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Abstract— In a congested network link, synchronization effects 

between bandwidth-sharing TCP flows cause wide queue length 

oscillations, which may translate into poor link utilization if 

insufficiently buffered. We introduce global synchronization 

protection (GSP), a simple extension to the ordinary operation of 

a tail-drop queue that safely suppresses the flow 

synchronization. Our minimalistic solution is well suited for 

scaling with leading-edge link rates: it adds only few extra 

operations in the fast path and does not require accelerated 

memory access compared to the line rate. GSP makes it easier to 

provide advanced control of TCP congestion in high-speed links 

and in low-power packet processing hardware. Using 

experiments with a Linux prototype of GSP, we show that, 

despite its exclusive focus on removing global synchronization, 

the new scheme performs as well as far more complex active 

queue management (AQM) schemes like CoDel and PIE. 

I. INTRODUCTION 

Packet queues are indispensable in almost all network 

nodes. They avoid the loss of packets when clustered arrivals 

temporarily saturate the transmission capacity of a shared link. 

Typically a queue accumulates few packets, then quickly 

empties again, but congestion may develop when the 

saturation of the link capacity becomes persistent. A congested 

queue grows in size and eventually overflows the buffer space. 

The resulting loss of packets may degrade the performance of 

the respective applications. End systems implement congestion 

control to match the combined traffic offer to the capacity of 

the most congested link in the data path, so that the occurrence 

and negative effects of packet losses are minimized.  

TCP is today the dominant protocol for congestion control 

in IP networks. The queues that enable proper operation of 

TCP are larger than those that resolve temporary contention. 

With smaller queues TCP still works, but may fail to fill the 

entire link capacity. To avoid any risk of wasting bandwidth 

resources, network vendors and operators have been playing 

safe by scaling buffer sizes with link capacities. As a result, 

end-to-end data paths include today many network links where 

large queuing delays can accumulate when congestion occurs. 

Bloated buffers [1] damage not only interactive applications 

such as voice/video conferencing and gaming, but also those 

that require stable throughput, such as adaptive bit-rate (ABR) 

video streaming. 

Suddenly widespread awareness of the bufferbloat issue 

has created new opportunities to reduce queuing delays 

everywhere in the network [2]. Combinations of flow queuing 

(FQ) [3] with active queue management (AQM) schemes for 

control of the overall buffer occupancy (FQ-CoDel [4] and 

FQ-PIE [5]) are gaining consensus as the preferred approach 

for application in home routers and fiber/DSL/cable modems 

and access nodes [5]. These FQ-AQM schemes hash packet 

headers onto queues of which the respective flows typically 

obtain exclusive use. The benefits are flow isolation, fairness, 

and latency minimization for low-bandwidth, low-delay 

applications.  

The race is far from over in the high-speed links of the 

network core. The typically large number of concurrent flows 

in core links discourages the deployment of multi-queue AQM 

solutions and could in theory make the adoption of small tail-

drop buffers a safe choice [6], [7]. However, the same links 

must ensure high utilization of their capacity also when the 

number of flows is small and tail-drop can no longer avoid 

their synchronization. The random early detection (RED) 

AQM [8], while broadly available today in high-speed routers, 

is well known for its inability to adapt to varying traffic 

conditions. Single-queue AQMs of recent introduction (PED 

[9], CoDel [10], PIE [11]) are certainly more versatile than 

RED, but their line-rate operation in high-speed links (10 Gb/s 

and above) is unproven (CoDel in particular may require 

multiple accesses to the packet memory during a single 

dequeue operation) and their performance is not always 

immune from the effects of misconfiguration (throughput 

losses or delay inflation may occur when the target delay of 

CoDel and PIE is too small or too large for the round-trip time 

distribution of the set of active flows).  

We introduce Global Synchronization Protection (GSP), a 

new AQM scheme for high-speed links that reconciles 

throughput and delay performance with a scalable 

implementation. Like many pre-existing AQM schemes, GSP 

achieves the suppression of global synchronization by 

spreading over time the attribution of packet losses to different 

flows after congestion builds up a standing queue. The novelty 

of the scheme versus its predecessors is the simplicity of its 

operation, which future-proofs it against any foreseeable link 

rate increase. GSP extends the operation of a conventional tail-

drop queue with few fast-path steps that it invokes when it 

receives a new packet. No extra step is required upon packet 

departure. Simplicity of operation also implies that the 

configuration parameters are few, easy to derive from the link 

capacity and practically insensitive to the traffic conditions.  

The paper is organized as follows. In Section II we recall 

the behavior of a queue loaded with TCP traffic and elaborate 

on the root cause of global synchronization. In Section III we 

define the basic GSP algorithm, we illustrate its operating 

regimes, and select the adaptation strategy for its primary 



 

 

variable. In Section IV we present the results of benchmarking 

experiments from a 10GbE network of Linux boxes, showing 

that despite its simplicity GSP is never inferior to any of the 

single-queue AQM schemes that are most popular today. We 

draw our conclusions and outline future work in Section V.  

II. GLOBAL SYNCHRONIZATION 

Due to the scalability constraint of a single-queue 

implementation, the primary goal of a buffer management 

scheme for high-speed links should be the suppression of 

global synchronization for long-lived TCP flows (loosely 

defined as flows that remain active long enough to experience 

a few of the congestion episodes of a bottleneck link). Other 

nice-to-have features found in FQ-AQM schemes, such as the 

protection of well-behaved flows from unresponsive ones and 

the provision of fast lanes to flows of low-bandwidth, low-

delay applications, are simply impossible to achieve with a 

single queue. Still, interactive applications draw important 

benefits from the buffer size reductions enabled by the 

suppression of global synchronization. In this section we 

expose the root causes of global synchronization and their 

inflating effect on buffer sizes. The discussion is mostly 

qualitative: we refer to [12] for a detailed quantitative analysis. 

A. Single Flow 

In a TCP connection, the transmitter sends data segments 

over the forward path and receives acknowledgment segments 

(ACKs) over the reverse path. The ACKs provide confirmation 

of successful receipt of the data segments by the TCP receiver. 

The transmitter receives an ACK one round trip time (RTT) 

after sending the corresponding data segment. The flight size is 

the amount of transmitted data that are yet unacknowledged. 

The congestion window (cwnd) limits the flight size: when 

cwnd is exhausted the transmission of new data can happen 

only after previously transmitted data are acknowledged [13].  

The bit rate of the TCP connection is defined by the ratio 

between flight size and RTT. It changes with cwnd and with 

the queuing-delay component of the RTT. TCP flavors differ 

in the way they control cwnd, but they all share the general 

principles of cautious probing for more bandwidth (additive 

increase) and steep contraction in response to congestion 

signals (multiplicative decrease). At the congested link, TCP 

window oscillations induce queue length oscillations, which 

modulate the queuing delay and the RTT. The bit rate of the 

TCP connection matches the link capacity C as long as the 

variations of cwnd and RTT compensate each other.  

The ratio   between the cwnd values after and before a 

multiplicative decrease is of particular interest to buffer sizing. 

For instance, TCP Reno [14] reduces cwnd by 50% ( 0.5  ) 

and TCP CUBIC [15] drops it by 30% ( 0.7  ). In order for 

the congested link to remain fully utilized, the decreased cwnd 

must retain a positive queuing delay on top of the propagation 

component 
0RTT  of the round-trip time:    

0 0( )RTT RTT    ,                          (1) 

where    is the queuing delay right before decreasing cwnd 

and Q C     is the corresponding queue length. Equation 

(1) yields the following expression for the minimum queue 

length before the cwnd reduction, and therefore for the 

minimum buffer size 
minB  that guarantees full throughput: 

 0

1
min minB Q C RTT





 
    .                        (2)  

Equation (2) generalizes the bandwidth-delay product 

(BDP) rule [16] for a generic TCP flavor with multiplicative 

decrease ratio  . The rule yields 
0minB C RTT   with TCP 

Reno and 
00.4minB C RTT    with TCP CUBIC. Full 

utilization of the link capacity is not possible when 
minB B . 

B. Global Synchronization with Multiple Flows 

When N  TCP flows share a common bottleneck link the 

queue length is in equilibrium with the cumulative effect of the 

N  congestion windows. Every congestion signal affects only 

one flow, causing only one cwnd to contract. The resulting 

drop in bottleneck queue length reflects the current bandwidth-

delay product of the affected flow, which becomes smaller as 

N  grows larger. If cwnd was guaranteed to be the same for all 

flows, and congestion signals were spaced in time so that one 

flow receives one signal not before the queue length has 

recovered from the previous one, the buffer size could shrink 

down to /minB N . Unfortunately, this is not possible with tail-

drop queues because these queues concentrate packet losses 

for multiple flows within a very short time, causing the 

contractions of a large portion of cwnd instances to overlap, 

which is exactly what we call global synchronization.  

In theory, somewhere in between the single-flow BDP rule 

and the linear reduction by the number of flows, mildly 

compressed sizes could be considered safe for tail-drop buffers 

in high-speed links with large numbers of TCP flows [6], [7]. 

However, the number of long-lived flows in a link may vary 

widely in practical scenarios, leaving negligible margins for 

downsizing a tail-drop buffer that aims at consistently high 

levels of link utilization during congestion episodes. To 

achieve more meaningful reductions of queue length and 

delay, a buffer for high-speed links should disrupt the global 

synchronization pattern.  

We show the basic elements of global synchronization 

using the example of Fig. 1. All flows simultaneously probe 

the link for extra bandwidth by gradually increasing their 

cwnd. When the aggregate bit rate of the flows saturates the 

link capacity, the link enters congestion and the queue size and 

delay start growing. Any further cwnd increase has no effect 

on the link throughput and only contributes to queue length 

and delay accumulation. For every TCP Reno flow the queue 

grows at the rate of one packet per RTT (corresponding to a 

unit increment of cwnd), so with N  flows the growth rate is 

N  packets per RTT. With TCP CUBIC flows the growth rate 

is never lower than with Reno and is frequently higher. We 

note that in most practical cases the widespread use of delayed 

acknowledgments by TCP clients [17] and the default host 

configuration not to use the appropriate byte count (ABC) 

option in TCP senders [18] actually halve the growth rate, e.g., 

down to / 2N  packets per RTT with TCP Reno [12]. 



 

 

When the tail-drop queue drops the first packet in a 

congestion episode, the queue length immediately drops by 

only one unit. It takes at least an entire RTT before the cwnd 

reduction induced by the packet loss shows its full impact on 

the queue length. (The time between the first drop and the 

larger queue length contraction may actually grow close to two 

RTTs, due to the sub-RTT burstiness of bandwidth-sharing 

flows [12].) 

 
Fig. 1.  Synchronization of tail-drop events. 

During the RTT interval that follows the first drop event 

the TCP senders of all flows keep probing for bandwidth at the 

same pace as before. That is, the packets arriving to the queue 

exceed those departing by / 2N  units. Since the queue is 

already full, it drops / 2N  packets. If each dropped packet 

belongs to a different flow, every other flow ends up 

contracting its cwnd at the same time. If the buffer is far 

smaller than required by the BDP rule, the queue depletes and 

the link operates at sub-capacity levels until the combined 

cwnd of all flows returns large enough to establish again a 

continuous presence of packets in the queue. The queue 

collapse may be less severe when losses hit one or more flows 

multiple times, so that the fraction of the total population 

affected by losses is smaller than 50%, but statistically it still 

presents a problem.    

III. GLOBAL SYNCHRONIZATION PROTECTION 

In this section we present three versions of the GSP 

algorithm: basic, adaptive, and delay-based. 

A. Basic GSP 

Global synchronization can be averted by removing the 

extra packet drops right after the first one (see Fig. 2). To do so 

we shift the drop threshold well below the buffer size limit. 

The first packet drop starts a time interval during which all 

threshold violations by incoming packets are ignored. Ideally 

the duration of the interval should be twice as large as the RTT 

of the dominant flows in the queue (i.e., the flows that 

contribute the majority of the traffic). The queue is then 

allowed to keep growing until it feels the effect of the cwnd 

reduction. At the end of the no-drop interval the queue length 

is well below the drop threshold and requires no further action. 

The pseudo-code of Fig. 3 describes the algorithm of Fig. 

2. The function now() returns the current time. The value of 

the parameter interval is ideally two times the RTT of the 

traffic that is expected to dominate the queue. The variable 

expiry holds a time value and does not involve the use of a 

timer. 

 
Fig. 2.  Global synchronization protection, basic version. 

 

 
Fig. 3.  Pseudo-code of the basic GSP algorithm. 

A fixed value of interval suits well the algorithm when 

the number of flows in the queue is relatively small, because 

the queue length contraction after a packet loss is fast and the 

subsequent recovery is slow. Instead, with many flows and 

particularly with more aggressive TCP flavors like CUBIC, the 

queue length may grow faster than it drops after a single loss. 

When this happens the queue is longer when the no-drop 

interval ends than it is when the interval starts, so the buffer 

inevitably overflows and global synchronization returns. 

A shorter no-drop interval that expires multiple times per 

RTT can keep the buffer from overflowing. The queue drops 

packets periodically as long as the queue length remains above 

the drop threshold, then stops when the queue shortens, then 

starts again the periodic drops the next time it crosses the 

threshold. In this mode of operation the basic GSP algorithm 

behaves like an on-off (or “bang-bang”) controller. The 

operation is robust against mild deviations from the optimum 

interval setting that anchors the average queue length to 

the drop threshold. Only larger deviations from the optimum 

value become disruptive, when the queue length no longer 

oscillates narrowly around the drop threshold. 

In the past the potential risk of synchronization between 

periodic arrivals and drops has caused skepticism against 

periodic dropping. For that reason most AQMs today rely on 

randomized drops. GSP does not need randomization because 

the periodic-drop regime appears only with large flow 

numbers. The interleaving of packets from many different 

flows, together with their sub-RTT burstiness [12], supplies 

sufficient randomization to the distribution of packet arrivals. 
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IF (queue > threshold) AND (now() > expiry) 

{ 
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        expiry = now() + interval 
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ELSE { 

        enqueue the packet 

} 

END 



 

 

Moreover, the phase of the drop sequence changes randomly 

with every bang-bang cycle. 

B. Adaptive GSP 

Since the same GSP configuration must work well under 

most scenarios of practical interest, the scheme must adapt the 

interval value automatically. We choose an adaptation 

heuristic based on the time that the queue spends above and 

below the drop threshold.  

In single-drop operation the queue is most of the time 

below the threshold and drops a packet only once in many 

expirations of the maximum interval duration. No adaptation is 

necessary. The interval value must be reduced as soon as 

the queue starts spending more time above the threshold than 

below. Let presetInt be the initial and maximum setting 

for the adaptive interval variable, tau the time constant 

for the adaptation loop, and alpha the emphasis factor for the 

time spent above the threshold, such that the reaction to load 

changes is stronger. As a rule of thumb, tau should be 

comfortably larger than presetInt (we set the ratio at 5) 

and alpha should not be much larger than 1 (we choose 2 in 

all our experiments). The steps for adaptation of the 

interval value are listed in Fig. 4. The pseudo-code shows 

how the algorithmic overhead versus tail-drop remains 

minimal. Most importantly, GSP never loads the packet 

memory interface above the line rate because it never drops 

packets after storing them (as opposed to CoDel [10]).  

 

 
Fig. 4.  Pseudo-code of GSP adaptation heuristic.  

From a control theory perspective the interval adaptation 

algorithm implements an integral controller on the packet drop 

rate of the inner control loop (see Fig. 5). The inner control 

loop just decides whether or not to drop packets at the rate 

defined by the interval value. TCP and the queue react 

accordingly and feed the current queue size back to the 

threshold decision.  

The control is stable as long as no other source of packet 

drops is active. One such source is the buffer overflow event, 

which can synchronize the TCP flows with deep depletions of 

queue and link load. After the overflow event the adaptive 

GSP can easily find that the queue spends most time below the 

drop threshold and inaccurately conclude that no adaptation is 

necessary. This effect has been observed before for other 

AQMs [19] and our experiments have confirmed it for GSP. It 

typically occurs when many new flows start using the queue 

around the same time. For its mitigation we suspend the 

accumulation of time_below_threshold right after a 

buffer overflow and resume it again after the queue has 

completed the cycle from buffer overflow to empty to above 

threshold. This kind of hysteresis may look rough, but 

effectively prevents the interval value from growing in 

response to the arrival of new flows (the value must indeed 

decrease, to break the buffer overflow-depletion cycle).  

 
Fig. 5.  GSP control architecture. 

The adaptation algorithm enables a smooth transition 

between single-drop and periodic-drop operation. In the 

periodic-drop regime, the adaptation sets the drop rate based 

on the queue length placement versus the drop threshold. We 

underscore that the integral controller that maintains the 

interval value is external to the on-off control loop of the 

basic GSP algorithm. The internal loop drives the TCP 

dynamics at the RTT timescale while the external loop 

modulates one of the internal-loop parameters at a larger 

timescale. Under steady traffic conditions the outer control 

loop may very well freeze the interval value; instead, the 

inner loop keeps switching between no-drop and periodic-drop 

operation, or simply settles on single-drop if interval = 

presetInt. 

C. Delay-Based GSP 

CoDel [10] and PIE [11], AQM schemes of recent 

introduction, use the queuing delay, not the queue length, as 

the control target. Could GSP benefit from a similar approach? 

While the interval value controls the stability of the queue 

by avoiding buffer overflow and global synchronization 

events, the size of the drop threshold impacts delay statistics 

and link utilization. If the threshold is too small, even a single 

packet loss may deplete the queue; if it is too large, a standing 

queue may form that adds a fixed contribution to the queuing 

delay of every packet. From Eqs. (1) and (2) we know that the 

queuing delay budget    depends only on the RTT, while the 

minimum queue length 
minQ  also depends on the link capacity, 

thus from a dimensioning perspective it is easier to work with 

delay than with queue length. Moreover, a delay threshold 

does not need adjustment when the link capacity changes.  

Nevertheless, caution is still required. The physical limit of 

a buffer is set by the amount of bytes that it can hold. When 

the link capacity is high, a delay threshold could imply a queue 

size beyond the buffer size. Just as well, with low capacity a 

delay threshold could be smaller than the transmission time of 

a packet. Both cases are dysfunctional. 

We enable delay-based operation in GSP by generalizing 

the meaning of the condition queue > threshold. Both 

terms can be expressed in memory-size units, time units, or a 
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at every packet arrival DO: 

 

cumulTime += (alpha * time_above_threshold –  

time_below_threshold) 

 

cumulTime = min(maxTime, max(0, cumulTime)) 

 

interval = presetInt / (1 + cumulTime / tau) 

 

NEXT proceed with basic GSP algorithm  



 

 

combination of the two. The queuing delay can be measured 

with one of the methods of CoDel and PIE. CoDel uses 

timestamps that it associates with packets when they arrive to 

the queue and then subtracts from the times of departure. PIE 

estimates the drain rate for translation of the actual queue size 

into an expected queuing delay. In our experiments we used 

the timestamp approach. 

IV. EXPERIMENTAL EVALUATION 

A. Testbed 

We implemented GSP as a Linux kernel module with both 

queue-length and delay thresholds and with the adaptation 

heuristic of Fig. 4. The module enables experimentation in real 

network conditions and benchmarking against other popular 

AQM schemes such as CoDel and PIE. 

Our evaluation testbed, shown in Fig. 6, consists of four 

Linux servers (kernel version 3.16) connected by 10GbE links. 

One server is configured as a router with traffic control 

enabled on the outgoing interfaces. Within the Linux traffic 

control subsystem a token-bucket filter serves as a rate limiter, 

thus creating the bottleneck queue. The queue is controlled by 

a byte limit in tail-drop experiments and by an AQM plug-in in 

all other cases (kernel 3.16 versions of CoDel and PIE, and our 

own GSP module). The end systems implement the RTT 

emulation and instantiate a configurable number of TCP 

transmitters (Tx) and receivers (Rx). All TCP flows use 

CUBIC congestion control, the SACK option, and delayed 

ACKs. With two servers in parallel we can emulate different 

RTTs in the same experiment. 

 
Fig. 6.  AQM evaluation testbed. 

We capture simultaneous pcap traces of packets transiting 

on both router interfaces. To gain valuable insights into the 

interplay of TCP traffic and queue management we 

periodically read out AQM statistics while we inject and 

monitor test (ping) packets. 

B. Queue Operation Examples 

In a first series of experiments we illustrate the operating 

principles of GSP. We plot queuing delay (computed as the 

difference between the RTT associated with each returning 

ACK and the propagation RTT of the data path) and the packet 

drop events, all extracted from the pcap files. 

Figure 7 shows a 2s trace from a tail-drop experiment with 

10 flows and delay limit smaller than the single-flow delay 

budget    from Eq. (1) (12ms versus 40ms for TCP CUBIC). 

The negative effect of global synchronization is evident. When 

the queue length saturates the buffer, several packets are 

dropped before the queue length starts falling. The rate 

reduction subsequently experienced by multiple flows is deep 

enough to empty the queue. The link operates at sub-capacity 

levels for about one second. 

 

Fig. 7.  Tail-drop queue: 10 flows, 100Mb/s link,
0 100ms.RTT   

 

 

Fig. 8.  Basic GSP: 10 flows, 100Mb/s link, 0 100ms,RTT  10ms threshold. 

 

Fig. 9.  GSP with interval adaptation: 40 flows, 400Mb/s, 0 100ms,RTT 

10ms threshold. 

Figure 8 shows how the basic GSP algorithm avoids the 

synchronization in the same scenario of Fig. 7. After the first 

packet drop event the no-drop interval allows the queue to 

grow further without experiencing new losses. Only one of the 

ten parallel flows reduces its cwnd. The subsequent queue 

reduction is much smaller than in the synchronized case. 

In the experiment of Fig. 9 we increase the number of 

flows from 10 to 40 (the link capacity also grows, from 

100Mb/s to 400Mb/s). The plot shows that the growth rate of 

the queue length is now too large for the 200ms interval 

value of the basic GSP to keep the queue in a stable 
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Fig. 10.  GSP compared to large and small tail-drop buffers at high and low flow numbers. 

250 flows

10 flows

equilibrium. The adaptation algorithm of Section III.B 

becomes necessary to increase the frequency of the packet-

drop decisions, so that several losses occur before the queue 

length starts falling. The queue alternates between periodic-

drop and no-drop periods. The on-off control holds the queue  

in equilibrium while the adaptation algorithm slowly adjusts 

the drop rate. 

C. Performance with Different Flow Numbers 

In this set of experiments we show that tail-drop works 

well in small buffers if the number of flows is large [6][7], but 

fails to fully utilize the link when it is loaded with fewer flows. 

All experiments use a 1Gb/s link with 
0 100msRTT  .  

The plot on the top left of Fig. 10 is obtained with a ‘large’ 

buffer, sized for TCP CUBIC according to Eq. (2): 

5MB.minB   The link is always loaded to its full capacity, but 

the buffer is clearly too large for 250 flows, so all packets 

experience unnecessary extra delay (at least 20ms). In contrast, 

with only 10 flows in the mix (bottom left) the onset of global 

synchronization causes the queue length to oscillate over the 

entire range (0-40ms). The plots in the center column are from 

the same tail-drop setup, except for the buffer size, now set to 

1MB, or 20% of the 
minB value for CUBIC. With 250 flows 

(top) the queue keeps the link fully loaded. The queuing delay 

oscillates below 8ms. With only 10 flows (bottom), the link 

utilization drops to a minimum of 60% and an average of 87%. 

The small buffer is empty most of the time. With the drop 

threshold also set to 1MB, GSP (right column) keeps the 

queuing delay always below 10ms irrespective of the number 

of flows. The average link utilization is 100% with 250 flows 

(top right of Fig. 10) and 98% with 10 flows (bottom right).  

D. Steady-State Performance 

In this section we compare GSP with CoDel [10] and PIE 

[11]. We focus on the AQM’s ability to keep the queuing 

delay low around a target value without losing throughput 

when the queue depletes. In Fig. 11 we show the probability 

distributions of the queuing delay under different multiplexing 

degrees (1, 10, and 100 flows, always with a per-flow average 

fair share of 10Mb/s). For GSP, CoDel, and PIE we set the 

buffer size to the bandwidth-delay product (125kB, 1.25MB, 

and 12.5MB). For tail-drop we set the size to a CUBIC-

optimized value of 40% of BDP (50kB, 500kB, 5MB). CoDel 

and PIE use their default Linux values for all other parameters.  

 
(a) 1 flow, 10Mb/s link. 

 

             (b) 10 flows, 100Mb/s link.              (c) 100 flows, 1Gb/s link. 

Fig. 11.  CDF of queuing delay for 1, 10, and 100 flows; 0 100ms.RTT   

For best AQM operation under congestion, the cumulative 

density function (CDF) should start at zero, indicating that the 



 

 

queue never depletes. Then, as the delay increases, the CDF 

should reach probability one as steeply as possible, meaning 

that the delay remains low under all circumstances. Figure 

11(a) confirms that no AQM can do better than a well-sized 

tail-drop queue when only one flow is present: the throughput 

is lower and the delay distribution is not better despite the 

smaller traffic volume (see in particular the PIE curve). 

Figures 11(b) and 11(c) show that all AQMs improve the delay 

distribution as the number of flows increases. In both cases 

GSP fares really well compared to CoDel and PIE. 

The results of Fig. 11 are remarkable because GSP is 

designed exclusively around the goal of suppressing global 

synchronization. It was well expected that GSP could not do 

better than tail-drop in the single-flow case. In the plain multi-

flow scenarios of the experiment, GSP always performs at 

least as well as CoDel and PIE, and even better in some cases. 

E. RTT robustness 

In Section III.A we indicated that the basic GSP should run 

with interval set to twice the dominant RTT. In the 

adaptive version of GSP the same value should be chosen for 

presetInt, which is the initial and maximum value of 

interval. In practice the choice of the value is a matter of 

coarse approximation. A smaller-than-expected dominant RTT 

causes faster queue length oscillations, calling for a smaller 

value of interval that the adaptation promptly provides. 

Setting presetInt at 200ms should work well in all cases 

where a dominant RTT smaller than 100ms is not guaranteed 

to be enforced. 

To test the robustness of CoDel, PIE, and GSP against 

RTT variations we keep fixed configuration parameters while 

changing the RTT for a set of 10 flows in a 100Mb/s link. The 

values of all parameters are the default ones, except for the 

drop threshold, which we set at 5ms for all schemes. Fig. 12 

shows that with RTT at 10, 20, and 50ms GSP converges to 

the 5ms drop threshold equally or even better than the other 

schemes. With 100ms RTT the aggressive drop threshold 

causes a slight throughput reduction (to 99%) for all schemes, 

and therefore a null value of the 5% delay quantile. 

 
Fig. 12. Adaptation to deviating RTT; error bars show median, 5% and 95% 

quantiles of the queue delay. 

We have also run experiments with mixed RTT values in 

the same queue (10ms and 100ms). The results (not shown 

here for lack of space) confirm the well-known RTT bias of 

TCP for all single-queue approaches, without remarkable 

differences between GSP and CoDel/PIE. 

F. Variable Transmission Capacity 

A desirable feature of delay-based AQMs is the ability to 

adapt to undefined or variable link capacities. In the next 

experiment we look at the queue response to a capacity drop 

from 100Mb/s to 10Mb/s, and then to the reverse transition 

from 10Mb/s to 100Mb/s. There are 10 flows sharing the 

bottleneck link, but the buffer size is the single-flow CUBIC 

optimum at 100Mb/s and 100ms propagation RTT (500kB). 

Fig. 13 shows that in the first 30s of the experiment, with 

link capacity at 100Mb/s, the queuing delay is well confined 

below 40ms. After the capacity falls to 10Mb/s, both GSP and 

tail-drop experience a delay spike. The larger delay is 

measured for packets that are already queued at the time of the 

transition and for those that arrive before the TCP senders 

detect the packet loss acceleration: there is not much that an 

AQM can do to avoid this transient effect besides increasing 

the frequency of the packet drop decisions. GSP absorbs the 

transition in about 5s and quickly brings back the queuing 

delay around the drop threshold (set at 15ms). Instead, since 

tail-drop anchors the queue length to the buffer size, its delay 

now oscillates in the 300-400ms range. The queue depletion 

seen after the initial 100Mb/s capacity is restored is also 

unavoidable by a buffer that is reasonably sized, as it is 

entirely controlled by the speed of the cwnd recovery at the 

TCP transmitters. A much larger buffer size or drop threshold 

could keep the cwnd distribution at the value needed to avoid 

the buffer depletion, but would also induce unbearable delays 

when the link capacity drops. This approach is considered 

acceptable across wireless links, where capacity variations are 

continuous and the number of competing flows is small, but 

would be overly detrimental in high-speed core links. 

 
Fig. 13. Queuing delay at variable link capacity with tail-drop and delay 

based GSP. 

G. Unresponsive Traffic  

AQM algorithms assume that all traffic in the buffer 

responds to congestion signals, so they lose effectiveness when 

a fraction of the traffic does not respond as expected. Different 

schemes may not have the same ability to compensate for 

diversions from the ideal mode of operation. 

The experiment of Fig. 14 mixes TCP and UDP traffic in 

the same queue. We start the experiment with 10 TCP flows 

loading a 100Mb/s link. After a while we add a 90Mb/s UDP 

flow from a constant-bit-rate source. The queue saturates at the 

100Mbit/s               10Mbit/s                 100Mbit/s
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queue

tail drop

GSP



 

 

tail-drop limit right after the UDP traffic starts. This cannot be 

avoided because of the excess TCP packets that are already in 

flight. All AQMs eventually return the queue to the target 

delay level. PIE shows the fastest reaction but also wide 

oscillations around the new equilibrium. GSP shows the 

slowest reaction with the narrowest oscillations. The parameter 

tau defines the tradeoff between stability and agility under 

changing traffic conditions. The stability favored by the setting 

used in our experiments (tau = 5 × presetInt = 1s) is 

well justified in a high-speed link, where traffic mix variations 

are typically not as steep as the one applied in this experiment.  

 
Fig. 14.  Queue reaction to a sudden UDP injection (90% of link capacity). 

V. CONCLUSION 

We presented a new minimalistic AQM algorithm called 

global synchronization protection (GSP) that requires only few 

additional operations in the fast path of a tail-drop packet 

queue. All processing steps added by GSP, including the 

packet drop decision, occur during the packet-enqueue phase. 

By not loading the buffer interface above the line rate, GSP 

proves very appealing for packet processors that operate at 

leading-edge rates. The design of GSP is motivated by the 

well-known phenomenon of synchronization among the 

congestion window cycles of TCP flows that share a tail-drop 

buffer. The phenomenon causes large queue length oscillations 

and adds disruptive queuing delays to the cost of throughput 

preservation. GSP safely breaks the synchronization when the 

number of flows is small. With more flows it smoothly 

transitions into an on-off control that keeps the queue length 

within the range of a preset target. The transition is driven by 

the adaptation of a single parameter in the slow path. GSP can 

work with both queue-length and queuing-delay thresholds. 

The latter mode of operation is advantageous when the drain 

rate of the queue is unknown or simply variable. 

We implemented a Linux kernel module as a proof-of-

concept prototype and performed numerous experiments in a 

testbed with real network equipment. The experiments expose 

the operating regimes of GSP and favorably report on the 

performance of the new scheme when compared to other 

single-queue AQMs of recent introduction, namely CoDel and 

PIE. They also highlight the benefits of delay-based operation 

at variable link rates and the ability to isolate TCP traffic from 

unresponsive flows.  

We are now exploring further enhancements of the 

adaptation heuristic and ways to automatically adapt the drop 

threshold to the traffic mix. We are also looking at more 

complex traffic scenarios where congestion is present in both 

directions of the data path. 
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