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Abstract—pPython seeks to provide a parallel capability that 
provides good speed-up without sacrificing the ease of 
programming in Python by implementing partitioned global array 
semantics (PGAS) on top of a simple file-based messaging library 
(PythonMPI) in pure Python. pPython follows a SPMD (single 
program multiple data) model of computation.    pPython runs on 
a single-node (e.g., a laptop) running Windows, Linux, or MacOS 
operating systems or on any combination of heterogeneous 
systems that support Python, including on a cluster through a 
Slurm scheduler interface so that pPython can be executed in a 
massively parallel computing environment. It is interesting to see 
what performance pPython can achieve compared to the 
traditional socket-based MPI communication because of its 
unique file-based messaging implementation. In this paper, we 
present the point-to-point and collective communication 
performances of pPython and compare them with those obtained 
by using mpi4py with OpenMPI.  For large messages, pPython 
demonstrates comparable performance as compared to mpi4py. 
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I. INTRODUCTION 
Python is one of the most widely used programming 

languages among developers around the world [1]. Python has 
become popular among scientific and engineering computing 
communities because Python is open source, its syntax is easy 
to understand, and it has a rich ecosystem of scientific and 
mathematical packages, such as NumPy [2] and SciPy [3]. 
Furthermore, many different approaches have been developed 
for parallel programming with Python on shared and distributed 
memory environments. A comprehensive list of parallel Python 
libraries and software is available in Ref. 4.  

Among the various approaches cited in Ref. 4, the message 
passing approach [5-10] appears to be one of the most widely 
used approaches. The message passing approach requires the 
user to explicitly send messages within the code. These 
approaches often implement a variant of the Message Passing 
Interface (MPI) standard [11]. Message passing allows any 
processor to directly communicate with any other processor and 
provides the minimum required functionality to implement a 
parallel program. Users that are already familiar with MPI find 
these approaches powerful. However, the learning curve is steep 
for the typical user because explicit message passing approaches 
significantly lower the level of abstraction and require users to 
deal directly with deadlocks, synchronization, and other low 
level parallel programming concepts. In addition, the impact on 
code size is significant. Serial programs converted to parallel 

programs with MPI typically increase in size by 25% to 50%; in 
contrast, OpenMP and PGAS approaches typically increase the 
code size by only ~5% [12].   

In spite of these difficulties, a message passing capability is 
a requirement for other parallel programming approaches such 
as client-server or global arrays for distributed memory 
programming. Furthermore, message passing is often the most 
efficient way to implement a program and there are certain 
programs with complex communication patterns that can only 
be implemented with direct message passing. Therefore, any 
complete parallel solution must provide a mechanism for 
accessing the underlying messaging layer. Among the available 
Python message passing implementations, mpi4py [5] is widely 
used [13] and is actively maintained.   

Although a number of other parallelization approaches have 
been developed for Python [4], there are a limited number of 
published works on the parallelization of Python with global 
arrays. The extensive list of work related to global arrays is 
surveyed in Ref. 14.  In particular, there have been a couple of 
publications on implementing global arrays in Python [13,15]. 
Recently, we have published a PGAS implementation called 
pPython [29] to provide a parallel capability with good speed-
up without sacrificing the ease of programming in Python.  

  The MIT Lincoln Laboratory Supercomputing Center 
(LLSC) has focused on developing a unique, interactive, on-
demand high-performance computing (HPC) environment to 
support diverse science and engineering applications. This 
system architecture has evolved into the MIT SuperCloud. MIT 
SuperCloud not only continues to support parallel MATLAB 
and Octave jobs, but also jobs in Python [16], Julia [17], R [18], 
TensorFlow [19], PyTorch [20], and Caffe [21] along with 
parallel C, C++, Fortran, and Java applications with various 
flavors of message passing interface (MPI) [11].    

One of the core software stacks at LLSC environment is 
pMatlab [22,23], which implements Partitioned Global Array 
Semantics (PGAS) [24] using standard operator overloading 
techniques. pMatlab includes MatlabMPI [25], which provides 
MPI point-to-point communication and the gridMatlab [26] 
scheduler interface.  pMatlab has subsequently inspired the 
MathWorks parallel computing toolbox used by many 
thousands of scientists and engineers around the world.   
pPython seeks to provide all the benefits available with pMatlab, 
MatlabMPI, and gridMatlab in a Python programming 
environment.  



The core data structure in pPython is a distributed numerical 
array whose distribution onto multiple processors is specified 
with a ‘map’ construct. Communication operations between 
distributed arrays are abstracted away from the user and pPython 
transparently supports redistribution between any block-cyclic-
overlapped distributions in up to four dimensions. pPython is 
built on top of the PythonMPI communication library and runs 
on any combination of heterogeneous systems that support 
Python, which includes Windows, Linux, and MacOS operating 
systems. In addition, pPython includes a scheduler interface that 
enables users to submit their computing tasks via the scheduler. 

In the past, we have compared pPython’s performance 
against that of pMatlab’s (which is based on similar technology) 
using the HPC Challenge parallel computing benchmarks 
STREAM, FFT, High Performance Linpack (HPL), and 
RandomAccess.  The results are well matched between the two 
different language implementations. [29]. As an extension of the 
pPython performance study, we have conducted some additional 
performance testing with basic MPI communications such as 
point-to-point and collective communications such as broadcast 
and aggregation. In pPython, PythonMPI library is used to 
enable message communications among MPI processes 
PythonMPI implements only a small set of MPI functions such 
as MPI_Send and MPI_Recv for point-to-point communication 
and MPI_Bcast for message broadcasting to all MPI processes. 
In addition, an aggregation function called agg() is implemented 
to aggregate a distributed array to the leader MPI process. In this 
paper, we have studied the performance of those basic MPI 
functions available in pPython  and compared the results with 
those obtained by using the mpi4py package, which implements 
the MPI standard in Python with an underlying MPI library 
available on the system. 

II. PPYTHON INTERFACE AND ARCHITECTURE DESIGN 
pPython interface and architecture design are implemented 

in pure Python and provide ease-of-use, high performance, and 
ease-of-implementation. Although the details of each of these 
features are well discussed in the earlier work [29], a brief 
summary is described below. 

A. Ease-of-Use 
pPython adopts a separation-of-concerns approach to make 

program correctness and mapping a program to a parallel 
architecture orthogonal. A serial program is made parallel by 

adding maps to arrays. Maps only contain information about 
how an array is broken up onto multiple processors and the 
addition of a map does not change the functional correctness of 
a program. A map (Fig. 1) is composed of a grid specifying how 
each dimension is partitioned, a distribution that selects either a 
block, cyclic or block-cyclic partitioning, and a list of processor 
IDs that defines which processors actually hold the data. 

 In Python, when an array is created, its default ordering is 
row-major order (C-style). In order to provide flexibility with 
ordering the processor grid, the keyword ‘order’ is introduced 
with the map function. This allows it to support a processor grid 
arranged in the column–major order (Fortran style). It is also 
noted that the map function name itself is also changed to 
‘Dmap’ because Python already has a ‘map’ function for a 
different purpose.   In pPython, when creating a distributed array 
as shown in Fig. 1, the keyword ‘map’ is introduced for a 
distributed array.  Without the keyword ‘map’, the distributed 
array functions, zeros, ones, and rand, will return as 
standard NumPy arrays. 

PGAS enables complex data movements to be expressed 
compactly without making parallelism a burden to code. For 
example, removing the maps from pPython code returns the 
program to a valid serial program that simply uses standard 
built-in operations. This is a direct result of the orthogonality of 
mapping and functionality, and allows the pPython library to be 
“turned off” by simply setting all the maps equal to the scalar 
value of one.  

B. High Performance 
pPython adopts a coding style that uses fragmented PGAS 

constructs (see Ref. 22 for definition of fragmented PGAS and 
details about the choice). This style is less elegant but provides 
strict guarantees on performance. More specifically, distributed 
arrays are used as little as possible and only when interprocessor 
communication is required.  

However, PGAS constructs are not appropriate for all 
circumstances. There are communication patterns that would be 
more efficient if direct message passing could be employed. 
Thus, it is important to have mechanisms that allow PGAS and 
the underlying communication constructs to interact easily. 
pPython provides this feature by allowing the user to directly 
access the underlying PythonMPI library and its data structures. 
Several of the HPC Challenge benchmarks fall into the class of 
codes that do best by allowing some use of direct message 
passing [22]. HPC Challenge parallel computing benchmarks 
STREAM, FFT, High Performance Linpack (HPL), and 
RandomAccess are implemented with pPython to demonstrate 
this ability. 

C. Ease-of-Implementation 
Considering the need to achieve balance between ease-of-

use and high-performance [22], one of the key choices in 
implementing a PGAS library is deciding which data 
distributions to support. At one extreme, it can be argued that 
most users are satisfied by 1-D block distributions. At the other 
extreme, one can find applications that require truly arbitrary 
distributions of array indices to processors. pPython has chosen 
to support up to 4-D block-cyclic distributions with overlap 
because the problem of redistribution between any two such 
distributions is highly complex to program for the use but has 

 

Fig. 1. Anatomy of a map. A map for a numerical array is an assignment of 
blocks of data to processing elements. It consists of a grid specification (in 
this case, {} implies that the default block distribution should be used), and a 
processor list (in this case the array is mapped to processors, 0., 1, 2, and 3).  
In pPython, grid specification can choose the ordering of processors in 
column or row direction with the keyword, order. 
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been solved a number of times by different parallel computing 
technologies. This allows pPython users to create four-
dimensional arrays with all four dimensions distributed. 

III. PPYTHON IMPLEMENTATION 
This section discusses the implementation of the pPython 

library. pPython employs a layered architecture [22].  
Additionally, pPython has added a scheduler interface for a grid 
environment such as the LLSC environment. In the layered 
architecture, the pPython library implements distributed 
constructs such as distributed matrices and higher dimensional 
arrays. pPython also provides parallel implementations of a 
select number of functions such as redistribution and Fast 
Fourier Transform (FFT). 

The pPython library uses the parallelism through 
polymorphism approach as discussed by Choy and Edelman 
[27].  In addition, the polymorphism is further exploited by 
introducing the map class object. Map objects belong to a 
pPython Dmap class and are created by specifying the grid 
description, distribution description, and the processor list (Fig. 
1). The map object can then be passed to a pPython method, such 
as rand, zeros, or ones. These methods are implemented in 
a way that, when a map object is passed, the library creates a 
distributed array class, Dmat, object.  

Since all functions supported in pPython are implemented in 
pure Python, pPython can run anywhere Python runs, given that 
there exists a common file system, a constraint imposed on 
pPython by the PythonMPI file-based messaging library. There 
are some benefits with the file-based communications. It can 
handle messages with very large sizes without any issues as long 
as the underlying filesystem has the disk space. It is also 
implemented as one-sided sends and eliminates many race 
conditions, which are much easier for users. In addition, security 
of messages is taken care of the underlying filesystem.  A further 
benefit of the layered architecture of pPython is that any other 
communication library could be substituted for PythonMPI. 
Further details about pPython implementation have been 
discussed in Ref. [29].  

IV. PERFORMANCE EXPERIMENT 
In this performance study, we have set aside 16 compute 

nodes from the TX-Green system [31] at the Lincoln 
Laboratory. Each compute node has two-socket 24-core Xeon 
Platinum 8269 at 2.40 GHz, 192 GB RAM memory, and 4 TB 
local disk with 25 GigE network. The Lustre parallel filesystem 

is running on a 14 petabyte DDN 14000 storage array for users’ 
home directory, which is directly connected to the core switch. 

In order to measure and compare pPython communication 
performance using the file-based messaging library, we have 
chosen the mpi4py python package, which is widely used by 
Python community for parallel Python programming.  The 
performance metrics we have chosen for this study are a couple 
of basic MPI communication operations, point-to-point and 
collective communications.  For collective communication, both 
aggregation and broadcasting performances are used. 

Since mpi4py needs a MPI library, we have used the 
OpenMPI version 4.1.3 library, which is built for the RDMA 
over converged Ethernet (RoCE) protocol for better 
performance as compared to Transmission Control Protocol 
(TCP).  The MPI communication performance comparison 
between the two different protocols (TCP and RoCE) has 
been performed using the point-to-point MPI communication 
benchmark from OSU Micro-Benchmarks [30]. The results 
are obtained by running two MPI processes, one process per 
node and are compared in Fig. 2.   As shown in Fig. 2, the 
RoCE protocol outperforms the TCP protocol in bandwidth 
and latency performance throughout the message sizes 
ranging from 1 byte to 8 Mbytes.  Thus RoCE protocol is 
used when evaluating the communication performance for 
mpi4py package.  
A. Point-to-point Communication  

In order to study the performance of point-to-point 
communication, we have selected a couple of scenarios: 
communication between the two MPI processes co-located on 
the same node and  between two processes, one process per each 
node. Also, we have used two different filesystems: the Lustre 

   
Fig. 2. MPI bandwidth and latency performance comparison when using 
the TCP (Transmission Control Protocol) and RoCE (RDMA over 
Converged Ethernet) protocol for the point-to-point message 
communication with sizes ranging from 1 byte to 8 Mbytes. The osu 
benchmark is used along with OpenMPI 4.1.3 and 25 GigE network. 

 

          

(a) In-node point-to-point communication                                                                      (b)    Off-node point-to-point communication 

Fig. 3. MPI bandwidth and latency performance comparison between pPython and mpi4py for the point-to-point message communication with sizes ranging 
from 16 byte to 1 Gbytes. The pPython results are obtained by using the Lustre parallel filesystem and a Linux local filesystem. 

 



parallel filesystem and the local filesystem as a medium for the 
file-based message communication when studying pPython 
communication performance. The message sizes range from 16 
bytes to 1 Gbytes.  

The results are presented in Fig. 3. We have measured the 
performance data 5 times for each message size and used the 
geometric means in the plot. Due to the overhead associated with 
the file IO with the file-based message communication, pPython 
performance is significantly lower, especially with smaller 
messages, than that of mpi4py across the range of message sizes 
we have studied in Fig. 3.  In addition, OpenMPI shared memory 
optimization of message communication between the two 
processes on the same node should have contributed to the 
excellent performance of mpi4py as shown in case (a) in Fig. 3.  
It is interesting to note that the local filesystem performs better 
than the Lustre filesystem with pPython when the two processes 
are on the same node as shown in case (a).  This is due to the 
fact that, with the Lustre filesystem, the message file is actually 
stored on a storage system (DDN 14K), which requires 
additional time in data transition over network with write and 
read operations as compared to same operations done on the 
local filesystem. Furthermore, when the message size is big 
enough, such as 10 Kbytes or larger, the performance gap 
between pPython and mpi4py becomes significantly narrower as 
shown in Fig. 3. 

It should be noted that, in pPython triples mode [3], all the 
MPI processes launched on the same node is managed by 
dynamically-generated execution script with the process 
pinning. In the above in-node case in Fig. 3 (a), since there are 
two sockets on each machine, one MPI process is placed on 
socket 0 and the other MPI process on socket 1. 

However, when point-to-point communication is performed 
between the two processes that are not on the same node as 
shown in Fig. 3 (b), pPython performance shows that the Lustre 
filesystem does better than the local filesystem. With the local 
filesystem, a scp command is used to send the message file 
across the network. This scp command introduces a large 
overhead for the point-to-point communication.  With the Lustre 
filesystem, there is little change in the pPython point-to-point 
communication performance since the message communication 
overhead remains the same in both cases. It is important to note 
that, since the security for transferring message files is entirely 
handled by the scp tool and the file system permissions, no 
additional security or ports are required other than those that are 
typically required on an HPC system [32]. In this case, the 

mpi4py performance has dropped slightly lower than the 
performance observed in Fig. 3 (a) but not as much as what has 
been observed with pPython performance drop with the local 
filesystem-based messaging kernel.  Based on this trend, in order 
to obtain the best performance with pPython, it is desirable to 
use the local filesystem when both processes are on the same 
node and the Lustre filesystem when both processes are not on 
the same node.  Also, it is noted that there is sudden change in 
the latency characteristics with mpi4py point-to-point 
communication in Fig. 3 (b).  This is a typical behavior with 
OpenMPI RDMA  implementation where it changes its 
communication protocol beyond 12 Kbyte message size. [28] 

B. Collective Communication  
In pPython, we have implemented two commonly used MPI 

collective communications: aggregation of data on a distributed 
array among the MPI processes to a single MPI process and 
broadcasting of data from a single MPI process to the rest of the 
MPI processes. We have compared the performance of these 
functions with those obtained by using equivalent functions in 
mpi4py. 

 

Fig. 4. pPython implementation of aggregation and broadcast operations. 
The implementation is based on a node-aware algorithm and the operation 
is separated into two levels: in-node operation and across-node operation. 
The initial implementation used a binary-based aggregation but then used 
serialized broadcasting at each stage of the operations.  
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(a) Per-process message size: 8 bytes 

 

(b) Per-process message size: 8 Kbytes 

 

(c) Per-process message size: 8 Mbytes 

Fig. 5. Aggregation performance comparison between pPython and 
mpi4py in terms of globl bandwidth and time with three different message 
sizes per process: 8 bytes, 8 Kbytes and 8 Mbytes, with various number of 
MPI processes ranging from 2 to 768. The pPython results are obtained by 
using the local filesystem-based message communication. 

 



In an initial pPython implementation, both aggregation and 
broadcasting operations are optimized to use a node-aware 
algorithm with the triples mode jobs [31] where the operations 
are separated into two levels of communications: in-node and 
off-node communications as shown in Fig. 4.  Furthermore, 
aggregation operations between in-node and off-node processes, 
is progressed in the order of the MPI processes determined in a 
binary-tree based communication algorithm so that the 
aggregation process can introduce concurrency and in turn 
improve the performance. However, for the broadcast operation, 
both in-node and off-node broadcast operations are done serially 
as shown in Fig. 4. 

1) Aggregation  
In pPython, the agg() function aggregates a distributed array 

across all MPI processes onto the leader MPI process. A similar 
operation can be done using the MPI_gather() function available 
in mpi4py. In order to study the aggregation performance of 
pPython and compare its performance with the mpi4py gather() 
function, we have selected three different message sizes to 
represent small (8 bytes), medium (8 Kbytes) and large (8 
Mbytes) messages. mpi4py outperforms pPython in aggregation 
performance in all three different message sizes as shown in Fig. 
5. However, as shown in Fig. 5 (c), the gap between the two has 
narrowed significantly. For the medium and large message sizes, 
the pPython performance increases while the mpi4py 
performance decreases as the number of MPI processes scales 
beyond a node boundary  in the aggregation. In this benchmark 
setup, the node boundary is 48 MPI processes. It would be 
interesting to see what would happen if the aggregation is 
performed on a scale with a much larger number of MPI 
processes. 

It should be noted that, from the result of pPython 
aggregation study, there is a bandwidth performance drop as 
soon as the aggregation happens beyond a node boundary for all 
three message sizes, where the change is more severe with small 
and medium messages. Furthermore, for both pPython and 
mpi4py cases, the total time remains relatively the same for the 
small message size when the aggregation scales beyond a node 
boundary, which results in increasing the global bandwidth as 
the number of MPI processes increases. But, for large message 
sizes, the total time increases linearly as the number of MPI 
processes increases, and in turn, this reduces the global 
bandwidth performance.  We believe this behavior is caused by 
the fact that the message travel time through the network is more 
dominant for small and medium messages when aggregation 
happens beyond a node boundary.  

2) Broadcast 
While we are comparing pPython broadcast performance 

with that of mpi4py, we have found that the initial 
implementation of broadcast operation is not efficient because 
both in-node and off-node broadcast operations are serialized. In 
order to remove this performance bottleneck, the broadcast 
operation is also updated with using a node-aware, binary-tree 
based communication strategy as shown in Fig. 6.  By 
implementing this communication strategy, the broadcast 
operation can be accomplished a lot faster in pPython as 
demonstrated in Fig. 7. 

The node-aware, binary-tree based broadcast strategy in 
pPython shows comparable performance with mpi4py when the 
message is large (8 Mbytes in size in the experiment) and is 
broadcasted to the MPI processes within the same node. Also, 
the optimized broadcast implementation has improved its 
performance significantly as compared to the initial 
implementation in pPython for all three message sizes across the 
entire range of MPI processes studied in this experiment.  
However, significant performance drop has been observed when 
the broadcast operation is performed across more than a node 
boundary.  This is mainly caused by the overhead associated 

 

Fig. 6. pPython optimization of broadcast operation using a node-aware, 
binary-tree based broadcast at each stage of the two level operations, one 
among the leader processes of nodes and the other among the processes 
within each node. 
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(a) Per-process message size: 8 bytes 

 

(b) Per-process message size: 8 Kbytes 

 

(c) Per-process message size: 8 Mbytes 

Fig. 7. Broadcast performance comparison between pPython and mpi4py 
in terms of globl bandwidth and time with three different message sizes 
per process: 8 bytes, 8 Kbytes and 8 Mbytes, for various number of MPI 
processes ranging from 2 to 768. The pPython results were obtained with 
the initial and optimized implementations by using the local filesystem as 
a medium for message communications. 

 



with remote copy of the message using scp. Although mpi4py 
broadcast operation can benefit from RoCE protocol being used 
by the OpenMPI library under the hood, scp operation is based 
on TCP and is slower than RoCE protocol.   

V. SUMMARY 
Because of pPython’s unique approach with file-based 

message communication, it is of interest to see what 
communication performance pPython can achieve and how it 
compares with traditional socket-based MPI communication. In 
this paper, we have executed pPython performance study on the 
MPI point-to-point and collective communications, which 
supplements the earlier performance study [29].  Furthermore, 
we have compared the results with those obtained by using 
MPI4PY which is a Python wrapper for MPI API (Application 
Programming Interface) and can be used any MPI library.  In 
this paper, we have obtained MPI4PY results using OpenMPI 
4.1.3 library which is specially built for RoCE protocol.  In 
general, the RoCE protocol can provide better MPI 
communication performance with lower latency and high 
bandwidth as compared to TCP protocol.  

Although pPython is slower than mpi4py in MPI 
communications because pPython uses a file-based message 
communication while mpi4py uses a socket-based message 
communication, we have demonstrated that pPython’s 
performance can be comparable with mpi4py under certain 
conditions for both point-to-point and collective 
communications.  We have further optimized the pPython 
broadcast communication by introducing a node-aware, binary 
tree-based communication algorithm, which enables 
comparable broadcast performance when all MPI processes are 
on the same node. Finally, as a future task, we have identified 
potential performance improvement opportunities with pPython 
broadcast communication by utilizing Lustre parallel filesystem 
for off-node process communication and local filesystem for in-
node process communication. 

Overall, pPython provides a simple and maintainable way to 
easily make Python programs run in parallel with reasonable 
performance scalability and comparable performance as 
compared to the traditional MPI communication available with 
mpi4py. 
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