBM/torc_py

[9] Charm4py (Charm++ for Python -formerly CharmPy-). URL:
https://github.com/UIUC-PPL/charm4py

[10] ScientificPython. URL: https://github.com/khinsen/ScientificPython
[11] MPI: A Message Passing Interface Standard, Message Passing Interface

Forum, May 1994. URL: https://www.mpi-forum.org/docs/mpi-1.0/mpi-
10.ps

[12] Funk, A., Kepner, J., Basili, V., and Hochstein, L. (2005). A relative
development time productivity metric for HPC systems, Proceedings of
the High Performance Embedded Computing Workshop (HPEC2005),
Lexington, MA, September 20–22.

[13] Kristensen, M. R. B., Zheng, Y. and Vinter, B. , “PGAS for Distributed
Numerical Python Targeting Multi-core Clusters," in Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, pp. 680{690, IEEE, 2012.

[14] Yelick, K., Sarkar, V., Demmel, J., and Erez, M., “DEGAS: Dynamic
Global Address Space programming environments.”
https://crd.lbl.gov/assets/Uploads/FTG/Projects/DEGAS/DEGAS-
products-April2016.pdf

[15] Driscoll, M., Kamil, A., Kamil, S., Zheng, Y. and Yelick, K., “PyGAS: A
Partitioned Global Address Space Extension for Python," in Poster in the
PGAS Conference, Citeseer, 2012

[16] G. Van Rossum, “Python Programming Language,” USENIX Annual
Technical Conference, 2007.

[17] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, “Julia: A Fresh
Approach to Numerical Computing,” SIAM Review, vol. 59, pp. 65-98,
2017.

[18] R. Ihakaand R. Gentleman, R: a Language for Data Analysis and
Graphics,” Journal of Computational and Graphical Statistics, vol. 5, no.
3 , pp.289-314, 1996.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” 12th USENIX Symposium on Operating System
Design and Implementation (OSDI), Savannah, GA, 2016.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, “Automatic Differentiation in
PyTorch,” NIPS-W, 2017.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast
Feature Embedding,” Proceedings of ACM Multimedia, pp. 675-678,
2014.

[22] Bliss, N. and Kepner, J., “pMatlab Parallel Matlab Library,” The
International Journal of High Performance Computing Applications,
Volume 21, No. 3, Fall 2007, pp. 336–359

[23] Kepner, J., “Parallel MATLAB for Multicore and Multinode Systems,”
SIAM Press, 2009

[24] Partitioned global address space (PGAS). URL:
https://en.wikipedia.org/wiki/Partitioned_global_address_space

[25] Kepner, J. and Ahalt, S., “MatlabMPI”, Journal of parallel and distributed
computing, v.64: no.8, 2004, p.997

[26] A. Reuther, T. Currie, J. Kepner, H. Kim, A. McCabe, M. Moore and N.
Travinin, “LLGrid: Enabling On-Demand Grid Computing with
gridMatlab and pMatlab,” High Performance Embedded Computing
(HPEC) workshop, Lexington, MA, 28-29 September 2004.

[27] Choy, R. and Edelman, A., “Parallel MATLAB: doing it right,”
Proceedings of the IEEE, 93(2), 2005.

[28] OpenMPI FAQ: https://www.open-
mpi.org/faq/?category=openfabrics#ib-small-message-rdma

[29] C. Byun et al., "pPython for Parallel Python Programming," 2022 IEEE
High Performance Extreme Computing Conference (HPEC), Waltham,
MA, USA, 2022, doi: 10.1109/HPEC55821.2022.9926365..

[30] OSU Micro-Benchmarks, https://github.com/forresti/osu-micro-
benchmarks/tree/master

[31] C. Byun et al., "Node-Based Job Scheduling for Large Scale Simulations
of Short Running Jobs," 2021 IEEE High Performance Extreme

Computing Conference (HPEC), Waltham, MA, USA, 2021, doi:
10.1109/HPEC49654.2021.9622870..

[32] C. Byun et al., "Large Scale Parallelization Using File-Based
Communications," 2019 IEEE High Performance Extreme Computing

Conference (HPEC), Waltham, MA, USA, 2019, pp. 1-7, doi:
10.1109/HPEC.2019.8916221

