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Abstract—High performance packet classification is a key
component to support scalable network applications like firewalls,
intrusion detection, and differentiated services. With ever increas-
ing in the line-rate in core networks, it becomes a great challenge
to design a scalable and high performance packet classification
solution using hand-tuned heuristics approaches. In this paper,
we present a scalable learning-based packet classification engine
and its performance evaluation. By exploiting the sparsity of
ruleset, our algorithm uses a few effective bits (EBs) to extract a
large number of candidate rules with just a few of memory access.
These effective bits are learned with deep reinforcement learning
and they are used to create a bitmap to filter out the majority
of rules which do not need to be full-matched to improve the
online system performance. Moreover, our EBs learning-based
selection method is independent of the ruleset, which can be
applied to varying rulesets. Our multibit tries classification engine
outperforms lookup time both in worst and average case by 55%
and reduce memory footprint, compared to traditional decision
tree without EBs.

Index Terms packet classification, machine learning, opti-
mization

I. INTRODUCTION

Packet classification is a key function to support network
applications like firewalls, intrusion detection, and differenti-
ated services and OpenFlow switch. The problem of packet
classification is similar to point location problem in a multi-
dimensional geometric space. The meta data in a packet, (i.e.,
packet headers) contains different fields, representing different
dimensions in space. Given a packet, finding out where exactly
that packet is located in that space is essentially the packet
classification problem. A classifier is a set of rules, each rule
specifies a pattern (i.e. values or range of values) on different
fields of a packet header. In this way, all these rules could be
represented as hypercubes in that same space.

Existing algorithmic solutions to packet classification include
decision-tree-based techniques [1] and decomposition-based
techniques [2] [3]. Meanwhile, several orthogonal solutions
for packet classification have explored, including [4] using
the prefix probability, [5] using entropy for a compact data
structure, [6] using compressing tables.

However most of these solutions are built on heuristics
(e.g., increasing split entropy [1], balancing splits with custom
space measures [1], special handling for wildcard rules [7])
that fails to generalize the process of building a decision
tree for different set of rules. On the other hand if these
solutions are specifically tuned to exploit certain characteristics

present in a given ruleset, those characteristics may not be
present in another ruleset. As a result, this environment (i.e.,
ruleset) specific heuristics typically suffers with sub-optimal
performance. Another drawback of this hand-tuned heuristics is
the absent of a global objective (e.g., tree depth or the number
of nodes in the tree). Their decision making is often based on
local information (difference between the number of rules in
the current node [8], the number of different ranges in different
dimensions [7] ). This local information is loosely related to
the global objectives and that leads to their performance to be
sub-optimal.

To address above mentioned limits of heuristics based
solutions, we will build a decision tree using deep learning
approach. The promising aspect of deep learning in systems
and networking problems [9], [10], inspires us to use deep
learning in packet classification. Essentially we aim to use
learning-based approach to generate an high performance and
low memory packet classification engine for any ruleset without
relying on heuristics.

In this paper, we present multibit-tries packet classification
engine, which is generated by deep reinforcement learning.
For a given set of rules, our solution employs a learning-
based approach to find out the effective bits. Effective bits
(EBs) are essentially the selected bit positions from a 5 field,
104-bit tuple structure, that divides the original rulesets into
multiple groups. We use these EBs to retrieve a large number of
possible candidate rules in just one memory access. Therefore,
deep reinforcement model generates an optimized decision tree
for a given ruleset and using that decision tree we calculate
required effective bits. The selected effective bits are then used
to traverse the original decision tree in multibit tries approach
that yields up to 55% performance improvement for different
set of ClassBench [11] rules.

In summary, there are three main contributions of this work:
• A deep learning based multi effective bit selection method

is proposed by leveraging the statistical characteristics in
a ruleset to conduct multi-dimensional lookups.

• Based on effective bit, a multibit tries packet classification
engine is designed for the system scalability in both
processing throughput and storage requirement

• Our multibit-tire packet classification can achieve classifi-
cation time improvement up to 55% compared to unibit
decision tree with small memory footprint improvement
for varying ruleset.
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The remainder of this work is organized as follows. Section
II gives background for related research on packet classification.
Section III presents the proposed method. Experimental setup
and results are shown in Section IV. Finally, Section V
summarizes and conclude the paper.

II. BACKGROUND AND RELATED WORK

Packet classification is an important and hard problem [12].
Existing solutions can be classified into three categories:
hardware solution, hand-turned heuristic algorithmic solutions
and machine-learning based solutions. In this section, we will
first review several heuristic algorithmic solutions, finally a
brief review of machine learning based solutions.

Algorithmic solutions for packet classification include de-
composition and decision tree. Decomposition-based solutions
work on each field in a ruleset independently using cross-
products [13] [14] or header chucks [15] [2] for the intermediate
results. These solutions merge the results from different fields
to produce the final match results. As discussed in [16], the
time complexity is O(dW ) for cross-product solutions and is
O(d) for header chuck solutions. The storage complexity is
O(Nd) for [13] [14] [16] and O(dN2) for [2]. Decision-tree-
based approaches [17] [18] [19] analyze all fields in a ruleset
to construct tree data structures for an efficient packet header
lookup. Tree depth and rule duplication in a decision tree
affect the searching efficiency and memory requirement of the
implementation. For the matching process, decision-tree-based
solutions traverse the tree using field values to make branching
decisions at each node until a leaf is reached. According to
the discussion in [16], the growth of field numbers in a ruleset
results in a linear increase of processing latency and the time
complexity is O(d). Based on the nature of decision trees, the
rule duplication is carried over to the next layer. The growth
of field numbers in a ruleset results in an exponential increase
of memory requirement and the storage is O(Nd).

Learning based approach could be divided into two cat-
egories. One learning-based approach could be getting rid
of the decision tree itself, a neural network will output the
matching rule for a packet, given the packet’s header fields. It
has shown that a deep neural network (DNN) could be used to
replace B-trees for indexing []. This approach has some serious
drawbacks. First, it doesn’t assure 100% accuracy which is
an absolute requirement for most crucial packet classification
services (e.g. firewalls, access controls). The reason for not
having a 100% accuracy is due to the fact that training a neural
network is essentially a stochastic process. If a DNN replaces
the tree, we still need another system to verify if the DNN result
is correct or not. Secondly, a packet could match multiple rules
in a ruleset so, given a packet, after the first match, system still
needs to go through the other rules to see if the first matching
rule has the highest priority among all the matching rules or not.
In addition, for a large ruleset, the required DNN models will
be very large in size and very difficult to train to obtain high
accuracy. The other category is rather unorthodox, involves
building decision trees utilizing Deep learning (RL) which
has been introduced in [20]. There, authors shows how deep

reinfocement learning could be used to generate optimized
decision tree for any given ruleset. Reinforcement Learning
can learn the most efficient heuristic for a given environment.

Our proposed solution falls into learning based category and
we introduces an effective bit selection scheme from a decision
tree and using those effective bits in mutibit tries we improve
the classification performance and memory footprint per rule.

III. METHODOLOGY

An learning based system is required to tackle the problem
of generating optimal decision trees for different given environ-
ment (i.e., rulesets). Once the optimal decision tree is built, we
introduce a multibit lookup scheme that generates significantly
lower memory footprint and classification time. This multibit
lookup scheme finds some number of bit positions in the packet
header (i.e., ith & jth bit of SrcIP and/or mth & nth bit of
DstIP) to generate a bitmap and essentially enables to retrieve
a large number of classifier rules in just one memory access.
We called these bits as effective bits (EB). For a decision
tree, these processes stops when all decision tree leaves have
no more than binth (bin threshold) rules, binth controls the
amount of linear searching at the end of the tree search.

For a decision tree, we reduce the size of the tree by
truncating a non-leaf node only if its total number of rules
exceeded above a given group-threshold. We named this
threshold as group-threshold because it groups a number of
internal and leaf nodes together.

In our scheme all the found effective bits are concatenated to
form index of a lookup table. This lookup table is pre-computed
and stored in memory, so for an incoming packet the value
from the effective bit positions is calculated and use that value
as index to search in the lookup table. Doing this, our scheme
filters out the majority of non-related rules and only conduct
costly matching against highly related matching rules.

A. Packet Classification Engine Overview

As shown in Figure 1, a RL system consist of an agent
and an environment, where agent repeatedly interact with the
environment. The environment consists of a set of rules and
a decision tree. Environment provides the current state StεS
which correspond to the current status of the decision tree. The
agent receives this state information and uses a DNN model to
choose an action AtεA, i.e. cut or partition based on a policy.
The state and action space are defined in the environment itself.
A cut action divides a node along a chosen dimension (i.e.,
one of SrcIP, DstIP, SrcPort, DstPort, and Protocol) into a
number of sub-ranges (i.e., 2, 4, 8, 16, or 32 ranges), and
creates that many child nodes in the tree. A partition action
divides the rules of a node into disjoint subsets (e.g., based on
the coverage fraction of a dimension), and creates a new child
node for each subset. Depending on the action taken by the
agent, the environment also provides a reward signal Rt. Here,
the goal of the model is to learn an optimized single policy
π(a | s), where a is the action and s is the given state so that
the cumulative reward after building the tree is maximized.
These steps repeated for next time step (t + 1) and the tree



Fig. 1: Packet classification engine.

build up incrementally. In summary, this decision tree building
process could be casted as RL problem: the environments state
is the current decision tree, an action is either cutting a node or
partitioning a set of rules, and the reward is the classification
time, memory footprint, or a combination of these two. Agent
starts with an initial random policy, evaluates this policy with
several roll-outs and then update the policy from the rewards
of the roll-outs. A roll-out is a sequence of actions that builds
a decision tree. All these actions are driven by a policy and a
reward is received after completion of the tree. This process
continues until the reward matches with the objective value.

B. Decision Tree via Deep Reinforcement Learning

One interesting fact that could be leveraged on is that the
action on a node is entirely depends on the node state itself
not the state of the tree. If the sub-tree rooted at a node
could be optimized, recursively the tree rooted from root
node could be optimized (e.g., the memory access time and
memory footprint of the tree could be optimized). The worst
condition classification time is essentially the height of the
tree considering the matching rule is in the farthest leaf node.
And the memory footprint is directly related to the number of
nodes in the tree.

The reward signal (Rt) accommodate these two requirements
for an action taken to optimize the global objective function
of building a performance and memory optimized tree. In this
problem formulation, the environment is considered as a series
of 1-step decision problems, each step yielding a reward. We
call this secondary award and the actual or primary reward for
these 1-step decisions is calculated upon completion of relevant
sub-tree. Calculation of rewards are done not by summing over
time but aggregating across tree branches. This is shown in
Figure 2.

Considering a root node S0 in Figure 2, based on current
policy, the agent decides to take action a1 to split S0 into S1,
S2. Of these child nodes, only S1 needs to be further split (via
a2), into S3, S4 and S5. S2, S3, S4 and S5 are leaf nodes.
The experiences collected from this roll-out consist of two
independent 1-step roll-outs: (S0, a1) and (S1, a2). The total
reward R for each roll-out would be -3 and -2 respectively. It
is important to mention that there is O(log(n)) delay between
action and reward signal in this approach (where n is the total
number of nodes of the tree).

Fig. 2: Illustration of reward of machine learning.

C. Effective Bit Derivation

Once the optimized decision tree for a given ruleset is built,
we could further improve its performance by incorporating
an idea called concatenated EBs. The process of find the
concatenated EBs is shown in Algorithm 1 where a decision
tree is given as the input. Each node of the tree has its attribute
objects (i.e., number of child nodes, number of total rules,
a special variable called EBSetvalue storing bit positions
pointing that node and its parent node.) All the nodes pointers
are arranged in such a way that a depth-first-search (DFS) could
be performed (line 1-2). Every node of the tree is then traversed
and checked for the selected attributes (line 3-8). Each node
contains ranges of five tuples (i.e. min and max value of each
dimension) covering all its rules. Whenever a cut action is done
to a non-leaf node, the spawned nodes EBSetvalue variable is
updates with corresponding bit positions (line 9). To illustrate
this operations., let’s consider an example. Given a node n,
when we cut it to spawn other nodes, if n’s state are SrcIPMin,
SrcIPMax, DstIPMin, DstIPMax,SrcPortMin, SrcPortMax, Dst-
PortMin, DstPortMax, ProtocolMin, ProtocolMax (e.g., all the
rules n contain, SrcIPMin is the lowest IP among all the source
IP in the ruleset and SrcIPMax is the maximum), spawning to
child nodes could be represented by bit positions as shown in
Figure 3. Source IP is a 32 bit number and following example
illustrate the idea of finding effective bits in more detail. If
a node (S1) with following bound spawned to 4 new nodes
(S2, S3, S4, S5) and all the numbers are 32 bit in length.

(S1)1073741824(SrcIPMin), 2147483648(SrcIPMax)
(S2)1073741824(SrcIPMin), 1342177280(SrcIPMax)
(S3)1342177280(SrcIPMin), 1610612736(SrcIPMax)
(S4)1610612736(SrcIPMin), 1879048192(SrcIPMax)
(S5)1879048192(SrcIPMin), 2147483648(SrcIPMax)

Fig. 3: Illustration of effective bit selection.
This action of spawning 4 different nodes could be rep-



resented by bit positions i and j, where ∀ i, j the following
condition must be true 0 ≤ i, j ≤ 103 as shown in Figure 3. So
EBSetvalue variable of S2, S3, S4,and S5 will be updated
with bit position i, j.

Algorithm 1: The pseudo code to extract each nodes
representational bit positions
input : decision tree
output : decision tree with every non-root node

represented by a set of bit positions s, where
0≤ every member of s ≤ 103 or updated
EBSetvalue variable

// start from root node S0 of the
given decision tree

1 Fetch pointers of all the nodes in the tree ;
2 Arrange the node pointers to do depth first search;
// EBSetvalue is a object for every

nodes containing that nodes
representing bit

3 for all the nodes Si do
4 if Si is non-leaf then
5 Find number of children of Si;
6 Find dimensions to cut;
7 Find range of each dimensions;
8 Find bit positions required to represent current

node’s child nodes;
9 Update each child nodes EBSetvalue with the

bit positions
10 end
11 end

Algorithm 2: The pseudo code to truncate selected nodes
input : decision tree, group-binth(thG)
output : truncated decision tree
// start from root node S0 of the given

decision tree
1 Fetch pointers of all the nodes in the tree ;
2 Arrange the node pointers to do depth first search;
3 for all the nodes Si except root node do
4 if Si is non-leaf then
5 if number of rules in Si ≥ thG then
6 Replace pointer from Si’s parent to Si with

Si’s parent to Si’s childs
7 Delete Si

8 end
9 end

10 end

D. Multibit Trie

After building the memory, time or both optimized decision
tree, we could further reduce the memory and classification
time by introducing multibit tries scheme. In order to give a

clear explanation of this scheme, a ruleset as shown in Table I
with 3 field which is extracted from 5-field ruleset could be
used. The multibit tries scheme is illustrated in Figure 4 and
Figure 5 and subsequent lookup table construction is shown
in Figure 6.

Rules Field 1 Field 2 Field 3
r1 0010 1101 1001
r2 1001 000* 100*
.... ..... ...... ......
r16 1011 010* 101*

TABLE I: An example ruleset of 16 rules with 3 fields

As shown in Figure 4, the decision tree consists of a
root, terminal or leaf and non-terminal nodes. Algorithm 2
describe the actions required to do the proposed multibit tries.
It takes decision-tree and group-binth(thG) as input and output
a truncated version of the decision tree. All the tree nodes
pointers are stored so that they could be traversed in DFS
manner(line 1-2). Every non-leaf binth except root is then
compared with given thG for the number of rules attribute
(line 4-5). In line 6, if the condition is true, the selected node’s
pointer from it’s parent is reconfigured with selected node’s
parent’s to it’s children pointers. After that we delete that node
from the tree (line 7).

Following example illustrates this process. S1 is the root
and S2, S3, S4, S5 are spawned by cutting S1 in any 5 of the
dimensions/ fields or combination of them. For this specific
scenario, this cut could be represented by bit i, j. In Figure 6
it is shown that i is field 2 bit1, and j is field 2 bit2.

In tree’s next level, S2, S3 and S4 are again divided into
new node pairs of (S6, S7), (S8, S9), (S10, S11) respectively.
This individual cuts could be represented by bit k,l & m,
where k is field 1 bit 3, l is field 3 bit 0, m is field 3 bit2.
Multibit tries scheme enables us to concatenate bit i, j, k, l&
m and create a direct relationship between root node S1 and
S6, S7, S8, S9, S10, S11 as shown in Figure 5. One important
thing to mention here is we select to shrink S8 and S11, but
not S12, 13 or S18 because S8 and S11 contains number of
rules more than a given threshold. This threshold is called
group-binth. On the other hand, by binth, we represent the
threshold number of rules that we used to decide a terminal
or leaf node is reached or not. So, introducing group binth
concept enables us to build a tree with less memory footprint
and lower depth. The reason for lower memory footprint is
because we can eliminate intermediate non-terminal nodes in
final tree. This also enables to lessen the tree depth which
essentially enables a smaller number of memory access to
reach of leaf node.

IV. RESULTS

A. Experiment Setup

We used python to build the tree environment, that is the
tree and all the actions. We used Proximal policy optimization
(PPO) [21] along with actor-critic algorithm as described
in [20] was used to generate the optimized trees for the rulesets
presented in the result section.



Fig. 4: Obtained Decision tree

Fig. 5: Multibit tries derivation from decision tree in Figure 4.
Note: the don’t care is omitted in the illustrating tree. For
example, the edge from State S1 to S5 should be ijxxx.

B. Memory Footprint Result

Figure 7 illustrates the memory footprint for different
leaf-binth values for different rulesets. It clearly shows that
the higher binth (leaf-binth) value yields a lower memory
footprint. This is because higher binth value implies that during
construction of a tree, the leaf nodes could be achieved in earlier
state (i.e., with fewer cuts) than for a lower binth value, making
the total number of nodes in the tree smaller.

C. Performance Result

Figure 8 describes the effect of varying group-binth in
classification time (tree depth) for different rulesets. If we
consider to average all the nodes depth (i.e. average tree depth),
we will get results described in figure 9. With the higher group-
binth value, the less number of non-terminal nodes will be

Fig. 6: Methodology of lookup table construction for multibit
trie.
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Fig. 7: Memory footprint (bytes per rule) for different leaf
binth value with group binth equaling to 160.

truncated from the decision tree compared with lower-binth.
For this reason, with increase in group-binth, both the worst
and average case performance decreases (i.e. the generated tree
depth for worst case and average tree depth for average case
increases).

D. Comparisons with Decision Tree

The performance gain and memory footprint with multibit
tries scheme is described in Table II. With leaf-binth =16
and group-binth =40, both in worst and average case,the

Fig. 8: Classification time (tree depth) for varying group binth
value. The leaf binth value is 16.



TABLE II: Performance & memory requirement for Decision Tree and multibit tries decision tree with leaf-binth value=16 &
group-binth value=40

memory footprint (bytes per rule) # of worst case memory accesses # of average case memory accesses
ruleset decision tree multibit decision tree decision tree multibit decision tree decision tree multibit decision tree
acl3 1k 332.55 319.91 9 5 4.52 2.98
acl4 1k 311.93 296.88 11 8 6.81 3.03
acl5 1k 21.13 19.75 9 4 5.43 2.69
acl5 10k 23.204 21.29 18 10 8.03 3.01
ipc1 1k 185.68 178.03 10 7 5.19 3.009
ipc2 1k 182.62 172.008 14 8 6.15 3.34

Fig. 9: Average classification time (average tree depth) for
varying group binth value. The leaf binth value is 16.

classification time, and memory footprint are improved with
our multibit tries scheme. From the table II, should note that
the memory footprint is not significantly lower in multibit tries
scheme. This is due to the fact that in multibit tries scheme,
we essentially truncate some selected non-leaf nodes. Compare
to the size of a leaf node, a non-leaf node has significantly
lower memory requirement as non-leaf node doesn’t have any
rules stored in them and only contain it’s child nodes pointers
and some identification and status variables. All these enables
multibit tries scheme to achieve up to 55% better performance
. This is significant improvement in performance in expense of
pre-computing the group lookup table (as shown in Figure 6).

V. CONCLUSION

In this paper, we present a learning-based packet classifica-
tion algorithm and evaluate its performance for varying ruleset.
By exploiting the sparsity of rulesets, our algorithm uses a
few effective bits to divide a large ruleset into multiple subsets
with low rule replication for a lower memory usage at the
offline stage. These effective bits are first selected by deep
reinforcement learning and then are concatenated based on
group binth. Using these effective bits, our algorithm can filter
out the majority of rules which do not need to be full-matched
to improve the online system performance.

Our multibit tries classification engine outperforms lookup
time both in worst and average case and memory footprint, com-
pared to traditional decision tree without EBs. The performance
gain is due to multibit tries enables the classifier to traverse
the decision tree several level at a time. The memory reduction
is due to multibit tries allows us to truncate some selected
non-leaf nodes in the decision tree. Preliminary evaluation of
small size of ruleset is one limitation of this work. Nevertheless,
we believe that our multibit tries is an important step towards
learning based high-performance packet classification solution.
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