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Abstract—Conceptionally, the User Datagram Protocol (UDP)
should be well-suited for real-time applications, e.g., for Voice
over IP (VoIP). However, many such applications, e.g., Skype,
use the Transmission Control Protocol (TCP) either as a primary
protocol or as a backup protocol when UDP is blocked, despite
TCP’s flow control-related data delays. This paper proposes
a technique for the estimation of the application buffer re-
quirements of such TCP-based applications and the amount of
data congestion in real-time TCP data streams. We apply this
technique to data collected from a global network exchanging
synthetic real-time traffic over TCP. Our results show that the
buffering requirements vary widely with time and path but can
be substantial in many cases.

I. INTRODUCTION

Previous studies of Internet traffic distributions indicate
that most Internet traffic uses TCP [1]. This is supported by
the fact that Video on Demand (VoD) applications such as
Youtube and MSN video use TCP for transmission of video
packets over HTTP [2]. In addition, real-time applications,
e.g Skype, evade network firewalls with TCP, e.g., in Skype’s
case using the commonly open ports 80 (HTTP) and 443
(HTTPS) for communication with Skype peers [3]. Other real-
time applications such as Google+ also use TCP in networks
where UDP is blocked [4].

Originally, TCP was developed for use over best effort
protocols such as IP. It employs flow and congestion control
mechanisms to exchange data reliably between end hosts.
Protocols that commonly use TCP include HTTP [5], FTP [6]
and SMTP [7]. For these protocols, the arrival order and
completeness of data have priority over the need to exchange
information fast. With increased use of TCP for the transmis-
sion of small chunks of voice data in VoIP applications, any
delay introduced by TCP flow control becomes a potential
concern. The same applies to other real-time applications. In
each case, the real-time application involved must provide a
FIFO-style replay buffer to smooth the data stream for replay.
If this replay buffer is too small, there will be breaks in
replay; a buffer that is too large means unnecessary delays
in replay. In the case of VoIP, excessive replay delays prohibit

meaningful conversation [8]. As the replay buffer operates at
the application layer, any replay delay incurred there occurs in
addition to the time that the data spends in the TCP socket’s
receive buffer.

Rather than investigating actual replay buffer sizes, this
paper considers the minimal size/delay of a hypothetical replay
buffer that would have guaranteed smooth voice replay, and
proposes to use this measure as a quality indicator to observe
quality trends over time along other indicators such as latency,
jitter, or Mean Opinion Score (MOS) [9]. This replay buffer
size is a function of the sizes and handover times of TCP
buffers passed from the TCP stack to the receiving application,
which we collect using synthetic VoIP-like traffic on an
international network of measurement computers (“beacons”),
which is described in [10].

This paper is organised as follows: Section II gives a brief
overview of existing active measurement tools that use TCP
for probing networks with artificial packets. In Section III,
we describe the process by which we compute the minimum
replay buffer requirements. Lastly, in Section IV we present
the results of our experiments to date.

II. TCP PERFORMANCE MEASUREMENT

Most present active measurement tools developed with
TCP functionalities tend to focus on the estimation of link
capacity and available bandwidth for diagnostic purposes.
Two commonly employed techniques for estimation of avail-
able bandwidth in this context are Self-Loading Periodic
Streams (SLoPS) [11] and Trains of Packet Pairs (TOPP) [12].
Variations of the SLoPS technique are used by tools such
as pathchar [13], pchar [14], clink [15], pathload [16] and
iperf [17]. SLoPS estimates bandwidth through self-induced
congestion by increasing a packet stream’s rate to a point
where it is higher than the available bandwidth, either by
increasing the packet rate or the packet size. TOPP estimates
bandwidth by probing the network with well separated equally
sized packets [18] and comparing their intertransmission times
with the corresponding interarrival times (packet dispersion).



TOPP has been employed by utilities such as nettimer [19]
and pathrate [20] (which also uses SLoPS).

Available bandwidth is a cumulative observable, however,
and does not reflect transient ad-hoc congestion. Even if avail-
able bandwidth is high across the duration of an experiment,
transient ad-hoc congestion may still occur, causing time-
critical data in real-time applications to arrive late at the
receiver. Our project aims to track how serious this problem
is by observing over a longer timeframe as the global Internet
evolves. The next section describes how we arrive at our
chosen observable, the minimum buffering requirement at the
receiver.

III. MINIMUM BUFFERING REQUIREMENTS IN REAL-TIME
TCP APPLICATIONS

In order to supply a receiver with sufficient data for play-
back, a real-time application must transmit data at the same
rate as the receiver consumes it. In practice, this takes the
form of the transmitting application passing chunks of data to
the TCP/IP stack at regular intervals. Typical values observed
for, e.g., VoIP applications such as Skype, are in the range of
about 115 bytes of data every 20 ms.

As we cannot rely on each data chunk experiencing a fixed
delay across a TCP connection on its way to the receiving ap-
plication, the receiving application must buffer some received
data to ensure (hopefully) continuous replay. The buffer is
a FIFO queue; its purpose is to ensure that the cumulative
number of bytes delivered to it by TCP always exceeds the
cumulative number of bytes consumed by the application
for replay. If the buffer cannot meet this requirement, the
application experiences a buffer underrun — a break in replay.

As the buffer queue represents an undesirable additional
delay in a real-time application, it should be kept as small as
possible. A larger buffer generally means better continuity of
replay, but also more delay as the buffer queue must be filled
first before one can take data for replay off the front of the
queue. The size of this buffer is thus more or less proportional
to the delay it introduces.

Our experiment tries to estimate the minimum buffer size
that guarantees continuity of replay (in one direction) for an
actual 200 second simulated Voice over TCP data flow. We
collect the data from our beacon network, where selected pairs
of beacons run such simulated Voice over TCP data transmis-
sions three times a day. For each of these transmissions, we
estimate buffer size and then track how this estimate evolves
over time for each beacon pair.

The receiving beacon records both the times at which
chunks of data become available to the receiving application,
along with the amount of data passed to the application by the
socket at each of these events.

Figure 1 illustrates the conceptual relationship between
buffer size and buffer underruns.

The horizontal axis of Figure 1 covers the time period over
which our real-time application operates, e.g., the duration of
a VoIP phone call. On the vertical axis, we plot the number
of bytes. The red “uneven staircase” graph represents the

Bytes needed for
continuous rate
immediate replay

Cumulative
amount of bytes
received

Replay buffer
underruns

Data

[bytes]
Actual replay with
"boredom wheel"
Bytes needed for continuous rate
buffered replay (no underruns)
S
>
minimum Time
buffer period
Fig. 1. Red: data available at receiver, dark blue: data demand for immediate

playback, green: data demand for buffered playback.

cumulative amount of bytes passed to the application by the
TCP socket up to the given point in time. Each step represents
another chunk of data becoming available. The linear solid
dark blue graph intersecting with the red graph represents
the estimated amount of data required for continuous replay
without delay, i.e., when replay starts immediately upon first
delivery of voice data. Buffer underruns (blue shaded areas)
thus occur whenever the red graph lies below the blue con-
tinuous replay graph. The dashed graph plots data use if one
resumes full replay with increasing delay after the resulting
discontinuities in replay.

Finally, the green graph in Figure 1 represents a second
version of the continuous replay graph, with replay delayed by
the minimum amount of time required to avoid buffer under-
runs. This time shift thus indicates the minimum replay delay
required to achieve uninterrupted, continuous playback, and
hence the minimum buffer time required. Correspondingly, the
vertical distance between the blue and green graph represents
the minimum number of bytes the buffer needs to hold. These
two quantities are of course linearly related via the playback
data rate and represent the estimate we require.

One issue to consider in this context is the difference in
clock speed between transmitter and receiver. Let ¢/(¢) be the
time at the transmitter when the receiver’s clock has value ¢
after start of playback. Suppose that we configured a fixed
nominal data rate r (in bits per second) at both sides for
transmission and playback. The receiver would then need a
total of rt bits after ¢t seconds of playback. If the receiver’s
clock runs faster than that of the transmitter, we have ¢'(t) < ¢
at this point, meaning that only rt'(¢) < rt bits would have
left the transmitter. We would thus accrue a growing buffer
underrun even before the network has an opportunity to delay
the data. Similarly, we would produce a buffer overrun if
t'(t) > t. Since we cannot avoid this difference in clock speed,
we estimate the transmission rate at the receiver as the total
amount of data received at the end of an experiment divided
by the time difference between first and last data delivery, i.e.,
as the average rate at which we have received our data. We
then use this estimate as the nominal playback data rate.



IV. OBSERVATIONS

The observations we report on in this section represent only
a small sample of this type of experiment on our beacon
network, relating to experiments conducted between beacon
computers commissioned in April-July 2013 at the University
of Macau (MO1), ETH Zurich (CH3), the University of
Duisburg-Essen Germany (DE1), the Universities of Tokyo
(CH1), Gunma (JP2), and Electro-Communication (JP3) in
Japan, and the University of Johannesburg (SA1l) in South
Africa, as well as two existing beacon machines in New
Zealand (NZ1 and NZ2) and beacons at the Ministry of
Revenue in Tonga (TO3), Telecom Cook Islands (CK1), and
a private site in Switzerland (CH1). All experiments transmit
115 bytes into a TCP socket every 20 ms and log the arrival
time of data at the application on the receiving end, i.e., after
the receiving TCP socket has reassembled the byte stream.
This data yields the “red step curve” in Fig. 1, and thus the
corresponding minimum buffer time.

The graphs in Fig. 2 to 9 show the trends in minimum
buffer time for selected beacon pairs, giving examples of paths
for which deterioration (increase) and improvement (decrease)
in minimum buffer time was observed. Periods of “linear
ramp” increase or decrease in these graphs indicate experiment
downtimes.
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Fig. 2. CHS3 receiving from JP2. The initial baseline minimum buffer
requirement of well under 80 ms rises in steps to just under 120 ms, with
only occasional outliers. Note the relatively stable baselines over extended
periods. The recent rise at the beginning of 2014 is a feature we have also
observed on a number of other paths, see e.g., Fig. 3 and 9.

The graphs shown here are only a small selection from the
relevant experiments conducted between these beacons. From
the 31 experiments between the selected beacons outside the
Pacific Islands that had current data at the time of writing, 16
show a clear deterioration in minimum buffer time, 10 show no
significant change, and only 5 show improvement. Moreover,
some of those in the latter two categories show deterioration
at the very end of the observation period - sufficient to be
noticeable but not enough to confirm a definite trend not
associated with the Christmas holidays.

The two beacons in the Pacific Islands were chosen because
of recent known changes in their international connectivity.
Not surprisingly, 14 of the 18 experiments of these beacons
in cooperation with the others above show improvements, and
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Fig. 3. DEI receiving from JP2. The minimum buffer requirement is pretty
stable at 80 ms until August and then rises to 90 ms for most of the latter
half of the observation period.
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Fig. 4. SAI receiving from NZ1. Initially, times were stable at at typically
500 - 800 ms with no outliers above 2 s. This was followed by a rise to
typical values between 2 and 4 s from September to November. Values such
as these rule out TCP for any meaningful voice conversation.
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Fig. 5. JP3 receiving from NZ2. The initial buffer times typically fell within

the range of 80 - 400 ms, with moderately frequent outliers above. No values
below 100 ms were observed after June, and most current values fall in the
band of 400 ms to 1 s — sufficient to impede a conversation significantly.

only one shows a slight deterioration.

Note that the graphs in Figs. 2, 3, and 5 show typical
minimum buffer times increasing or decreasing in discernible
steps. This naturally raises the question as to whether it is
possible to attribute a step to a particular known event. One
suspect to investigate in this respect is daylight savings time
(DST): Our experiments run to Universal Time Coordinated
(UTC), while local DST applies in many of our beacon
locations (Switzerland, Germany, and New Zealand). The
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Fig. 6. DEI receiving from JP1. This path does not exhibit deterioration:

most buffer times remain around 20ms, with occasional outliers revealing
no evident trend. The typical 20 ms buffering requirement here corresponds
roughly to the transmission of a single voice data chunk — a delay that is
negligible in practice.
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Fig. 7. MOI receiving from DEI. This path shows a lot of fluctuation but
no clear trend. After an inital increase, the minimum buffer time fluctuates
around a baseline of 200 ms with outliers in the order of 1s — in practice a
noticeable inconvenience.
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Fig. 8. CKIl receiving from CHI1. An intial baseline of 1s drops to around
50ms for reasons that are not entirely clear — possibly a significant increase in
de-facto geostationary satellite bandwidth and/or perhaps a switch in offshore
ground station to a location topologically closer to Switzerland. Note however
that more recent estimates fluctuate less and exhibit a higher baseline of
around 100 ms.

question thus arises whether some of these steps may simply
reflect temporary changes in local traffic near the transmitter or
receiver as an experiment runs an hour earlier or later in local
time after a DST switchover. However, closer investigation
shows that the steps observed in the results presented here do
not correlate with DST changes in either transmitter or receiver
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Fig. 9. TO3 receiving from NZ1. This graph is an example of an attributable
event leading to improvement - Tonga’s connection to the international fibre
network (to the Southern Cross Cable Network via Fiji) in early August.
The intial baseline of around 1s drops significantly at the time, but note the
subsequent rise at the beginning of 2014.

locale.

In fact, we have no obvious explanation for most of these
steps, with the notable exception of Tonga’s TO3 beacon,
where a significant step coincides with Tonga switching in-
ternational connectivity from geostationary satellite link to
submarine fibre in August 2013. This step is evident in all
of TO3’s other experiments as well.

V. CONCLUSION

The delay in voice or video playback that is acceptable in
an application does of course depend on the circumstances.
Readers familiar with the delays incurred on intercontinental
phone calls via classical geostationary satellite circuits will
know that these increase the risk of talking “on top” of
the other party when a response does not arrive within the
time frame one is accustomed to. This sort of effect may be
acceptable in some contexts (e.g., a short call to a family
member) but may be prohibitive in others, e.g., in offshore
call centre operations, where communication difficulties of this
sort can lead to longer calls, increased staffing cost, and lower
customer satisfaction.

In this context, it is important to note that one incurs the
minimum buffering times estimated in the previous section
in addition to the one-way delay of the communication.
Our experiments look predominantly at very long distance
communication, which features significant round-trip delay
of generally several hundred milliseconds. At present, our
beacon network does not have accurate time synchronisation
and measurement of one-way delay is thus impossible. We
plan to address this issue for at least some of our paths in the
near future.

A real application buffer would also need to provide a con-
servative safety margin, as the minimum buffer requirement
cannot be determined until after the communication has taken
place. Moreover, our values relate to the equivalent of a 200 s
call. As the risk of congestion increases with the length of
a call, the given buffer times would still offer insufficient
protection for many types of longer calls.



In this context, our results show that pure end-to-end TCP
VoIP communication may well still be feasible on some long
distance paths, e.g., from Japan to Europe. However, over
the last half of 2013, this seems to have become impossible
for communication between New Zealand and most other
regions of the world. It remains to be seen how sustained
this deterioration is — we expect to monitor this observable
for some years to come. In the context of video, not all
applications require smooth replay, however we contend that
the technique proposed here is still applicable as a quality
indicator in this domain, with data rates and depth/frequency
of allowable buffer underruns adjusted accordingly.

Last but not least, we would like to stress that our results
do not mean that long-distance VoIP calls have become
impossible for users behind firewalls that block UDP, or will
necessarily do so in the foreseeable future. As long as any
TCP VoIP connection originating at their hosts terminates
at a node close enough to allow the long haul part of the
call to be carried on a connectionless protocol such as UDP,
VoIP should remain feasible provided the random jitter on
the connectionless section of the call path remains within
reasonable limits. Our beacon network also collects UDP
timing data to monitor trends in this respect. Its measurements
are publicly available [21].
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