

Preprint

Accepted paper at HPSR 2015

Until published, please cite as:

Lautenschlaeger, W., Francini, A., Global Synchronization Protection for

Bandwidth Sharing TCP Flows in High-Speed Links, Proc. 16th

International Conference on High Performance Switching and Routing,

IEEE HPSR 2015, Budapest, Hungary, July 2015, in print

Global Synchronization Protection for Bandwidth

Sharing TCP Flows in High-Speed Links

Wolfram Lautenschlaeger

Alcatel-Lucent Bell Laboratories

Stuttgart, Germany

wolfram.lautenschlaeger@alcatel-lucent.com

Andrea Francini

Alcatel-Lucent Bell Laboratories

Mooresville, NC (USA)

andrea.francini@alcatel-lucent.com

Abstract— In a congested network link, synchronization effects

between bandwidth-sharing TCP flows cause wide queue length

oscillations, which may translate into poor link utilization if

insufficiently buffered. We introduce global synchronization

protection (GSP), a simple extension to the ordinary operation of

a tail-drop queue that safely suppresses the flow

synchronization. Our minimalistic solution is well suited for

scaling with leading-edge link rates: it adds only few extra

operations in the fast path and does not require accelerated

memory access compared to the line rate. GSP makes it easier to

provide advanced control of TCP congestion in high-speed links

and in low-power packet processing hardware. Using

experiments with a Linux prototype of GSP, we show that,

despite its exclusive focus on removing global synchronization,

the new scheme performs as well as far more complex active

queue management (AQM) schemes like CoDel and PIE.

I. INTRODUCTION

Packet queues are indispensable in almost all network

nodes. They avoid the loss of packets when clustered arrivals

temporarily saturate the transmission capacity of a shared link.

Typically a queue accumulates few packets, then quickly

empties again, but congestion may develop when the

saturation of the link capacity becomes persistent. A congested

queue grows in size and eventually overflows the buffer space.

The resulting loss of packets may degrade the performance of

the respective applications. End systems implement congestion

control to match the combined traffic offer to the capacity of

the most congested link in the data path, so that the occurrence

and negative effects of packet losses are minimized.

TCP is today the dominant protocol for congestion control

in IP networks. The queues that enable proper operation of

TCP are larger than those that resolve temporary contention.

With smaller queues TCP still works, but may fail to fill the

entire link capacity. To avoid any risk of wasting bandwidth

resources, network vendors and operators have been playing

safe by scaling buffer sizes with link capacities. As a result,

end-to-end data paths include today many network links where

large queuing delays can accumulate when congestion occurs.

Bloated buffers [1] damage not only interactive applications

such as voice/video conferencing and gaming, but also those

that require stable throughput, such as adaptive bit-rate (ABR)

video streaming.

Suddenly widespread awareness of the bufferbloat issue

has created new opportunities to reduce queuing delays

everywhere in the network [2]. Combinations of flow queuing

(FQ) [3] with active queue management (AQM) schemes for

control of the overall buffer occupancy (FQ-CoDel [4] and

FQ-PIE [5]) are gaining consensus as the preferred approach

for application in home routers and fiber/DSL/cable modems

and access nodes [5]. These FQ-AQM schemes hash packet

headers onto queues of which the respective flows typically

obtain exclusive use. The benefits are flow isolation, fairness,

and latency minimization for low-bandwidth, low-delay

applications.

The race is far from over in the high-speed links of the

network core. The typically large number of concurrent flows

in core links discourages the deployment of multi-queue AQM

solutions and could in theory make the adoption of small tail-

drop buffers a safe choice [6], [7]. However, the same links

must ensure high utilization of their capacity also when the

number of flows is small and tail-drop can no longer avoid

their synchronization. The random early detection (RED)

AQM [8], while broadly available today in high-speed routers,

is well known for its inability to adapt to varying traffic

conditions. Single-queue AQMs of recent introduction (PED

[9], CoDel [10], PIE [11]) are certainly more versatile than

RED, but their line-rate operation in high-speed links (10 Gb/s

and above) is unproven (CoDel in particular may require

multiple accesses to the packet memory during a single

dequeue operation) and their performance is not always

immune from the effects of misconfiguration (throughput

losses or delay inflation may occur when the target delay of

CoDel and PIE is too small or too large for the round-trip time

distribution of the set of active flows).

We introduce Global Synchronization Protection (GSP), a

new AQM scheme for high-speed links that reconciles

throughput and delay performance with a scalable

implementation. Like many pre-existing AQM schemes, GSP

achieves the suppression of global synchronization by

spreading over time the attribution of packet losses to different

flows after congestion builds up a standing queue. The novelty

of the scheme versus its predecessors is the simplicity of its

operation, which future-proofs it against any foreseeable link

rate increase. GSP extends the operation of a conventional tail-

drop queue with few fast-path steps that it invokes when it

receives a new packet. No extra step is required upon packet

departure. Simplicity of operation also implies that the

configuration parameters are few, easy to derive from the link

capacity and practically insensitive to the traffic conditions.

The paper is organized as follows. In Section II we recall

the behavior of a queue loaded with TCP traffic and elaborate

on the root cause of global synchronization. In Section III we

define the basic GSP algorithm, we illustrate its operating

regimes, and select the adaptation strategy for its primary

variable. In Section IV we present the results of benchmarking

experiments from a 10GbE network of Linux boxes, showing

that despite its simplicity GSP is never inferior to any of the

single-queue AQM schemes that are most popular today. We

draw our conclusions and outline future work in Section V.

II. GLOBAL SYNCHRONIZATION

Due to the scalability constraint of a single-queue

implementation, the primary goal of a buffer management

scheme for high-speed links should be the suppression of

global synchronization for long-lived TCP flows (loosely

defined as flows that remain active long enough to experience

a few of the congestion episodes of a bottleneck link). Other

nice-to-have features found in FQ-AQM schemes, such as the

protection of well-behaved flows from unresponsive ones and

the provision of fast lanes to flows of low-bandwidth, low-

delay applications, are simply impossible to achieve with a

single queue. Still, interactive applications draw important

benefits from the buffer size reductions enabled by the

suppression of global synchronization. In this section we

expose the root causes of global synchronization and their

inflating effect on buffer sizes. The discussion is mostly

qualitative: we refer to [12] for a detailed quantitative analysis.

A. Single Flow

In a TCP connection, the transmitter sends data segments

over the forward path and receives acknowledgment segments

(ACKs) over the reverse path. The ACKs provide confirmation

of successful receipt of the data segments by the TCP receiver.

The transmitter receives an ACK one round trip time (RTT)

after sending the corresponding data segment. The flight size is

the amount of transmitted data that are yet unacknowledged.

The congestion window (cwnd) limits the flight size: when

cwnd is exhausted the transmission of new data can happen

only after previously transmitted data are acknowledged [13].

The bit rate of the TCP connection is defined by the ratio

between flight size and RTT. It changes with cwnd and with

the queuing-delay component of the RTT. TCP flavors differ

in the way they control cwnd, but they all share the general

principles of cautious probing for more bandwidth (additive

increase) and steep contraction in response to congestion

signals (multiplicative decrease). At the congested link, TCP

window oscillations induce queue length oscillations, which

modulate the queuing delay and the RTT. The bit rate of the

TCP connection matches the link capacity C as long as the

variations of cwnd and RTT compensate each other.

The ratio  between the cwnd values after and before a

multiplicative decrease is of particular interest to buffer sizing.

For instance, TCP Reno [14] reduces cwnd by 50% (0.5 )

and TCP CUBIC [15] drops it by 30% (0.7 ). In order for

the congested link to remain fully utilized, the decreased cwnd

must retain a positive queuing delay on top of the propagation

component
0RTT of the round-trip time:

0 0()RTT RTT    , (1)

where   is the queuing delay right before decreasing cwnd

and Q C    is the corresponding queue length. Equation

(1) yields the following expression for the minimum queue

length before the cwnd reduction, and therefore for the

minimum buffer size
minB that guarantees full throughput:

 0

1
min minB Q C RTT





 
    . (2)

Equation (2) generalizes the bandwidth-delay product

(BDP) rule [16] for a generic TCP flavor with multiplicative

decrease ratio  . The rule yields
0minB C RTT  with TCP

Reno and
00.4minB C RTT   with TCP CUBIC. Full

utilization of the link capacity is not possible when
minB B .

B. Global Synchronization with Multiple Flows

When N TCP flows share a common bottleneck link the

queue length is in equilibrium with the cumulative effect of the

N congestion windows. Every congestion signal affects only

one flow, causing only one cwnd to contract. The resulting

drop in bottleneck queue length reflects the current bandwidth-

delay product of the affected flow, which becomes smaller as

N grows larger. If cwnd was guaranteed to be the same for all

flows, and congestion signals were spaced in time so that one

flow receives one signal not before the queue length has

recovered from the previous one, the buffer size could shrink

down to /minB N . Unfortunately, this is not possible with tail-

drop queues because these queues concentrate packet losses

for multiple flows within a very short time, causing the

contractions of a large portion of cwnd instances to overlap,

which is exactly what we call global synchronization.

In theory, somewhere in between the single-flow BDP rule

and the linear reduction by the number of flows, mildly

compressed sizes could be considered safe for tail-drop buffers

in high-speed links with large numbers of TCP flows [6], [7].

However, the number of long-lived flows in a link may vary

widely in practical scenarios, leaving negligible margins for

downsizing a tail-drop buffer that aims at consistently high

levels of link utilization during congestion episodes. To

achieve more meaningful reductions of queue length and

delay, a buffer for high-speed links should disrupt the global

synchronization pattern.

We show the basic elements of global synchronization

using the example of Fig. 1. All flows simultaneously probe

the link for extra bandwidth by gradually increasing their

cwnd. When the aggregate bit rate of the flows saturates the

link capacity, the link enters congestion and the queue size and

delay start growing. Any further cwnd increase has no effect

on the link throughput and only contributes to queue length

and delay accumulation. For every TCP Reno flow the queue

grows at the rate of one packet per RTT (corresponding to a

unit increment of cwnd), so with N flows the growth rate is

N packets per RTT. With TCP CUBIC flows the growth rate

is never lower than with Reno and is frequently higher. We

note that in most practical cases the widespread use of delayed

acknowledgments by TCP clients [17] and the default host

configuration not to use the appropriate byte count (ABC)

option in TCP senders [18] actually halve the growth rate, e.g.,

down to / 2N packets per RTT with TCP Reno [12].

When the tail-drop queue drops the first packet in a

congestion episode, the queue length immediately drops by

only one unit. It takes at least an entire RTT before the cwnd

reduction induced by the packet loss shows its full impact on

the queue length. (The time between the first drop and the

larger queue length contraction may actually grow close to two

RTTs, due to the sub-RTT burstiness of bandwidth-sharing

flows [12].)

Fig. 1. Synchronization of tail-drop events.

During the RTT interval that follows the first drop event

the TCP senders of all flows keep probing for bandwidth at the

same pace as before. That is, the packets arriving to the queue

exceed those departing by / 2N units. Since the queue is

already full, it drops / 2N packets. If each dropped packet

belongs to a different flow, every other flow ends up

contracting its cwnd at the same time. If the buffer is far

smaller than required by the BDP rule, the queue depletes and

the link operates at sub-capacity levels until the combined

cwnd of all flows returns large enough to establish again a

continuous presence of packets in the queue. The queue

collapse may be less severe when losses hit one or more flows

multiple times, so that the fraction of the total population

affected by losses is smaller than 50%, but statistically it still

presents a problem.

III. GLOBAL SYNCHRONIZATION PROTECTION

In this section we present three versions of the GSP

algorithm: basic, adaptive, and delay-based.

A. Basic GSP

Global synchronization can be averted by removing the

extra packet drops right after the first one (see Fig. 2). To do so

we shift the drop threshold well below the buffer size limit.

The first packet drop starts a time interval during which all

threshold violations by incoming packets are ignored. Ideally

the duration of the interval should be twice as large as the RTT

of the dominant flows in the queue (i.e., the flows that

contribute the majority of the traffic). The queue is then

allowed to keep growing until it feels the effect of the cwnd

reduction. At the end of the no-drop interval the queue length

is well below the drop threshold and requires no further action.

The pseudo-code of Fig. 3 describes the algorithm of Fig.

2. The function now() returns the current time. The value of

the parameter interval is ideally two times the RTT of the

traffic that is expected to dominate the queue. The variable

expiry holds a time value and does not involve the use of a

timer.

Fig. 2. Global synchronization protection, basic version.

Fig. 3. Pseudo-code of the basic GSP algorithm.

A fixed value of interval suits well the algorithm when

the number of flows in the queue is relatively small, because

the queue length contraction after a packet loss is fast and the

subsequent recovery is slow. Instead, with many flows and

particularly with more aggressive TCP flavors like CUBIC, the

queue length may grow faster than it drops after a single loss.

When this happens the queue is longer when the no-drop

interval ends than it is when the interval starts, so the buffer

inevitably overflows and global synchronization returns.

A shorter no-drop interval that expires multiple times per

RTT can keep the buffer from overflowing. The queue drops

packets periodically as long as the queue length remains above

the drop threshold, then stops when the queue shortens, then

starts again the periodic drops the next time it crosses the

threshold. In this mode of operation the basic GSP algorithm

behaves like an on-off (or “bang-bang”) controller. The

operation is robust against mild deviations from the optimum

interval setting that anchors the average queue length to

the drop threshold. Only larger deviations from the optimum

value become disruptive, when the queue length no longer

oscillates narrowly around the drop threshold.

In the past the potential risk of synchronization between

periodic arrivals and drops has caused skepticism against

periodic dropping. For that reason most AQMs today rely on

randomized drops. GSP does not need randomization because

the periodic-drop regime appears only with large flow

numbers. The interleaving of packets from many different

flows, together with their sub-RTT burstiness [12], supplies

sufficient randomization to the distribution of packet arrivals.

1 – 2 RTT

first drop

triggers cwnd

reduction

further drops causing

unnecessary deep reduction
buffer limit

q
u

e
u

e
 s

iz
e

time

empty queue

buffer limit

q
u

e
u

e
 s

iz
e

time

threshold

no drops

during interval

first drop

triggers cwnd

reduction

at every packet arrival DO:

IF (queue > threshold) AND (now() > expiry)

{

 drop the packet

 expiry = now() + interval

}

ELSE {

 enqueue the packet

}

END

Moreover, the phase of the drop sequence changes randomly

with every bang-bang cycle.

B. Adaptive GSP

Since the same GSP configuration must work well under

most scenarios of practical interest, the scheme must adapt the

interval value automatically. We choose an adaptation

heuristic based on the time that the queue spends above and

below the drop threshold.

In single-drop operation the queue is most of the time

below the threshold and drops a packet only once in many

expirations of the maximum interval duration. No adaptation is

necessary. The interval value must be reduced as soon as

the queue starts spending more time above the threshold than

below. Let presetInt be the initial and maximum setting

for the adaptive interval variable, tau the time constant

for the adaptation loop, and alpha the emphasis factor for the

time spent above the threshold, such that the reaction to load

changes is stronger. As a rule of thumb, tau should be

comfortably larger than presetInt (we set the ratio at 5)

and alpha should not be much larger than 1 (we choose 2 in

all our experiments). The steps for adaptation of the

interval value are listed in Fig. 4. The pseudo-code shows

how the algorithmic overhead versus tail-drop remains

minimal. Most importantly, GSP never loads the packet

memory interface above the line rate because it never drops

packets after storing them (as opposed to CoDel [10]).

Fig. 4. Pseudo-code of GSP adaptation heuristic.

From a control theory perspective the interval adaptation

algorithm implements an integral controller on the packet drop

rate of the inner control loop (see Fig. 5). The inner control

loop just decides whether or not to drop packets at the rate

defined by the interval value. TCP and the queue react

accordingly and feed the current queue size back to the

threshold decision.

The control is stable as long as no other source of packet

drops is active. One such source is the buffer overflow event,

which can synchronize the TCP flows with deep depletions of

queue and link load. After the overflow event the adaptive

GSP can easily find that the queue spends most time below the

drop threshold and inaccurately conclude that no adaptation is

necessary. This effect has been observed before for other

AQMs [19] and our experiments have confirmed it for GSP. It

typically occurs when many new flows start using the queue

around the same time. For its mitigation we suspend the

accumulation of time_below_threshold right after a

buffer overflow and resume it again after the queue has

completed the cycle from buffer overflow to empty to above

threshold. This kind of hysteresis may look rough, but

effectively prevents the interval value from growing in

response to the arrival of new flows (the value must indeed

decrease, to break the buffer overflow-depletion cycle).

Fig. 5. GSP control architecture.

The adaptation algorithm enables a smooth transition

between single-drop and periodic-drop operation. In the

periodic-drop regime, the adaptation sets the drop rate based

on the queue length placement versus the drop threshold. We

underscore that the integral controller that maintains the

interval value is external to the on-off control loop of the

basic GSP algorithm. The internal loop drives the TCP

dynamics at the RTT timescale while the external loop

modulates one of the internal-loop parameters at a larger

timescale. Under steady traffic conditions the outer control

loop may very well freeze the interval value; instead, the

inner loop keeps switching between no-drop and periodic-drop

operation, or simply settles on single-drop if interval =

presetInt.

C. Delay-Based GSP

CoDel [10] and PIE [11], AQM schemes of recent

introduction, use the queuing delay, not the queue length, as

the control target. Could GSP benefit from a similar approach?

While the interval value controls the stability of the queue

by avoiding buffer overflow and global synchronization

events, the size of the drop threshold impacts delay statistics

and link utilization. If the threshold is too small, even a single

packet loss may deplete the queue; if it is too large, a standing

queue may form that adds a fixed contribution to the queuing

delay of every packet. From Eqs. (1) and (2) we know that the

queuing delay budget   depends only on the RTT, while the

minimum queue length
minQ also depends on the link capacity,

thus from a dimensioning perspective it is easier to work with

delay than with queue length. Moreover, a delay threshold

does not need adjustment when the link capacity changes.

Nevertheless, caution is still required. The physical limit of

a buffer is set by the amount of bytes that it can hold. When

the link capacity is high, a delay threshold could imply a queue

size beyond the buffer size. Just as well, with low capacity a

delay threshold could be smaller than the transmission time of

a packet. Both cases are dysfunctional.

We enable delay-based operation in GSP by generalizing

the meaning of the condition queue > threshold. Both

terms can be expressed in memory-size units, time units, or a

adaptation

basic GSP

TCP

+

queue
+

drop at

rate

calculate

rate dt

threshold

yes/no

queue

size

at every packet arrival DO:

cumulTime += (alpha * time_above_threshold –

time_below_threshold)

cumulTime = min(maxTime, max(0, cumulTime))

interval = presetInt / (1 + cumulTime / tau)

NEXT proceed with basic GSP algorithm

combination of the two. The queuing delay can be measured

with one of the methods of CoDel and PIE. CoDel uses

timestamps that it associates with packets when they arrive to

the queue and then subtracts from the times of departure. PIE

estimates the drain rate for translation of the actual queue size

into an expected queuing delay. In our experiments we used

the timestamp approach.

IV. EXPERIMENTAL EVALUATION

A. Testbed

We implemented GSP as a Linux kernel module with both

queue-length and delay thresholds and with the adaptation

heuristic of Fig. 4. The module enables experimentation in real

network conditions and benchmarking against other popular

AQM schemes such as CoDel and PIE.

Our evaluation testbed, shown in Fig. 6, consists of four

Linux servers (kernel version 3.16) connected by 10GbE links.

One server is configured as a router with traffic control

enabled on the outgoing interfaces. Within the Linux traffic

control subsystem a token-bucket filter serves as a rate limiter,

thus creating the bottleneck queue. The queue is controlled by

a byte limit in tail-drop experiments and by an AQM plug-in in

all other cases (kernel 3.16 versions of CoDel and PIE, and our

own GSP module). The end systems implement the RTT

emulation and instantiate a configurable number of TCP

transmitters (Tx) and receivers (Rx). All TCP flows use

CUBIC congestion control, the SACK option, and delayed

ACKs. With two servers in parallel we can emulate different

RTTs in the same experiment.

Fig. 6. AQM evaluation testbed.

We capture simultaneous pcap traces of packets transiting

on both router interfaces. To gain valuable insights into the

interplay of TCP traffic and queue management we

periodically read out AQM statistics while we inject and

monitor test (ping) packets.

B. Queue Operation Examples

In a first series of experiments we illustrate the operating

principles of GSP. We plot queuing delay (computed as the

difference between the RTT associated with each returning

ACK and the propagation RTT of the data path) and the packet

drop events, all extracted from the pcap files.

Figure 7 shows a 2s trace from a tail-drop experiment with

10 flows and delay limit smaller than the single-flow delay

budget   from Eq. (1) (12ms versus 40ms for TCP CUBIC).

The negative effect of global synchronization is evident. When

the queue length saturates the buffer, several packets are

dropped before the queue length starts falling. The rate

reduction subsequently experienced by multiple flows is deep

enough to empty the queue. The link operates at sub-capacity

levels for about one second.

Fig. 7. Tail-drop queue: 10 flows, 100Mb/s link,
0 100ms.RTT 

Fig. 8. Basic GSP: 10 flows, 100Mb/s link, 0 100ms,RTT  10ms threshold.

Fig. 9. GSP with interval adaptation: 40 flows, 400Mb/s, 0 100ms,RTT 

10ms threshold.

Figure 8 shows how the basic GSP algorithm avoids the

synchronization in the same scenario of Fig. 7. After the first

packet drop event the no-drop interval allows the queue to

grow further without experiencing new losses. Only one of the

ten parallel flows reduces its cwnd. The subsequent queue

reduction is much smaller than in the synchronized case.

In the experiment of Fig. 9 we increase the number of

flows from 10 to 40 (the link capacity also grows, from

100Mb/s to 400Mb/s). The plot shows that the growth rate of

the queue length is now too large for the 200ms interval

value of the basic GSP to keep the queue in a stable

Tx

Tx

Tx

Rx

Rx

Linux

router

T
C

P
/I

P

Tx

Tx

Rx

Rx

Rx

T
C

P
/I
P

RTT FIFO

N=

1…250

10GE 10GE

rate

limiter

AQM

plugin

Rx

N=

1…250
RTT FIFO

switch

rate

limiter AQM

plugin

Tx

Tx

Rx

Rx

Rx

T
C

P
/I
P

RTT FIFO

empty queue
drop burst

sec

single drops

sec

d
el

ay
, m

s

periodic drops
(if above threshold)

no drops
(if below threshold)

sec

d
el

ay
, m

s

Fig. 10. GSP compared to large and small tail-drop buffers at high and low flow numbers.

250 flows

10 flows

equilibrium. The adaptation algorithm of Section III.B

becomes necessary to increase the frequency of the packet-

drop decisions, so that several losses occur before the queue

length starts falling. The queue alternates between periodic-

drop and no-drop periods. The on-off control holds the queue

in equilibrium while the adaptation algorithm slowly adjusts

the drop rate.

C. Performance with Different Flow Numbers

In this set of experiments we show that tail-drop works

well in small buffers if the number of flows is large [6][7], but

fails to fully utilize the link when it is loaded with fewer flows.

All experiments use a 1Gb/s link with
0 100msRTT  .

The plot on the top left of Fig. 10 is obtained with a ‘large’

buffer, sized for TCP CUBIC according to Eq. (2):

5MB.minB  The link is always loaded to its full capacity, but

the buffer is clearly too large for 250 flows, so all packets

experience unnecessary extra delay (at least 20ms). In contrast,

with only 10 flows in the mix (bottom left) the onset of global

synchronization causes the queue length to oscillate over the

entire range (0-40ms). The plots in the center column are from

the same tail-drop setup, except for the buffer size, now set to

1MB, or 20% of the
minB value for CUBIC. With 250 flows

(top) the queue keeps the link fully loaded. The queuing delay

oscillates below 8ms. With only 10 flows (bottom), the link

utilization drops to a minimum of 60% and an average of 87%.

The small buffer is empty most of the time. With the drop

threshold also set to 1MB, GSP (right column) keeps the

queuing delay always below 10ms irrespective of the number

of flows. The average link utilization is 100% with 250 flows

(top right of Fig. 10) and 98% with 10 flows (bottom right).

D. Steady-State Performance

In this section we compare GSP with CoDel [10] and PIE

[11]. We focus on the AQM’s ability to keep the queuing

delay low around a target value without losing throughput

when the queue depletes. In Fig. 11 we show the probability

distributions of the queuing delay under different multiplexing

degrees (1, 10, and 100 flows, always with a per-flow average

fair share of 10Mb/s). For GSP, CoDel, and PIE we set the

buffer size to the bandwidth-delay product (125kB, 1.25MB,

and 12.5MB). For tail-drop we set the size to a CUBIC-

optimized value of 40% of BDP (50kB, 500kB, 5MB). CoDel

and PIE use their default Linux values for all other parameters.

(a) 1 flow, 10Mb/s link.

 (b) 10 flows, 100Mb/s link. (c) 100 flows, 1Gb/s link.

Fig. 11. CDF of queuing delay for 1, 10, and 100 flows; 0 100ms.RTT 

For best AQM operation under congestion, the cumulative

density function (CDF) should start at zero, indicating that the

queue never depletes. Then, as the delay increases, the CDF

should reach probability one as steeply as possible, meaning

that the delay remains low under all circumstances. Figure

11(a) confirms that no AQM can do better than a well-sized

tail-drop queue when only one flow is present: the throughput

is lower and the delay distribution is not better despite the

smaller traffic volume (see in particular the PIE curve).

Figures 11(b) and 11(c) show that all AQMs improve the delay

distribution as the number of flows increases. In both cases

GSP fares really well compared to CoDel and PIE.

The results of Fig. 11 are remarkable because GSP is

designed exclusively around the goal of suppressing global

synchronization. It was well expected that GSP could not do

better than tail-drop in the single-flow case. In the plain multi-

flow scenarios of the experiment, GSP always performs at

least as well as CoDel and PIE, and even better in some cases.

E. RTT robustness

In Section III.A we indicated that the basic GSP should run

with interval set to twice the dominant RTT. In the

adaptive version of GSP the same value should be chosen for

presetInt, which is the initial and maximum value of

interval. In practice the choice of the value is a matter of

coarse approximation. A smaller-than-expected dominant RTT

causes faster queue length oscillations, calling for a smaller

value of interval that the adaptation promptly provides.

Setting presetInt at 200ms should work well in all cases

where a dominant RTT smaller than 100ms is not guaranteed

to be enforced.

To test the robustness of CoDel, PIE, and GSP against

RTT variations we keep fixed configuration parameters while

changing the RTT for a set of 10 flows in a 100Mb/s link. The

values of all parameters are the default ones, except for the

drop threshold, which we set at 5ms for all schemes. Fig. 12

shows that with RTT at 10, 20, and 50ms GSP converges to

the 5ms drop threshold equally or even better than the other

schemes. With 100ms RTT the aggressive drop threshold

causes a slight throughput reduction (to 99%) for all schemes,

and therefore a null value of the 5% delay quantile.

Fig. 12. Adaptation to deviating RTT; error bars show median, 5% and 95%

quantiles of the queue delay.

We have also run experiments with mixed RTT values in

the same queue (10ms and 100ms). The results (not shown

here for lack of space) confirm the well-known RTT bias of

TCP for all single-queue approaches, without remarkable

differences between GSP and CoDel/PIE.

F. Variable Transmission Capacity

A desirable feature of delay-based AQMs is the ability to

adapt to undefined or variable link capacities. In the next

experiment we look at the queue response to a capacity drop

from 100Mb/s to 10Mb/s, and then to the reverse transition

from 10Mb/s to 100Mb/s. There are 10 flows sharing the

bottleneck link, but the buffer size is the single-flow CUBIC

optimum at 100Mb/s and 100ms propagation RTT (500kB).

Fig. 13 shows that in the first 30s of the experiment, with

link capacity at 100Mb/s, the queuing delay is well confined

below 40ms. After the capacity falls to 10Mb/s, both GSP and

tail-drop experience a delay spike. The larger delay is

measured for packets that are already queued at the time of the

transition and for those that arrive before the TCP senders

detect the packet loss acceleration: there is not much that an

AQM can do to avoid this transient effect besides increasing

the frequency of the packet drop decisions. GSP absorbs the

transition in about 5s and quickly brings back the queuing

delay around the drop threshold (set at 15ms). Instead, since

tail-drop anchors the queue length to the buffer size, its delay

now oscillates in the 300-400ms range. The queue depletion

seen after the initial 100Mb/s capacity is restored is also

unavoidable by a buffer that is reasonably sized, as it is

entirely controlled by the speed of the cwnd recovery at the

TCP transmitters. A much larger buffer size or drop threshold

could keep the cwnd distribution at the value needed to avoid

the buffer depletion, but would also induce unbearable delays

when the link capacity drops. This approach is considered

acceptable across wireless links, where capacity variations are

continuous and the number of competing flows is small, but

would be overly detrimental in high-speed core links.

Fig. 13. Queuing delay at variable link capacity with tail-drop and delay

based GSP.

G. Unresponsive Traffic

AQM algorithms assume that all traffic in the buffer

responds to congestion signals, so they lose effectiveness when

a fraction of the traffic does not respond as expected. Different

schemes may not have the same ability to compensate for

diversions from the ideal mode of operation.

The experiment of Fig. 14 mixes TCP and UDP traffic in

the same queue. We start the experiment with 10 TCP flows

loading a 100Mb/s link. After a while we add a 90Mb/s UDP

flow from a constant-bit-rate source. The queue saturates at the

100Mbit/s 10Mbit/s 100Mbit/s

standing

queue

tail drop

GSP

tail-drop limit right after the UDP traffic starts. This cannot be

avoided because of the excess TCP packets that are already in

flight. All AQMs eventually return the queue to the target

delay level. PIE shows the fastest reaction but also wide

oscillations around the new equilibrium. GSP shows the

slowest reaction with the narrowest oscillations. The parameter

tau defines the tradeoff between stability and agility under

changing traffic conditions. The stability favored by the setting

used in our experiments (tau = 5 × presetInt = 1s) is

well justified in a high-speed link, where traffic mix variations

are typically not as steep as the one applied in this experiment.

Fig. 14. Queue reaction to a sudden UDP injection (90% of link capacity).

V. CONCLUSION

We presented a new minimalistic AQM algorithm called

global synchronization protection (GSP) that requires only few

additional operations in the fast path of a tail-drop packet

queue. All processing steps added by GSP, including the

packet drop decision, occur during the packet-enqueue phase.

By not loading the buffer interface above the line rate, GSP

proves very appealing for packet processors that operate at

leading-edge rates. The design of GSP is motivated by the

well-known phenomenon of synchronization among the

congestion window cycles of TCP flows that share a tail-drop

buffer. The phenomenon causes large queue length oscillations

and adds disruptive queuing delays to the cost of throughput

preservation. GSP safely breaks the synchronization when the

number of flows is small. With more flows it smoothly

transitions into an on-off control that keeps the queue length

within the range of a preset target. The transition is driven by

the adaptation of a single parameter in the slow path. GSP can

work with both queue-length and queuing-delay thresholds.

The latter mode of operation is advantageous when the drain

rate of the queue is unknown or simply variable.

We implemented a Linux kernel module as a proof-of-

concept prototype and performed numerous experiments in a

testbed with real network equipment. The experiments expose

the operating regimes of GSP and favorably report on the

performance of the new scheme when compared to other

single-queue AQMs of recent introduction, namely CoDel and

PIE. They also highlight the benefits of delay-based operation

at variable link rates and the ability to isolate TCP traffic from

unresponsive flows.

We are now exploring further enhancements of the

adaptation heuristic and ways to automatically adapt the drop

threshold to the traffic mix. We are also looking at more

complex traffic scenarios where congestion is present in both

directions of the data path.

ACKNOWLEDGMENT

This work has been funded in part by the German

Bundesministerium für Bildung und Forschung (Federal

Ministry of Education and Research) in scope of project

SASER under grant No. 16BP12200.

REFERENCES

[1] J. Gettys, K. Nichols, “Bufferbloat: Dark Buffers in the

Internet,” Communications. of the ACM, Vol. 55 No. 1, January

2012.

[2] F. Baker, G. Fairhurst, “IETF Recommendations Regarding

Active Queue Management,” IETF ID draft-ietf-aqm-

recommendation-11, February 2015. Online: https://

tools.ietf.org/wg/aqm/draft-ietf-aqm-recommendation/

[3] P.E. McKenney, “Stochastic fairness queueing,” Proceedings of

IEEE INFOCOM ’90, San Francisco (CA), June 1990.

[4] T. Hoeiland-Joergensen, P.E. McKenney, D. Taht, J. Gettys, aE.

Dumazet, “FlowQueue-Codel,” IETF ID draft-ietf-aqm-fq-

codel-00, December 2014. Online: https://datatracker.ietf.org/

doc/draft-ietf-aqm-fq-codel/

[5] G. White, “Active Queue Management in DOCSIS 3.X Cable

Modems,” CableLabs Technical Report, May 2014. Online:

http://www.cablelabs.com/wp-content/uploads/2014/06/

DOCSIS-AQM_May2014.pdf

[6] G. Appenzeller, I. Keslassy, N. McKeown, “Sizing Router
Buffers,” Proceedings of ACM SIGCOMM ´04, Portland (OR),
August 2004.

[7] Y. Ganjali, N. McKeown, “Update on Buffer Sizing in Internet

Routers,” ACM SIGCOMM Computer Communication Review,

36(5):67-70, October 2006.

[8] S. Floyd, V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on

Networking, Vol. 1 Issue 4, August 1993.

[9] A. Francini, “Beyond RED: Periodic Early Detection for On-

Chip Buffer Memories in Network Elements,” Proceedings of

IEEE HPSR ’11, Cartagena (Spain), July 2011.

[10] K. Nichols, V. Jacobson, “Controlling Queue Delay,” ACM

Queue, Vol. 10 Issue 5, May 2012.

[11] R. Pan et al., “PIE: A Lightweight Control Scheme to Address

the Bufferbloat Problem,” Proceedings of IEEE HPSR ‘13,

Taipei (Taiwan), July 2013.

[12] W. Lautenschlaeger, “A Deterministic TCP Bandwidth Sharing

Model,” arXiv:1404.4173, April 2014. Online

http://arxiv.org/abs/1404.4173

[13] V. Jacobson, “Congestion Avoidance and Control,”

Proceedings of ACM SIGCOMM ´88, Palo Alto (CA), August

1988.

[14] S. Floyd, T. Henderson, A. Gurtov, “The NewReno

Modification to TCP’s Fast Recovery Algorithm,” IETF RFC

3782, April 2004.

[15] Sangtae Ha, Injong Rhee, Lisong Xu, “CUBIC: A New TCP-

Friendly High-Speed TCP Variant,” ACM SIGOPS Operating

Systems Review, Vol 42 Issue 5, July 2008.

[16] C. Villamizar, C. Song, “High-Performance TCP in ANSNET,”

ACM SIGCOMM Computer Communications Review, Vol. 24

Issue 5, October 1994.

[17] R. Braden, “Requirements for Internet Hosts – Communication

Layers,” IETF RFC 1122, October 1989.

[18] M. Allman, “TCP Congestion Control with Appropriate Byte

Counting (ABC),” IETF RFC 3465, February 2003.

[19] A. Francini, “Active Queue Management with Variable

Bottleneck Rate,” Proceedings of 35th IEEE Sarnoff

Symposium, Newark (NJ), May 2012.

