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Abstract—Worms such as Slammer, Nimda, and Code Red I
are anomalies that affect performance of the global Internet
Border Gateway Protocol (BGP). BGP anomalies also include
Internet Protocol (IP) prefix hijacks, miss-configurations, and
electrical failures. Statistical and machine learning techniques
have been recently deployed to classify and detect BGP anomalies.
In this paper, we introduce new classification features and apply
Support Vector Machine (SVM) models and Hidden Markov
Models (HMMs) to design anomaly detection mechanisms. We
apply these multi classification models to correctly classify test
datasets and identify the correct anomaly types. The proposed
models are tested with collected BGP traffic traces and are em-
ployed to successfully classify and detect various BGP anomalies.

I. INTRODUCTION

Border Gateway Protocol (BGP) anomalies often occur and
techniques for their detection have recently gained visible
attention and importance. Recent research reports describe a
number of applicable detection techniques. One of the most
common approaches is based on a statistical pattern recogni-
tion model implemented as an anomaly classifier [1]. Its main
disadvantage is the difficulty in estimating distributions of high
dimensions. Other proposed techniques are rule-based and
require a priori knowledge of network conditions. An example
is the Internet Routing Forensics (IRF) that was applied to
classify anomaly events [2]. However, rule-based techniques
are not adaptable learning mechanisms, are slow, and have
high degree of computational complexity.

In this paper, we employ machine learning techniques to
develop models for detecting BGP anomalies. We extract
numerous BGP features in order to achieve reliable classifica-
tion results. We use Support Vector Machine (SVM) models
to train and test various datasets. Hidden Markov Models
(HMMs) were also employed to evaluate the effectiveness of
the extracted traffic features.

This paper is organized as follows. In Section II, we provide
a description of the BGP data processing that consists of
features extraction and selection. The design of proposed clas-
sification models and their evaluation are described in Section
III and Section IV. Performance of the proposed models is
discussed in Section V. We conclude with Section VI.

II. DATA PROCESSING

A. Extraction of Features

In 2001, Réseaux IP Européens (RIPE) [3] initiated the
Routing Information Service (RIS) project to collect BGP

update messages. Real-time BGP data were also collected by
the Route Views [4] project at the University of Oregon, USA.
The RIPE and Route Views BGP update messages are avail-
able to the research community in the multi-threaded routing
toolkit (MRT) binary format [5], which was introduced by
the Internet Engineering Task Force (IETF) to export routing
protocol messages, state changes, and contents of the routing
information base (RIB). We used the Zebra tool [6] to convert
MRT to ASCII format and then extract traffic features. Traffic
traces of three BGP anomalies along with regular RIPE traffic
are shown in Fig. 1. A sample of the BGP update message
format is shown in Table I. It contains two Network Layer
Reachability Information (NLRI) announcements, which share
attributes such as the AS-PATH. The AS-PATH attribute in
the BGP update message indicates the path that a BGP packet
traverses among Autonomous System (AS) peers. The AS-
PATH attribute enables BGP to route packets via the best path.
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Fig. 1: Number of BGP announcements in Slammer (top left), Nimda (top
right), Code Red I (bottom left), and regular RIPE (bottom right) traffic.

We collected the BGP update messages that originated from
AS 513 (RIPE RIS, rcc04, CIXP, Geneva) and included a
sample of the BGP traffic during time periods when the
Internet experienced BGP anomalies. Details of the three
anomalies and two regular traffic events considered in this
paper are listed in Table II.

We developed a tool (written in C#) to parse the ASCII files



TABLE I: Sample of a BGP update packet.

Field Value

TIME 2003 1 24 00:39:53
FROM 192.65.184.3
TO 193.0.4.28
BGP PACKET TYPE UPDATE
ORIGIN IGP
AS-PATH 513 3320 7176 15570 7246 7246 7246

7246 7246 7246 7246 7246 7246
NEXT-HOP 192.65.184.3
ANNOUNCED NLRI PREFIX 198.155.189.0/24
ANNOUNCED NLRI PREFIX 198.155.241.0/24

TABLE II: Details of BGP datasets.

Class Date Duration (h)

Slammer Anomaly January 25, 2003 16
Nimda Anomaly September 18, 2001 59
Code Red I Anomaly July 19, 2001 10
RIPE Regular July 14, 2001 24
BCNET Regular December 20, 2011 24

and extract statistics of the desired features. These features
are sampled every minute during a five-day period, produc-
ing 7,200 samples for each anomaly event. They are used
as inputs for classification models. Samples from two days
before and after each event are considered to be regular test
datasets. The third day was the peak of each anomaly. The
features are normalized to have zero mean and unit variance.
This normalization reduces the effect of the Internet growth
between 2003 and 2011. Extracted features, shown in Table III,
are categorized as volume (number of BGP announcements)
and AS-path (maximum edit distance) features. The effect of
Slammer worm on volume and AS-path features is illustrated
in Fig. 2.

TABLE III: Extracted features.

Feature Definition Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-PATH length AS-path
6 Maximum AS-PATH length AS-path
7 Average unique AS-PATH length AS-path
8 Number of duplicate announcements volume
9 Number of duplicate withdrawals volume

10 Number of implicit withdrawals volume
11 Average edit distance AS-path
12 Maximum edit distance AS-path
13 Inter-arrival time volume

14-24 Maximum edit distance = n,
where n = (7, ..., 17)

AS-path

25-33 Maximum AS-path length = n,
where n = (7, ..., 16)

AS-path

34 Number of IGP packets volume
35 Number of EGP packets volume
36 Number of incomplete packets volume
37 Packet size (B) volume

BGP protocol generates four types of messages: open,
update, keepalive, and notification. We only consider BGP
update messages because they contain all features that we wish
to extract. BGP update messages are either announcement or
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Fig. 2: Samples of extracted BGP features during the Slammer worm attack.
Shown are volume features 8 (top left) and 35 (top right) and AS-path features
6 (bottom left) and 12 (bottom right).

withdrawal messages for the NLRI prefixes. Feature statistics
are computed for one-minute time intervals. The NLRI pre-
fixes that have identical BGP attributes are encapsulated and
sent in one BGP packet [7]. Hence, a BGP packet may contain
more than one announced or withdrawal NLRI prefix. While
features 5 and 6 are the average and the maximum number
of AS peers for AS-PATH attribute, respectively, feature
7 only considers the unique AS-PATH attributes. Duplicate
announcements are the BGP update packets that have identical
NLRI prefixes and AS-PATH attributes. Implicit withdrawals
are the BGP announcements with different AS-PATHs for
already announced NLRI prefixes [8]. An example is shown in
Table IV. The edit distance between two AS-PATH attributes is
the minimum number of insertions, deletions, and substitutions
that need to be executed to match the two attributes. The value
of the edit distance feature is extracted by computing the edit
distance between the AS-PATH attributes in each one-minute
time interval [1]. For example, the edit distance between AS-
PATH 513 940 and AS-PATH 513 4567 1318 is two because
one insertion and one substitution are sufficient to match the
two AS-PATHs. The most frequent values of the maximum
AS-PATH length and the maximum edit distance are used to
calculate features 14 to 33. Their distributions for the Slammer
worm are shown in Fig. 3.

TABLE IV: Definitions of BGP features.

Time Definition BGP update type NLRI AS-PATH
t0 Announcement Announcement 199.60.12.130 13455 614
t1 Withdrawal Withdrawal 199.60.12.130 13455 614
t2 Duplicate

announcement
Announcement 199.60.12.130 13455 614

t3 Implicit
withdrawal

Announcement 199.60.12.130 16180 614

t4 Duplicate
withdrawal

Withdrawal 199.60.12.130 13455 614

We also introduce three new features (34, 35, and 36)
based on distinct values of the ORIGIN attribute that specifies
the origin of a BGP update packet and may assume three
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Fig. 3: Distributions of (left) the maximum AS-PATH length and (right) the
maximum edit distance.

values: IGP (generated by an Interior Gateway Protocol), EGP
(generated by the Exterior Gateway Protocol), and Incomplete.
The EGP protocol is the BGP predecessor, which is not
currently used by Internet Service Providers (ISPs). However,
EGP packets still appear in traffic traces containing BGP
updates messages. Under a worm attack, BGP traces contain
large number of EGP packets. Incomplete update messages
imply that the announced NLRI prefixes are generated from
unknown sources. They usually originate from BGP redistri-
bution configurations [7].

B. Selection of Features

We use the Fisher [9] and minimum Redundancy Maximum
Relevance (mRMR) [10] feature scoring algorithms to select
the most relevant features. These algorithms measure the
correlation and relevancy among features and, hence, help
improve the classification accuracy. We select the top ten
features for the Fisher feature selection and thus neglect the
weak and distorted features in the classification models.

Each training datasets is represented as a real matrix
X7200×37. Each column vector Xk, k = 1, ..., 37 corresponds
to one feature. The Fisher score for Xk is computed as:

F-Score =
m2

a −m2
r

s2a + s2r

=

1
Na

∑
i∈anomlay

xi,k
2
− 1

Nr

∑
i∈regular

xi,k
2

1
Na

∑
i∈anomlay

(xi,k −ma)
2
+ 1

Nr

∑
i∈regular

(xi,k −mr)
2 ,

(1)

where Na and Nr are the numbers of anomaly and regular data
points, respectively and ma and s2a (mr and s2r) are the mean
and the variance for anomaly (regular) class, respectively. The
Fisher algorithm maximizes the inter-class separation m2

a−m2
r

and minimizes the intra-class variances s2a and s2r .
The mRMR algorithm maximizes the relevance of fea-

tures with respect to the target class while minimizing the
redundancy among features. We use three variants of the
mRMR algorithm: Mutual Information Difference (MID),
Mutual Information Quotient (MIQ), and Mutual Information
Base (MIBASE). The mRMR relevance of a feature set
S = {X1, ...,Xk,Xl, ...,X37} for a class vector Y is based

on the mutual information function I:

I(Xk,Xl) =
∑
k,l

p(Xk,Xl)log
p(Xk,Xl)

p(Xk)p(Xl)
. (2)

The mRMR variants are defined by the criteria:

MID:max [V (I)−W (I)]
MIQ:max [V (I)/W (I)], (3)

where:

V (I) =
1

|S|
∑

Xk∈S

I(Xk,Y)

W (I) =
1

|S|2
∑

Xk,Xl∈S

I(Xk,Xl).

Constant |S| is the length of the set S. The MIBASE feature
scores are ordered based on their value (2). The Fisher and
mRMR scores are obtained for the set of features captured on
January 25, 2003. The test set contains 1,440 samples where
869 samples are labeled as anomaly. The top ten features using
the Fisher and mRMR algorithms are listed in Table V. They
are evaluated later by using the SVM classification.

TABLE V: Top ten features used for selection algorithms.

mRMR
Fisher MID MIQ MIBASE

Feature Score Feature Score Feature Score Feature Score
11 0.39 34 0.94 34 0.94 34 0.94
6 0.35 32 0.02 2 0.33 36 0.63

25 0.29 33 0.02 8 0.34 2 0.47
9 0.27 2 0.01 24 0.31 8 0.34
2 0.18 31 0.02 9 0.33 9 0.27

36 0.12 24 0.01 14 0.30 3 0.13
37 0.12 8 0.01 1 0.35 1 0.13
24 0.12 14 0.02 36 0.36 6 0.10
8 0.11 30 0.02 3 0.30 12 0.08

14 0.08 22 0.02 25 0.27 11 0.06

III. CLASSIFICATION USING SUPPORT VECTOR MACHINES

We use the SVM classification as supervised deterministic
model to classify BGP anomalies. MATLAB libsvm-3.1 tool-
box [11] is used to train and test the SVM classifiers. The
dimension of feature matrix is 7, 200 × 10 and corresponds
to a five-day period. Each matrix row corresponds to the top
ten selected features within the one-minute interval. For each
training dataset X7200×37, we target two classes: anomaly
(true) and regular (false). The SVM solves a loss function
as an optimization problem [12] with the constraints:

minC

M∑
m=1

ξm +
1

2
‖w‖2

tmy(Xm) ≥ 1− ξm. (4)

Constant C > 0 controls the importance of the margin while
slack variable ξm solves the non-separable data points clas-
sification problem. A regularization parameter 1

2‖w‖
2 is used

to avoid over-fitting problem. SVM classifies each data point



Xm with a training target class tm either as anomaly y = 1
or regular y = −1. Xm corresponds to a row vector where
m = 1, ..., 7200. The SVM solution maximizes the margin
between the data points and the decision boundary. Data points
that have the minimum distance to the decision boundary
are called support vectors. The Radial Basis Function (RBF)
kernel is used to avoid the high dimension of the feature
matrix:

K(Xk,Xl) = exp(−γ ∗ ‖Xk −Xl‖2). (5)

The RBF kernel K depends on the Euclidean distance between
Xk and Xl features. Constant γ influences the number of
support vectors. The datasets are trained using 10-fold cross
validation to select parameters (C, γ) that give the best ac-
curacy. We apply SVM on sets listed in Table VI to classify
BGP anomalies.

TABLE VI: The SVM dataset.

Test dataset
SVM Training dataset Code Red I Nimda Slammer

SVM1 Slammer and Nimda
√

x x
SVM2 Slammer and Code Red I x

√
x

SVM3 Code Red I and Nimda x x
√

Three measures are used for performance indices: sensitiv-
ity, specificity, and precision. Sensitivity indicates the ability
of the model to identify anomalies (true positive) among all
labeled anomalies (true). Specificity reflects the ability of the
model to identify the regular traffic (true negative) among all
regular traffic (false). Precision is the ability of the model to
identify anomalies (true positive) among all data points that
are identified as anomaly (positive). Accuracy is calculated by
dividing the summation of true positives and true negatives
over all possible outcomes. An alternative performance index
is the balanced accuracy, which is equal to the average
of sensitivity and specificity. While accuracy and balanced
accuracy give equal importance to the regular and the anomaly
traffic, F-Score captures the harmonic mean of both sensitivity
and precision:

F-Score = 2× precision× sensitivity
precision+ sensitivity

.

In a two-way classification, all anomalies are treated as one
class. Its performance is shown in Table VII. SVM3 achieves
the best F-Score (86.1%) using MIQ selected features. We
check validity of the proposed models by also applying two-
way SVM classification on BGP traffic trace collected from
the BCNET [13] on December 20, 2011. All data points in
the BCNET traffic trace are labeled as regular traffic. Hence,
y = −1. The classification accuracy of 79.2% indicates the
number of data points that are classified as regular traffic.
Since all data points in BCNET and RIPE test datasets contain
no anomalies, they have low sensitivities and low F-Scores.
Hence, we calculated instead accuracy as the performance
measure. Data points that are classified as anomalies (false
positive) are shown in Fig. 4. The best two-way classification
result is achieved by using SVM2.

TABLE VII: Performance of the two-way SVM classification.

Performance index
Accuracy (%) F-Score (%)

SVM Feature Test dataset RIPE
normal

BCNET Test dataset

SVM1 All features 64.1 55.0 62.0 63.2
SVM1 Fisher 72.6 63.2 58.5 73.4
SVM1 MID 63.1 52.2 59.4 61.2
SVM1 MIQ 60.7 47.9 61.7 57.8
SVM1 MIBASE 79.1 74.3 60.9 80.1
SVM2 All features 68.6 97.7 79.2 22.2
SVM2 Fisher 67.4 96.6 74.8 16.3
SVM2 MID 67.9 97.4 72.5 19.3
SVM2 MIQ 67.7 97.5 76.2 15.3
SVM2 MIBASE 67.5 96.8 78.8 17.8
SVM3 All features 81.5 92.0 69.2 84.6
SVM3 Fisher 89.3 93.8 68.4 75.2
SVM3 MID 75.4 92.8 71.7 79.2
SVM3 MIQ 85.1 92.2 73.2 86.1
SVM3 MIBASE 89.3 89.7 69.7 80.1
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Fig. 4: Shown in red is incorrectly classified (anomaly) traffic collected on
December 20, 2011.

We extended the proposed classifier to implement multi-
class SVMs and used one-versus-one multi-class classifica-
tion [14] on four training datasets: Slammer, Nimda, Code
Red I, and RIPE. Data points are classified by n(n− 1)/2
classifiers, where n is the number of classes. The four-way
classification detects and classifies the specific type of traffic:
Slammer, Nimda, Code Red I, or regular. Classification perfor-
mance is shown in Table VIII. BCNET dataset is also tested
using the multi-class SVM and achieved 91.4% accuracy.

TABLE VIII: Accuracy of the four-way SVM classification.

Average accuracy (%)
Feature RIPE BCNET

All features 77.1 91.4
Fisher 82.8 85.7
MID 67.8 78.7
MIQ 71.3 89.1

MIBASE 72.8 90.2

Test data points from the Slammer worm that are incorrectly
classified in the two-way classification (false positive and false
negative) are shown in Fig. 5 (left). Correctly classified as
anomaly (true positive) with calculated sensitivity of 88.3%
during the 16 hours time interval are shown in Fig. 5 (right).



01/25 01/27
0

1

2

3

4

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

c
k
e

ts

01/25 01/27
0

1

2

3

4

x 10
4

Time

N
u

m
b

e
r 

o
f 

IG
P

 p
a

c
k
e

ts

Fig. 5: Shown in red are incorrectly classified regular and anomaly traffic
(left) and correctly classified anomaly traffic (right) on January 25, 2003.

IV. CLASSIFICATION USING HIDDEN MARKOV MODELS

The second model for classification is based on the first
order HMMs. HMMs are statistical tools used to model
stochastic processes that consist of two embedded processes:
the observable process that maps BGP features and the un-
observed hidden process that has the Markov property. We
assume that the observations are independent and identically
distributed. Even though the HMMs considered in this paper
belong to non-parametric supervised classification methods,
we used 10-fold cross validation to select number of hidden
states as a parameter in order to improve the accuracy of
the model. We implemented the HMMs using the MATLAB
statistical toolbox.

Each HMM model is specified by a tuple λ =
(N,M,α, β, π), where:
N = number of hidden states (cross-validated)
M = number of observations (11)
α = transition probability distribution N ×N matrix
β = emission probability distribution N ×M matrix
π = initial state probability distribution matrix.

The proposed detection model consists of three stages:
• Sequence extractor and mapping: All features are mapped

to 1-D observation vector.
• Training: Two HMMs for two-way classification and four

HMMs for four-way classification are trained to identify
the best α and β for each class. HMMs are trained and
validated for various number of hidden states N .

• Classification: Maximum likelihood probability p(x|λ) is
used to classify the test observation sequences.

In the sequence extraction stage, the BGP feature matrix
is mapped to a sequence of observations by adding the BGP
announcements (feature 1) to the BGP withdrawals (feature
2). We also add the maximum AS-PATH length (feature 6)
to the maximum edit distance (feature 12). In both cases, we
divide the result to eleven observations using a logarithmic
scale, which solves the high skew of heavy tailed probabil-
ity distribution of the BGP volume features in the training
datasets. The distribution for BGP announcements during the
Code Red I worm attack is shown Fig. 6.

HMMs are trained and validated for various number of
hidden states. A 10-fold cross-validation with the Balm-Welch
algorithm [12] is used for training to find the best α and β
for each HMM. The best transition and emission matrices
are validated by obtaining the largest maximum likelihood
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Fig. 6: Distribution of the number of BGP announcements (left) and with-
drawals (right) for the Code Red I worm.

probability p(x|λHMMx
). We construct six and twelve HMM

models for two-way and four-way classifications, respectively.
Various HMMs are listed in Table IX and Table X. We evaluate
the test observation sequences for each HMM and calculate
its maximum likelihood probability.

In the classification stage, each test observation sequence is
classified based on the largest maximum likelihood probability
for HMMs with the same number of hidden states. For
example, HMM1, HMM4, HMM7, and HMM10 shown in
Table X correspond to HMMs with two hidden states for
various training datasets.

TABLE IX: HMMs: two-way classification.

Number of hidden states
Training dataset 2 4 6
Slammer, Nimda, and Code Red I HMM1 HMM2 HMM3

RIPE/BCNET HMM4 HMM5 HMM6

TABLE X: HMMs: four-way classification.

Number of hidden states
Training dataset 2 4 6
Slammer HMM1 HMM2 HMM3

Nimda HMM4 HMM5 HMM6

Code Red I HMM7 HMM8 HMM9

RIPE/BCNET HMM10 HMM11 HMM12

The accuracy of each HMM is defined as:

Number of correctly classified observation sequences

Total number of observation sequences
.

(6)

The numerator is calculated using the highest maximum
likelihood probability p(x|λHMMx

). Sequences in the denom-
inator share the same number of hidden states. The correctly
classified observation sequence is generated by a model that
has the highest probability when tested with itself.

We use RIPE and BCNET datasets to test the three
anomalies. Two sets of features (volume) and (AS-path) are
mapped to create one observation sequence for each HMM.
We mapped volume feature set (1, 2) and AS-path feature set
(6, 12) to two observation sequences. HMMs have better F-
Score using set (1, 2) than set (6, 12), as shown in Table XI.
The RIPE and BCNET test datasets have the highest F-Score
when tested using HMMs with two hidden states.



TABLE XI: Accuracy of the two-way HMM classification.

Performance index
Accuracy (%) F-Score (%)

N Feature set RIPE BCNET RIPE BCNET
2 (1,2) 86.0 94.0 84.4 93.8
2 (6,12) 79.0 71.0 76.2 60.7
4 (1,2) 78.0 87.0 72.2 85.0
4 (6,12) 64.0 60.0 48.0 35.9
6 (1,2) 85.0 91.0 84.3 90.1
6 (6,12) 81.0 65.0 80.1 50.2

Similar tests are applied using RIPE and BCNET datasets
with four-way HMM classification. The classification accura-
cies are averaged over four HMMs for each dataset and are
listed in Table. XII.

TABLE XII: Accuracy of the four-way HMM classification.

Average accuracy (%)
N Feature set RIPE BCNET
2 (1,2) 72.50 77.50
2 (6,12) 38.75 41.25
4 (1,2) 66.25 76.25
4 (6,12) 26.25 33.75
6 (1,2) 70.00 76.25
6 (6,12) 43.75 42.50

V. DISCUSSION

Performance of the BGP protocol is based on trust among
BGP peers because they assume that the interchanged an-
nouncements are accurate and reliable. This trust relationship
is vulnerable during BGP anomalies. For example, during BGP
hijacks, a BGP peer may announce unauthorized prefixes that
indicate to other peers that it is the originating peer. These false
announcements propagate across the Internet to other BGP
peers and, hence, affect the number of BGP announcements
(updates and withdrawals) worldwide. This storm of BGP
announcements affects the quantity of volume features. As
shown in Table V, 65% of the selected features are volume
features. Hence, they are more relevant to the anomaly class
than the AS-path features, which confirms the known effect of
BGP anomalies on the volume of the BGP announcements.

The top selected AS-path features appear on the boundaries
of the distributions shown in Fig. 3. For example, AS-path
features 25, 32, and 24 have the highest Fisher, MID, and
MIQ scores, respectively. This indicates that during BGP
anomalies, the edit distance and AS-PATH length of the
BGP announcements tend to have a very high or a very low
value and, hence, large variance. This implies that during an
anomaly attack, AS-path features are the distribution outliers.
Approximately 58% of the AS-path features shown in Table V
are larger than the distribution mean. For example, large
length of the AS-PATH BGP attribute implies that the packet
is routed via a longer path to its destination, which causes
large routing delays during BGP anomalies [8]. In a similar
case, very short lengths of AS-PATH attributes occur during
BGP hijacks when the new (false) originator usually gains a
preferred or shorter path to the destination [15]. The SVM

models exhibited better performance than the HMMs in two-
way and four-way classifications. The SVM models based on
Code Red I and Nimda datasets and the HMMs with two
hidden states have the highest accuracies. HMMs based on the
number of announcements and number of withdrawals (feature
1 and feature 2) offer better accuracy in two-way and four-
way classifications than models with the maximum number of
AS-PATH length (feature 6) and the maximum edit distance
(feature 12). Both SVM and HMM two-way classifications
produced better results than four-way classifications because of
the common semantics among BGP anomalies. For example,
BGP Slammer is more correlated to Nimda than to regular
RIPE mapped sequence.

VI. CONCLUSIONS

We have investigated BGP anomalies and proposed detec-
tion models based on the SVM and HMM classifiers. Clas-
sification results show that the best achieved F-Scores of the
SVM and HMM models are 86.1% and 84.4%, respectively.
Furthermore, volume mapped sequences generate models with
better accuracy than AS-path mapped sequences. Hence, using
the BGP volume features is a viable approach for detecting
possible worm attacks. Since BGP anomalies have similar
properties and effect on BGP features, the proposed models
may be used as online mechanisms to predict new BGP
anomalies and detect the onset of worm attacks.
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