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Abstract—High Performance Reconfigurable Computers
(HPRCs) consist of one or more standard microprocessors
tightly coupled with one or more reconfigurable FPGAs.
HPRCs have been shown to provide good speedups and good
cost/performance ratios, but not necessarily ease of use, leading
to a slow acceptance of this technology. HPRCs introduce
new design challenges, such as the lack of portability across
platforms, incompatibilities with legacy code, users reluctant to
change their code base, a prolonged learning curve, and the need
for a system-level Hardware/Software co-design development
flow. This paper presents the evolution and current work on
TMD-MPI, which started as an MPI-based programming model
for Multiprocessor Systems-on-Chip implemented in FPGAs,
and has now evolved to include multiple X86 processors.
TMD-MPI is shown to address current design challenges in
HPRC usage, suggesting that the MPI standard has enough
syntax and semantics to program these new types of parallel
architectures. Also presented is the TMD-MPI Ecosystem, which
consists of research projects and tools that are developed around
TMD-MPI to further improve HPRC usability.

I. INTRODUCTION

Portability in a typical High-Performance Computer (HPC)

is achieved by using standards-based operating systems and

software layers (Middleware) that abstract machine-specific

hardware from the software application, as shown in Figure 1

on the left. The UNIX operating system (and its variants) and

the MPI [1] library are examples of those de-facto standards

that enabled portable parallel applications across HPCs. For

HPRC designs to be truly portable, these concepts must be

extended to the FPGAs, as they are now part of the application.

Figure 1 shows how portability for HPRCs must come from

two sides: application software and application hardware.

For HPRC’s, the hardware operating system and hardware

middleware should provide a standard abstraction for applica-

tion hardware engines to access host-specific resources, such

as external memory and communications. Examples of these

host-specific communication resources are the X86-FPGA

communication mediums, such as Intel’s Front Side Bus (FSB)

or QuickPath [2], AMD’s HyperTransport [3], Cray’s Rapid

Array Transport [4], SGI’s Scalable System Port–NUMA link

connection [5], or even PCI Express. Companies such as Cray,

SGI, Intel, Nallatech, XtremeData, DRC and SRC provide

their own low-level software APIs and their own hardware

interfaces for application hardware engines. HPRCs are now

in a similar stage as HPCs were before the appearance of

MPI [1] when every vendor had their own message-passing

API to program their own supercomputers causing a lack of

portable designs. Currently, there is no implemented standard

API for a high-level parallel programming model that includes

the interaction between X86 processors and FPGAs. There

is, however, interesting progress done by the OpenFPGA[6]

organization on this matter, which is compared against this

work in Section V.
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Fig. 1. Comparison between HPC and HPRC abstraction layers

Previous work proposed TMD-MPI [7][8][9][10] as a subset

implementation of the MPI standard targeting Multiprocessor

System-on-Chip implementations across multiple FPGAs to

abstract hardware details from the user as well as to provide

a well-known, high-level parallel programming API. In three

years, TMD-MPI has evolved in a bottom-up approach to the

point where it provides software and hardware middleware

layers of abstraction for communications to enable the portable
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interaction between embedded processors, specialized hard-

ware computing engines and now X86 processors; all pro-

grammed under the same message passing paradigm making

it a unified programming model for HPRCs.

This paper provides a summary of TMD-MPI’s philosophy

and evolution, followed by a discussion of the new additions,

current work and supporting tools and research projects called

the “TMD-MPI Ecosystem”. It is hoped that these research ef-

forts generate discussion in the community regarding whether

MPI is a good model for HPRCs or not, influencing perhaps

existing MPI implementations to include FPGA support. It is

time to consider how to include acceleration technologies, such

as FPGAs, GPUs and CELL processors into a potential MPI-

3 accelerator-aware standard because accelerator technologies

also have data movement and synchronization requirements.

The rest of the paper is organized as follows. Section II

explains the motivations that led to the development and use of

TMD-MPI. In Section III an updated version of the design flow

based on recent work is presented. Section IV provides a real

example of portability based on experiences using TMD-MPI.

Section V contrasts TMD-MPI with related work regarding

X86-FPGA communication. Section VI describes TMD-MPI’s

architecture and HPRC reference platform. In Section VII, the

current functionality of TMD-MPI is described. Section VIII

presents a synopsis of the projects that constitute the TMD-

MPI Ecosystem. Finally, some concluding remarks are given

in Section IX.

II. MOTIVATION

TMD-MPI was initially developed to address the need

for a programming model for the TMD (Toronto Molecu-

lar Dynamics) machine being developed at the University

of Toronto [10]. The TMD machine is a scalable Multi-

FPGA configurable system designed to accelerate computing

intensive applications. The basic assumption is that FPGAs

have enough resources to implement entire applications, as

opposed to only parts of computations, such as small comput-

ing kernels. The objective is to have a tightly coupled mix

of embedded processors (for control intensive parts of the

application) and specialized hardware engines (to accelerate

the compute-intensive parts of the application) all within the

same FPGA or distributed among many FPGAs.

With multiple embedded processors and hardware engines

(collectively referred to in this paper as computing elements,

or CEs) interacting across multiple FPGAs, there is a need

for a networking infrastructure and a distributed programming

model. Most multi-FPGA systems have distributed memory

(usually, each FPGA has its own external memory), and inside

each FPGA there might be multiple CEs, each with their

own local memory; hence, a programming model such as

MPI seems adequate. With the appearance of tightly-coupled

FPGAs and X86 processors sharing the main system mem-

ory [11], [12], [13], [14], [15], TMD-MPI has been extended to

include communication with X86 processors, marking TMD-

MPI’s entrance to the HPRC world.

Figure 2 shows the generic model of a HPRC machine. It

is possibly a multi-host machine, where each host can have

one or more X86 processors and one or more FPGAs, each

processor with one or more X86 cores, and each FPGA with

one or more computing elements inside. Note that in this

model two or more FPGAs can indirectly share the same

connection point to the host’s internal interconnection system

(FPGAs 1, 2 and 3 share a connection). TMD-MPI shows that

the MPI standard is a reasonable abstraction for addressing the

communication and synchronization of such architectures.
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Fig. 2. HPRC generic model

There are two challenges when programming an application

for this HPRC model. The first is the high-level, coarse-grain

parallelization of the application, where decisions inherent to

the parallel algorithm, such as data partitioning, synchroniza-

tion and load balancing are made. The second challenge is the

efficient use of the available FPGAs, where low-level decisions

are taken, such as the number of pipeline stages, type of

floating-point support and mapping a digital design to chip

resources. A fully-automated flow for HPRCs that parallelizes

an application and at the same time converts it into hardware

is a double challenge. This is especially true if a non-parallel-

friendly, non-hardware-friendly language is used, such as C.

Perhaps at some point projects on high-productivity parallel

programming languages, such as Chapel [16] and X10 [17] can

cooperate with tools that automatically generate HDL, such as

ImpulseC [18], HandelC [19], Synfora [20], MitrionC [21],

etc., to provide a fully-automated flow that overcomes the

extraordinary challenges of programming HPRCs.

In the meantime, efficient applications for HPRCs have to be

developed by a multidisciplinary team: a hardware engineer,

a software engineer, and the application expert. The proposed

approach is to deal with the two HPRC programming chal-

lenges independently. By parallelizing the code using MPI, the

entire application is partitioned into smaller and simpler pieces

of code, leaving the C-to-HDL tool (or hardware engineer)



the easier task of turning into hardware more confined pieces

of code. Writing high-level parallel code is still easier than

writing low-level HDL code, so this approach is of great help

to the non-hardware knowledgeable user. The experience of

using TMD-MPI shows that MPI applied to FPGAs offers

a convenient and clean interface between hardware designers

and software developers that allows independent progress of

both due to the standard interface and well-defined semantics.

Pragmatically, HPRCs exist now and the user community

cannot wait for fully automated tools to magically appear

and make them trivial to use. TMD-MPI and its surrounding

Ecosystem are examples of tools that exist today.

III. DESIGN FLOW

As previously discussed, the two major challenges to im-

plementing an application on HPRCs are coarse-grain paral-

lelization and HDL coding. To address these challenges, a top-

down, step-by-step design flow was developed to implement

applications using HPRCs. Figure 3 illustrates the updated

version of the flow that was first introduced by Patel et.

al. [10]. This new version includes the X86-FPGA interaction.

Step 1 begins by developing a prototype of the application in

a high-level programming language such as C/C++. The result-

ing code is sequential in nature and is only intended to provide

a prototype solution to the computing problem. At this stage,

the application can be profiled to identify computationally-

intensive routines. The results of this prototype design can be

compared to the results of the final system and validate the

correctness of the implementation at any step during the flow.
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Fig. 3. Design Flow with TMD-MPI

Step 2 refines the prototype application by partitioning it

into simple, well-defined processes that can be replicated to

exploit the implicit parallelism of the application. At this point

the user should have at least a hint about what processes are

the most demanding, and therefore candidates for hardware

engines. The user should avoid the use of any operating system

calls or any feature that a hardware engine could not support.

Inter-process communication is achieved using MPI, allowing

the application to be developed and tested at the X86 level.

No FPGA is involved yet. This approach has the advantage

of allowing the programmer access to standard tools for

developing, profiling and debugging. As an alternative to using

TMD-MPI, other MPI implementations, such as MPICH [22]

or OpenMPI [23] can be used, however, the programmer must

use only the available MPI functions implemented in TMD-

MPI (see Section VII). Validation of the parallel algorithm

can be done at this point, by comparing against the sequential

version.

In Step 3, selected software processes developed in Step 2

are recompiled for embedded processors. The rest of the

processes are still executed by the X86. The portability of

MPI allows the software to be recompiled and executed on

the embedded processors with the code practically unchanged.

This is an optional intermediate step where hardware engines

are emulated by embedded processors in the FPGA. At this

stage, execution of the entire application using the FPGAs is

possible. This allows the interaction between X86 processors,

embedded processors and emulated computing engines to be

tested and validated. This step gives the user the opportunity

to better exploit communication locality by putting together in

the same FPGA control-intensive processes (embedded proces-

sors) and compute-intensive processes (hardware engines) that

have an intense communication pattern.

The final step of the programming flow substitutes al-

gorithms executing on embedded processors with hardware

engines. Translating the computationally-intensive processes

into hardware engines is done manually in the current flow

using typical FPGA design tools. However, since the system

has already been partitioned into individual computing tasks

and all communication primitives have been explicitly stated at

this stage, C-to-HDL tools may also be used to perform this

translation, or as discussed in Section VIII-C, MPI-to-HDL

tools are feasible.

Once a computing engine has been designed, an additional

message-passing engine (TMD-MPE, Section VI-E) is used

to perform message passing functionality in hardware (e.g.,

protocol processing, handling message queues, divide large

messages into packets), which simplifies the design of the

computing engine. Special versions of the TMD-MPE can

also be used by the embedded processors as a communication

coprocessor enabling a more efficient data exchange.

IV. AN EXAMPLE OF PORTABILITY AND SCALABILITY

This section gives an example of the portability that TMD-

MPI provides to a reconfigurable computing application being

developed in the rapidly evolving field of FPGAs.

For the last three years, research has been conducted at

the University of Toronto in collaboration with the Hospital



for Sick Children to develop an FPGA-based machine to

accelerate Molecular Dynamics (MD) simulations. These are

atomic-level simulations of biomolecular systems used in

biomedical research to design more effective drugs. The devel-

opment of this machine began using the Amirix AP1000 PCI

development boards [24]. Each board contains one XC2VP100

FPGA, 64 MB of external memory and four high-speed serial

I/O links, which allowed five of these boards to be fully

interconnected. The MD application coding was in progress

when the new BEE2 platform [25] arrived with five XC2VP70

FPGAs per board, 4 GB of external memory per FPGA,

using parallel LVDS lines and 18 high-speed serial links. This

platform is obviously more integrated, provides more resources

and potential for acceleration. Consequently, the development

of the MD application continued on the BEE2 platform. The

MD code was still in progress when the even newer Xilinx

Accelerated Computing Platform (Xilinx ACP) arrived. This

platform (further described in Section VI-A) has Virtex 5

FPGAs that can be connected directly to the Intel FSB by

inserting them into one of the CPU sockets in the motherboard.

The FPGAs are tightly coupled to X86 processors sharing

8 GB of memory, opening up more opportunities for acceler-

ation. Currently, the development continues for this platform.

The question is how can one develop an application if

the hardware keeps changing. Furthermore, how can existing

code be isolated from future hardware changes. The impact

of these hardware changes on the MD application has been

minimized by using TMD-MPI. Indeed, there were changes,

but all of them in the system infrastructure (what is described

as SW/HW OS and SW/HW Middleware in Figure 1), not

at the SW/HW application levels. The MD software code

(written in C++) and the MD hardware engines (HDL) have

been mostly the same, changing only in their natural evolution

towards a more complete MD simulator.

One of the necessary changes was to regenerate some

of the core netlists to take advantage of the newer Vir-

tex 5 architecture. Another change was computing element

reallocations. The bonded and non-bonded force calculations

(particular types of forces in MD) were performed by two

different computing elements that were located in the same

FPGA, but when switching from the AP1000 boards to the

BEE2 boards the bonded forces compute engine had to be

reallocated to another FPGA because the BEE2 board has

smaller FPGAs than the AP1000 board. Moreover, the bonded

force computing element was originally a PowerPC processor,

then it became a MicroBlaze soft-processor, but most likely it

will end up being an X86 processor. Through all these changes,

TMD-MPI provided tolerance to hardware changes and made

it possible to perform architectural explorations and propose

changes to achieve better performance without impacting the

MD application code-base.

Another advantage of using TMD-MPI was the abstraction

of the FPGA configuration process, which is usually not as

easy to run as a typical program, and it is also a completely

different procedure between the AP1000 boards, the BEE2

boards and the Xilinx ACP. Furthermore, in a HPRC, starting

the execution of a large number of X86 software processes

and configuring a large number of FPGAs must be automated.

By using mpirun/mpiexec scripts, a difference like this can be

minimized and hidden from the user perspective.

V. RELATED WORK

TMD-MPI was created with the influence of the Multipro-

cessor System-on-Chip [26] and Network-on-Chip research

fields. Related work of those areas to TMD-MPI is discussed

in previous work [8][9] and briefly mentioned in Section VI-B.

In this Section, current APIs for X86-FPGA communication

are compared with TMD-MPI.

Currently, the most common usage of MPI on HPRCs is at

the host level [27], where X86 processors exchange messages

using MPI and then forward the received data to the FPGAs,

which is a mere slave to the X86 processor. This uses the

X86 as a message relay introducing latencies and complicating

the programming model because the user has to be aware of

two different APIs: one for message-passing and another for

interacting with the FPGA. This section shows how MPI’s

high-level API can be used instead of low-level API calls to

perform X86-FPGA communications, with the added benefit

of a broader communication context, more abstraction and a

familiar API, providing a unified programming model. Note

that many features that are available in the MPI standard are

not implemented in TMD-MPI yet, and that certain features

are not defined in the MPI standard but left open to the imple-

mentation. Here references to MPI mean the API itself, and

references to TMD-MPI means our particular implementation

of MPI.

At the time of writing this paper, OpenFPGA has released

its first General API Specification 0.4 (GenAPI) draft [28].

Its objective is to propose an industry standard API for high-

level language access to reconfigurable computing resources

in a portable manner. The draft is an excellent compilation of

common X86-FPGA communication requirements for HPRCs.

GenAPI shares practically all the same design goals as TMD-

MPI, however, there is a fundamental difference: the scope

of the standard. GenAPI only focuses on the low-level X86-

FPGA interaction, not making any assumptions on higher level

forms of communication, such as FPGA-initiated transfers,

inter-host communications, inter-FPGA communications and

intra-FPGA communications. In contrast, the MPI standard is

agnostic of the communication media and requires that every

rank (a task in the MPI jargon) be able to initiate transfers

(Master) at any time regardless of its physical location. In this

sense, the FPGA is no longer a passive slave in the system.

Similar to GenAPI, HPRC vendors provide their own APIs,

but with the same limited scope: X86-FPGA communication,

which is a subset of the communications that TMD-MPI is

able to provide. Table I summarizes these communication ca-

pabilities. TMD-MPI will be able to provide communications

at the host-to-host level, X86-to-X86 level, FPGA-to-FPGA

level and intra-FPGA level (CE to CE); and in between these

categories as well. That is, a hardware engine inside an FPGA

in one host can exchange data with another hardware engine



Master Slave

X86 (core) X86 (core)
X86 (core) FPGA (CE)
FPGA (CE) X86 (core)
FPGA (CE) FPGA (CE)
Host A (X86 core or CE) Host B (X86 core or CE)

TABLE I
TMD-MPI’S COMMUNICATION CAPABILITIES

inside another FPGA in a remote host, without the need of an

X86 to start or negotiate the communications.

In TMD-MPI, because of its on-chip origins and its

distributed nature, achieving multi-level communications is

straightforward. However, to make TMD-MPI portable across

HPRC platforms, the low-level APIs are needed exclusively for

X86-FPGA communication. For example, on the Xilinx ACP

platform a custom low-level API is being used, but in principle

other APIs could be used, such as Intel’s AAL [29]. The

GenAPI standardization efforts would help TMD-MPI by not

having to implement a different version for each HPRC low-

level API. By looking at some HPRC vendor APIs [4][5][29]

and GenAPI, four general categories can be distinguished in

the functions available: Initialization and termination, FPGA

management, data transfer, and memory allocation. The APIs

are driver-like interfaces to the FPGA (open, close, write, read,

mmap, etc.), but a system-level design of parallel applications

that include FPGAs, needs a higher-level of abstraction.

Some of the low-level API calls can be easily mapped to

MPI calls. For example, MPI function MPI Init() is used to

initialize internal data structures, to open the FPGA device

and to signal the FPGA to start running. The opposite,

MPI Finalize() is used to signal the end of the application

to the FPGA, remove the internal structures and close the

FPGA device. MPI Send(), MPI Isend(), MPI Recv() and

MPI Irecv() are used to send/receive data to/from the FPGA in

a blocking and non-blocking manner. For memory allocation,

MPI provides the MPI Alloc mem() and MPI Free mem()

functions to allocate/deallocate memory that the FPGA can

access. An MPI example using some of these functions is

shown in Section VI-C.

Of course the MPI standard does not define how to down-

load a bitstream to an FPGA, but this can be left open to

the implementation. Currently in TMD-MPI, downloading a

bitstream is part of the mpiexec or mpirun commands. A

similar idea on configuring distributed FPGAs and a unified

programming model was proposed by Jones et al. [30], but

the authors use their own API whereas our objective is to use

the standard MPI API itself. Also, TMD-MPI has a broader

scope as it includes more communication modes as shown in

Table I.

Another interesting effort trying to bring portability to

HPRCs is Vforce [31]. The authors provide a high-level

object-oriented framework based on the VISPL++ standard,

which is a vector and image processing library API. Their

approach is quite similar to ours in two fundamental points.

First, one layer in their framework interacts with the low-

level API calls rather than the final user’s code, insulating

the application from hardware changes. TMD-MPI uses a

low-level driver to access the FPGA, not the user’s code,

which uses MPI calls. The second similarity is that they

allow domain experts, such as FPGA designers, to create

specialized hardware library components that can be interfaced

with their framework. MPI allows the creation of third-party

parallel libraries, and with TMD-MPI it is possible to have

software-hardware parallel libraries that interact based on an

application-level message-passing protocol.

VI. TMD-MPI ARCHITECTURE

In this section the Xilinx ACP is first presented as an

example of the HPRC model described in Section II. Then

the mechanism for TMD-MPI data transfers in the ACP using

a mix of shared and distributed memory is explained.

A. HPRC Implementation Platform

TMD-MPI has been used in a variety of platforms, but the

focus here will be on the Xilinx ACP as it is the newest

platform and current target.

The base system is an instance of the HPRC model shown

in Figure 2. It is an Intel quad-socket Server System, the

S7000FC4UR. One of the processor sockets has an Intel

Quad-core Xeon 7300 processor and the other socket has the

Xilinx ACP. Currently, the remaining sockets are not used,

but more X86 processors or Xilinx ACPs could be added. The

Xilinx ACP consists of a stack of up to three PCB layers

(modules). The first layer (bottom-up) contains the bridge

FPGA (XC5VLX110) and is physically placed in one of the

X86 sockets on the motherboard. Its function is to provide a

connection point to Intel’s FSB and provide communications

for the upper-level layers. The second and third layers are

known as dual-compute FPGA modules. Each module contains

two XC5VLX330 FPGAs in the same PCB. All the FPGAs

are directly connected by LVDS lines in the same layer and

between layers. The Xilinx ACP platform and the X86s can

share up to 64 GB of RAM through the FSB, and the machine

is running a standard SMP Linux distribution. In this paper this

machine is used as a reference implementation platform for

TMD-MPI, but most of the concepts can be applied to other

HPRCs as long as the FPGAs have access to main system

memory.

B. Intra-FPGA and Inter-FPGA communication

A generic example for a multi-FPGA board is shown in

Figure 4. The figure could physically represent five AP1000

boards, one BEE2 board or one Xilinx ACP platform with

one bridge FPGA and two dual-compute FPGA modules. The

group of FPGAs is called an FPGA cluster. The communica-

tion is logically divided in Tiers based on its scope.

Tier 1 is the on-chip network that is used to exchange

data between multiple computing elements within the same

FPGA. This network is a set of point-to-point channels (a pair

of FIFOs, one for transmission, one for reception), usually



in a fully-connected topology, but other topologies can be

used as well, depending on the communication needs. The

network latency is usually a few clock cycles depending on

the topology. The bandwidth is limited by the FPGA frequency

and the width of the point-to-point channels.

The Tier 2 network is used for inter-FPGA communication

within the same FPGA cluster. The gateways are connection

points (bridges) between Tier 1 and Tier 2. Usually this

network uses high-speed serial links or parallel LVDS lines.

An important requirement is that this network has CRC and

packet retransmission that guarantees error free transfers. One

of the FPGAs, has a special gateway that connects Tier 2 to

Tier 3 and Tier 4.

Tier 3, not shown in the picture, would be all the com-

munications within the same host: FPGA cluster-X86, X86-

X86, and FPGA cluster-FPGA cluster. Finally, Tier 4, also

not shown in the figure would be the host-host communication.

FPGA

FPGA FPGA

FPGA FPGA

PPC

µB

Tier 1

Network

To Tier 3 and Tier 4

Network

Tier 2

Network

(MGT/LVDS Links)
Gateway node

TMD

MPE

Fig. 4. Inter-FPGA and Intra-FPGA communication

The Tier 1 network uses small distributed on-chip network

interfaces (NetIfs), that forward packets to the right channels

based on a routing table. The NetIfs use a buffer-less cut-

through routing approach to reduce latency and to save on-chip

resources. Some degree of buffering is implicit by using FIFOs

as channels. Since all communication is FIFO-based, full and

exists signals are used for flow control back-propagating the

full condition to the sender.

Figure 5 shows an example of a connection between two

computing elements: a MicroBlaze in FPGA 1 and a hardware

engine in FPGA 2. Tier 1 and Tier 2 networks might have

different protocols, in which case the Bridge block will handle

network packet translations as they pass through the bridge.

The bridge block can be as simple as just wires when packet

formats between Tier 1 and Tier 2 are the same. However, in

the case of FPGA cluster-X86 communication the bridge is

considerably more complicated, as will be seen Section VI-D.

Finally, the Off-chip Communication Controller (OCCC) is

the block handling the physical access to the communication

media (MGTs, LVDS, FSB, etc.). This block delivers error-

free data to the FPGA from the outside world and vice-versa.

In the case of the AP1000 boards, this block is the FSL Aurora

core [32], which uses the Xilinx MGT and Aurora link layer

protocol for serial I/O. In the case of the BEE2, the blocks used

are the FSL interchip core for the LVDS interface (parallel

link) and the FSL XAUI core for the 10Gbit XAUI interface

(serial link). In the case of the Xilinx ACP platform, the block

is the Intel-Xilinx FSB protocol hardware core, which allows

the FPGA to access the host’s shared memory.

BRIDGE OCCC

Network Interface (NetIf ) FIFO

Tier 1

Network

BRIDGE OCCC
Tier 1

Network

TMD

MPE

Tier 2

Network

Hardware 

Engine

µB

FPGA_1 Gateway

FPGA_2

MicroBlaze with 

TMD-MPI

Fig. 5. Inter-FPGA and Intra-FPGA communication

C. Shared memory communication

TMD-MPI requires a distributed memory mind set from the

user, but it takes advantage of the shared memory to perform

the message passing for X86-X86, FPGA-X86 and X86-FPGA

communication in the same host. TMD-MPI provides two

ways of performing shared memory transfers. One is the

typical approach that performs an extra copy from the user

source buffer to an intermediate shared buffer, and lets the

receiver copy the data from the intermediate buffer to the user

destination buffer. The second approach available in TMD-

MPI is a zero-copy technique, in which the sender or the

receiver can copy the data directly from the user source buffer

to the user destination buffer, without incurring the extra copy

to the intermediate buffer.

TMD-MPI will automatically select one or the other based

on how the buffer is created. If the source or destination

(or both) buffers are allocated using the MPI Alloc mem()

function then MPI will automatically select the zero-copy ap-

proach, otherwise TMD-MPI will use the intermediate buffers.

This works for both X86-X86 and FPGA-X86 communication.

However, it does not mean that the user must allocate a buffer

to be able to transfer it to the FPGA or to the X86. It just

means that one way will be faster than the other depending

on the situation.

This is convenient because at the programming model level

the user does not have to allocate every buffer to be sent, even

if it is a small payload. This is exemplified in Figure 6. The

user can declare a variable or an array in a typical way and just

send them (the extra copy approach will be selected by TMD-

MPI), or the user can allocate two buffers and send them (zero-

copy will be selected by TMD-MPI). A zero-copy transfer is

convenient when transferring large amounts of data, usually

critical to the performance of the application and justifying

a memory allocation. But a simple intermediate copy would

suffice for a non-critical small transfer, or when it is necessary

to transfer large data sets at initialization stages, again not

critical for performance; otherwise, extra memory allocations



might be tedious for the programmer. In Figure 6, the variable

dest can be the rank of an X86 processor, a MicroBlaze, a

PowerPC or a hardware engine. The same API is used.

main() {

int x, ax[1000];

int * px, * pax;

...

MPI_Init();

...

// ----- Send with implicit extra copy -----

x = 23;

init_with_data(ax);

MPI_Send (&x,1,MPI_INT,dest,tag,comm);

MPI_Send (ax,1000,MPI_INT,dest,tag,comm);

// ----- Send with zero-copy -----

MPI_Alloc_mem (1*sizeof(int),MPI_INFO_NULL,&px);

MPI_Alloc_mem(1000*sizeof(int),MPI_INFO_NULL,&pax);

*px = 23;

init_with_data(pax);

MPI_Send (px,1,MPI_INT,dest,tag,comm);

MPI_Send (pax,1000,MPI_INT,dest,tag,comm);

MPI_Free_mem(pax);

MPI_Free_mem(px);

...

MPI_Finalize();

}

Fig. 6. Transfers with implicit extra copy and zero-copy

D. The MPI FSB Bridge

The communication at the X86-X86 level is achieved us-

ing shared memory, and the computing elements inside the

FPGA exchange messages using the Network-on-Chip. To

exchange messages between X86s and computing elements,

the data must travel through a shared memory MPI bridge

(MPI Bridge), which implements in hardware the same shared

memory protocol that the X86 processors use, as shown in

Figure 7. This bridge takes data to/from the NoC and issues

read or write memory requests to the vendor-specific low-level

Off-Chip Communication Controller (OCCC), which executes

the request. The MPI Bridge effectively abstracts the vendor-

specific communication details from the rest of the on-chip

network. In this way, the FPGA design can be ported as long

as there is a corresponding MPI Bridge for the new HPRC.

Other interfaces, such as external memory might still be an

impediment to porting designs from one HPRC to another.
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Fig. 7. The MPI Shared Memory Bridge is the interface between the shared
memory and the Network-on-Chip.

For this paper, the Intel FSB is used as the communica-

tion medium but the same concepts can be applied to other

communication media, such as AMD’s HyperTransport [3],

Intel’s QuickPath [2], Cray’s Rapid Array Transport [4], SGI’s

Scalable System Port-NUMA link connection [5], or even

with a standard PCI Express core because they all provide

a physical connection to the main system memory. The com-

munication medium determines what OCCC to use, and in

this case the Intel-Xilinx FSB communication core handles

the low-level protocol to read and write to memory as well as

the memory coherence control. But most importantly, TMD-

MPI’s shared memory message-passing protocol should be the

same across HPRCs or with minor variations. The only change

is the physical interconnection between the MPI Bridge and

the vendor-specific OCCC. By implementing a MPI Bridge

for each type of OCCC, the system is portable. For example,

in this paper a MPI Xilinx FSB Bridge is used, but an

MPI Cray Bridge could be implemented to use a Cray HPRC.

An extension of this approach to a multi-host distributed

memory machine is natural since message-passing assumes no

shared memory. In this case, an MPI Ethernet Bridge could

be used, or any other point-to-point communication interface,

to allow the connection of multiple hosts through the FPGAs.

E. TMD-MPE

For processors, TMD-MPI is a software library that provides

the message passing capabilities, but for hardware engines to

have message passing capabilities they must use a block called

TMD-MPE (TMD-Message Passing Engine), which encapsu-

lates in hardware some of the TMD-MPI functionality. The

TMD-MPE provides the hardware equivalent to MPI Send

and MPI Recv to a computing element in the FPGA, handles

unexpected messages and the communication protocol, and

divides large messages into smaller size packets to be sent

through the network. As shown in Figure 8, the TMD-MPE

is connected between the computing element and the on-

chip network interface (NetIf). The TMD-MPE receives the

message parameters and data from the computing element,

such as the operation (whether it is sending or receiving a

message), the destination node id (rank of the process in

the MPI environment), the length of the message, and an

identification number for the message (the tag parameter in a

normal MPI send/receive operation). After this, the TMD-MPE

will handle the communications through the network with the

destination rank. The interfaces between the TMD-MPE and

the computing element are four FIFOs (two for commands

and two for data) making integration easy. These FIFOs can

be asynchronous FIFOs allowing the computing elements to

operate at different frequencies than the rest of the system.

The main application pipeline, or computing engine is

wrapped inside a block that has a user-defined state machine

whose purpose is to issue send and receive commands using

the command FIFOs. The actual data should pass through the

data FIFOs to and from the application pipeline. In this way,

communications and computation are cleanly separated. The

synchronization between the state machine and the application

pipeline can be achieved through user defined simple control

signals, such as busy or done signals, or even register values



that may act as input parameters to the application pipeline

or return codes from the application pipeline that may change

the communication pattern.

Computing
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TMD-MPE

Command FIFOs

Data FIFOs

To/From

On-Chip

Network

Fig. 8. Connection of a the application hrdware and the TMD MPE.

VII. CURRENT FUNCTIONALITY

TMD-MPI is in constant development because the MPI

standard is very broad and there are still many features in the

standard that are not implemented in TMD-MPI. Additionally,

there are requirements in HPRCs that are not addressed

in the standard, and some additions, such as the bitstream

configuration and software resets to FPGAs, are functions that

need to be placed somewhere during the execution of an MPI

program. Our policy to expand TMD-MPI is on an as-needed

basis. The current functions in TMD-MPI are listed in Table II.

TABLE II
FUNCTIONALITY OF TMD-MPI SOFTWARE LIBRARY

MPI_Init Initializes TMD-MPI environment
MPI_Finalize Terminates TMD-MPI environment
MPI_Comm_rank Get rank of calling process in a group
MPI_Comm_size Get number of processes in a group
MPI_Wtime Returns number of seconds elapsed since

application initialization
MPI_Send Sends a message to a destination process
MPI_Recv Receives a message from a source process
MPI_Isend Non-blocking send
MPI_Irecv Non-blocking receive
MPI_Issend Non-blocking send using synchronous pro-

tocol
MPI_Test Tests if a non-blocking request is complete
MPI_Wait Blocks the calling process until a non-

blocking request is complete
MPI_Waitall Blocks the calling process until all the non-

blocking requests in an array are complete
MPI_Barrier Synchronizes all the processes in the group
MPI_Bcast Broadcasts message from root process to

all other processes in the group
MPI_Reduce Reduces values from all processes in the

group to a single value in root process
MPI_Allreduce Reduces values from all processes in the

group, and broadcast the result to all the
processes in the group

MPI_Gather Gathers values from a group of processes
MPI_Alloc_mem Allocates memory for Remote Memory

Access (zero-copy transfers)
MPI_Free_mem Deallocates memory that was reserved us-

ing MPI Alloc mem

Among other restrictions, the TMD-MPE only implements

point-to-point send and receive, no collective operations. In

software, TMD-MPI collective operations can only perform

MPI SUM and MPI MAX on scalar values. There is only

one communicator (MPI COMM WORLD) and only the ren-

dezvous message-passing protocol is implemented (no eager

protocol for scalability reasons). However, some of these

limitations can be relatively easy to overcome, and they are

scheduled to be done in the TMD-MPI project timeline.

VIII. TMD-MPI ECOSYSTEM

There is ongoing research at the University of Toronto to

create a supporting framework around TMD-MPI. The ob-

jective is to facilitate the application development for HPRCs

by providing automation, debugging, verification and profiling

tools. In this section, the goals and status for each of these

projects is briefly summarized.

A. Profiling TMD-MPI

In a parallel application, it is very important to understand

how much time an application spends in communication and

computation to identify potential improvements. Situations,

such as communication bottlenecks and workload imbalance

can be detected by profiling the application. The MPICH dis-

tribution includes the MPI Parallel Environment (MPE) [33],

which provides the ability to profile different sections of the

user application code as well as the MPICH code itself. This is

done by code instrumentation using a predefined profiling API.

The MPE includes a tool called JumpShot [34] that visualizes

the profiler logs, allowing a user to see what each rank is doing

over a common timeline.

Inspired by this, a similar profiler for TMD-MPI was

implemented, which works with hardware computing elements

in FPGAS. The TMD-MPI profiler [35] connects hardware

blocks called tracers to the TMD-MPE, which provides all

the information needed to profile the message-passing activity

over the TMD-MPI network. A similar tracker is attached

to a hardware engine or to an embedded processor to log

computing events, such as pipeline busy signals that can help

to determine the hardware engine utilization. The logs created

by the TMD-MPI profiler are compatible with the logs created

by the MPE allowing the same JumpShot GUI to be used;

therefore, reducing the learning curve by not asking the user

to learn a different tool, if already familiar with JumpShot. In

the case of processors, the TMD-MPI profiler uses part of the

same profiling API as the MPE.

Figure 9, is an example of the JumpShot GUI reporting

data gathered by the TMD-MPI profiler. It shows a non-

blocking data exchange between eight computing engines,

implemented in an FPGA. The horizontal bars represent the

time to receive a message (hash bar), compute (solid bar)

and send a message (checker bar), and the arrows are control

messages in the rendezvous protocol (request to send, clear

to send and the payload data transfer). An overlap can be

seen between communications and computation (bars with

diagonal lines), which is not seen in the blocking version (not

shown). For more details on this particular project see the work

presented by Nunes et. al. [35].



The TMD-MPI profiler has been implemented and tested

only on the BEE2 platforms, and is able to use multiple boards.

Future work for this project includes adding support for the

X86-FPGA interaction.

Fig. 9. Jumpshot GUI showing data gathered using the TMD-MPI profiler

B. Message Passing Simulation Framework

Compared to profiling, simulation is usually performed

at the initial stages of the development to get a working

FPGA-based system. A profiler is used to help improve the

performance based on long-running, full-speed tests with real

data sets, whereas a simulator is used to develop a functionally

correct system, and run tests with size-reduced data sets at

simulation speed. A simulation allows full visibility into the

FPGA design and a fast code-debug-recompile cycle because

there is no place-and-route process after design modifications.

In the case of HPRCs, there are two components: the

X86 software and the FPGA hardware. To design, debug and

verify such architectures, co-design techniques are taken from

the embedded world but applied to the HPC world. These

techniques are based on a system-level view of the application,

and focuses on the interaction between hardware and soft-

ware simultaneously, rather than designing two independent

entities that will not coordinate efficiently. For this reason,

the Message-passing Simulation Framework (MSF) [36] was

created, which allows X86 software processes (R0 and R1 in

Figure 10) to exchange MPI messages with the computing

elements implemented in the FPGA (R2 and R3), which is

being emulated by a simulator.

In a typical MPI parallel program, an MPI rank is not tested

in isolation from the other MPI ranks. It has to be tested

with all ranks running at once to verify the correct collective

operation and synchronization between them. With FPGAs as

containers of MPI ranks, they must be part of the system-level

testing process. The MSF’s objective is to test and debug user-

defined MPI-based application-level protocols as well as the

correct functionality of hardware engines, all at once.

Figure 10 shows how the FPGA is being simulated using

ModelSim [37], but from the X86 processor perspective it

appears like a slow FPGA (simulation speed). The key element

in the MSF is the use of Modelsim’s Foreign Language

Interface (FLI), which allows a C program to have access to

Modelsim’s simulation information, such as signals, register

values and simulation control parameters. The MSF FLI mod-

ule (C code) replaces the vendor-specific OCCC (explained in

Section VI-D) by providing the required functionality directly

to the MPI Shared Memory Bridge. The MSF FLI accepts the

MPI bridge memory requests (address and data) and performs

the reads and writes directly to the shared memory buffers.

The MSF has been used to develop and debug the TMD-

MPI infrastructure itself, but it can also be used in applications

as well. A simulation of a LINPACK benchmark core example

interacting with X86s and more details on this project can be

found in the work presented by Saldaña et. al. [36].
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Fig. 10. The MSF FLI module in a HPRC

C. Not just C-to-HDL, but MPI-to-HDL

Currently, much research is being done on C-to-HDL

tools because they will allow software developers, with no

knowledge of hardware, to create FPGA-based hardware ac-

celerators. However, this field is challenging because of the

complexities of modern software and algorithms. A research

project at the University of Toronto focuses on mixing MPI

and a C-to-HDL tool (Synfora’s PICO Express FPGA [20]).

The resulting tool flow is called AUTO [38]. The objective is

to take an MPI program written in C as input and produce

a hardware computing engine that can be interfaced with the

TMD-MPE allowing it to be part of the TMD-MPI network.

The basic assumptions are that a parallel MPI code (at least

for the rank that is a candidate to be turned into hardware) is

simpler than the entire sequential application to be parallelized,

and that explicit statement of the communication requirements

(MPI Send() and MPI Recv() function calls) can be easily

converted to stream-like reads and writes to FIFOs. Remember

from Section VI-E that FIFOs are used as interfaces to the

TMD-MPE, which takes care of the message-passing protocol.

Figure 11, shows the AUTO flow. First the MPI code input

is run through a preprocessing script that inserts codes that

translate MPI function calls to stream operations in addition

to hints and directives into a copy of the source code. The

annotated code is then passed to PICO Express (Synfora’s

compiler), which translates it into verilog hardware files. These

files are used by a packing script, which adds some control

logic code and returns a complete pcore directory structure

and files ready to be integrated into the Xilinx EDK tool.

A hardware engine was created from a simple MPI program

that computes the Jacobi Iterations method to solve the Heat

Equation using the AUTO flow. Results show that PICO

Express works well for a subset of the C language; future

additions to support pointers, more flexible looping structures,



and floating-point will be welcome. An MPI program as a

superset of a C program also suffers from the same lack of

features. However, the extra work required to parse the MPI

part over a plain C program is feasible. At this moment, the

flow is designed to use Synfora, but a similar approach could

be applied to ImpulseC, Handel-C, Mitrion-C, or any other C-

to-HDL tool. See Wang [38] for more details on this project.
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Fig. 11. MPI-to-HDL using the AUTO flow

IX. CONCLUSION

In this paper, the ideas that support MPI as a feasible pro-

gramming model that abstracts the communications in a HPRC

have been presented. The fact that MPI is based on a well-

known and successful standard makes it even more appealing

for parallel software developers. In the case of HPRCs, MPI

can benefit from OpenFPGA’s API standardization efforts, it

can use C-to-HDL tools and encourage its improvements, and

nothing prevents the use of a mixed shared memory plus MPI

programming approach, if that helps to raise the programming

abstraction. MPI provides a standard API for HPRCs that

promotes portability across HPRCs, a common programming

model for both software and hardware and easy scalability of

the application.

TMD-MPI has been developed as a proof-of-concept imple-

mentation. Although it is still work in progress, it is currently

being used to code an MD application in an HPRC. A future

article will discuss TMD-MPI performance measurements as

it requires more in depth analysis.
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