
A Two-Tiered Caching Scheme for Information-Centric Networks

Chiu, Ho Tin; Wang, Min; Mohamed Abdelmoniem Sayed, Ahmed; Bensaou, Brahim

2021 IEEE 22nd International Conference on High Performance Switching and
Routing (HPSR), Paris, France, 7 - 10 June 2021

Accepted Version

10.1109/HPSR52026.2021.9481839

IEEE

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

A Two-tiered Caching Scheme for
Information-Centric Networks

Kelvin H.T. Chiu1, Jason Min Wang1, Ahmed M. Abdelmoniem2,3, and Brahim Bensaou1
1CSE Department, HKUST, Hong Kong

2CS Department, FCI, Assiut University, Egypt 3CEMSE Division, KAUST, Saudi Arabia
{htchiuaa@connect.ust.hk, jasonwangm@cse.ust.hk, ahmed.sayed@kaust.edu.sa, brahim@cse.ust.hk}

A B

C AS1 AS2 Cached Content Chunk
Intra AS Cooperation
Inter AS Cooperation
Inter AS Link

Fig. 1. intra AS vs. inter AS cooperation. Our proposed scheme only requires
intra AS communication, thus fully embracing AS autonomy. No signalling
information needs to pass from AS to AS. Our two-tiered scheme relies on
Ubiquitous-LRU to populate the caches while it reduces redundancy, freeing
up cache spaces that are not needed within the AS, by relying on intra-AS
cooperation.

throughout the AS. In this paper, we design, implement,

and evaluate a cooperative caching scheme on a production-

ready code distribution of ICN, the so-called Community

ICN (CICN) project. Our design embraces AS autonomy by

enabling forwarders in an AS to cooperate on their caches.

Our proposed approach has four notable strengths:

1. It fully embraces AS-autonomy. i) We only assume CCN

to be widely deployed within the AS of interest, but not

throughout the entire Internet. ii) We do not require inter-

AS cooperation, by enforcing the scope of cooperation to

within the AS only, as illustrated in Fig. 1); thus, no cache

signalling information needs to cross AS boundaries.

2. It is backward compatible with basic CCN forwarders that

do not support our scheme which makes it deployment-

ready in real-world scenarios. This is essential because

deployments are usually gradual and CCN forwarders not

running our scheme may co-exist with ones running our

scheme.

3. It strictly follows the CCN design philosophy, by making

no assumption of a particular underlying network layer (i.e.,

it does not rely on TCP/IP). Our scheme is designed such

that all signaling information exchanged among forwarders

is carried in pure, native CCN packets only, which allows

it to work seamlessly with future iterations of CCN and

increase its deploy-ability. For example, one could bypass

TCP/IP to run directly on top of Ethernet or adopt any

new underlying network protocol without affecting the

operations of our scheme.

4. As far as we know, there are no works in literature that

discusses the actual implementation and design decision of

a non-trivial cooperative caching scheme in a production-

ready code base. We make several important design deci-

sions that would otherwise make our scheme impractical

to implement in a real system.

The remainder of this paper is organized as follows, in©

Abstract—In information centric networking (ICN), by default,
forwarder nodes along the paths from content producers to con-
sumers, cache and reuse content chunks ubiquitously, invoking
the Least Recently Used (LRU) replacement policy when needed.
Due to the cache filtering effect, this ubiquitous-LRU strategy is
inefficient: popular contents that are cached a few hops away
from the edge are of little utility. Most alternative proposals
adopt unified on-path schemes that rely on popularity statistics
or other global state information to improve the performance. In
the Internet, it is difficult to imagine different administrative-
entities exposing such information to each other, and so we
argue that such schemes are not realistic; and secondly, a unified
caching scheme across the network ignores the administrative
autonomy, which is one of the tenets of the Internet. In this
paper we argue for a two-tiered caching scheme that maintains
an on-path caching scheme (e.g., Ubiquitous-LRU), yet embraces
AS-autonomy by adding within the AS an off-path cooperative-
caching and redundancy elimination, to make better use of caches
in the edge where they are most valuable. We describe the
implementation of our scheme and highlight the design choices
to make the system practical. Our evaluation results show that
our scheme can reduce cache misses and upstream traffic by up
to 15% compared to the state-of-the-art.

Index Terms—Cooperative Caching, Redundancy Elimination,
Information-Centric Networks (ICN)

I. INTRODUCTION

Information-Centric Networking (e.g., Named-Data Net-

working, NDN and Content-Centric Networking, CCN) [1]

proposes a clean slate redesign of the Internet service model,
by promoting named-data as the first class citizen in the

network. While the controversial ambition of ICN to ultimately

replace the Internet architectural model is not being debated

in this paper, we argue that the independence enjoyed by

individual autonomous systems (AS), which is a cornerstone of

the current Internet, would remain uncontested with or without

ICN. As such we argue that ICN proposals should take this

into account.

By default, CCN forwarders1 cache data ubiquitously, and
use the least-recently-used (LRU) caching as the cache re-

placement strategy when caches are full. This strategy, al-

though simple to implement, leads to highly redundant caches

1In the sequel, we will mostly talk about CCN as we have implemented
our code on the open source Community ICN (CICN) project, however, since

CCN and NDN are very similar and are rooted in the same original design,

our scheme can also be ported easily to NDN.

Section II we describe our system, and the analytic model that

it stems from, then argue in favor of some approximations that

reduce the complexity of our scheme to finally propose the

cooperation algorithm. In Section III, we describe the system

architecture and discuss the details of the main components

of the system. In Section VI we discuss some related works.

Section 7 is dedicated to discussing some experimental results,

then we conclude the paper in Section VII.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. Overview

In our system, the caches of the forwarders are populated

with content chunks via the default on path caching and

replacement scheme (e.g., Ubiquitous-LRU). Then, at the same

time, forwarders inside each AS, within one network hop of

each other, periodically exchange summary information of

their cached content chunks, and node degrees (number of

ingress edges to the node). Given these information, the fol-

lowing two steps occur: 1) redundant content chunks between

two neighbor forwarders are identified; 2) the forwarder with

the higher node degree (e.g., node A of degree 4 in Fig. 1)

holds the redundant chunk, by preventing cache replacement
action of the caching policy, while the lower degree node

(e.g., node B of degree 3 in Fig. 1) evicts (Note: A content

chunk that is being held is never evicted.) the chunk, and

installs a forwarding rule to retrieve it from A. These two steps

are repeated forever periodically, but a lifetime is associated

with each held content chunk which expires when the content

becomes less popular and so it becomes evict-able by the

caching policy. When evicted, the freed cache slot can then

be used to store new content chunks, which is the source of

performance gain. Therefore, we should maximize the number

of evictions across an AS.

B. Model

To expedite the modeling, we extend an existing model

presented in our prior work [2]. Let the network topology of

an AS be a graph G = (V,E). V is the set of forwarders
in the AS. E ⊆ (V × V) is the set of links between a

pair of forwarders. ∀v1, v2 ∈ V, (v1, v2) ∈ E if and only

if v1 and v2 are 1-hop neighbors. Given a content chunk k,

we construct a content graph Gk = (Vk, Ek), illustrated in

Fig. 2(b,c): ∀v ∈ Vk ⊆ V if and only if k is cached in v,

and ∀(v1, v2) ∈ Ek ⊆ E if and only if (v1, v2) ∈ E and

v1, v2 ∈ Vk. The maximization problem is reduced to solving

the well-known Minimum Dominating Set (MDS) problem for

each of the content graphs Gk, that gives a dominator set Dk.

Given a graph G = (V,E), the solution of the MDS problem

is to find a dominator set with minimum size, D ⊆ V , such

that ∀v ∈ V, v ∈ D ∨ (∃u ∈ V, (u, v) ∈ E ∧ u ∈ D) (All

nodes in the graph are either in the dominator set or has a

1-hop neighbor that is in the dominator set, while the size of

the dominator set is minimized.). If a forwarder is a member

of Dk, then it should hold k. Otherwise, it should evict k,

illustrated in Fig. 2(b,c). However, it is practically infeasible

to construct the content graphs for all possible content chunks.

A B

C

D E

(a) (b) (c) (d)

1 2

4

2 3

(e)

Fig. 2. (a) A network topology with 5 forwarders. Cached content chunks are
shown as rectangles and circles. (b,c) Content graph of the square and circle
chunk respectively, where the dominator sets are labeled in black. (d) The
dominator set, labeled in black, for the graph in (a). Redundant content chunks
in the dominator sets are held, and evicted at other forwarders forwarders.
Thus, the circle chunks are not evicted. (e) Result of the adopted hybrid
decision rule. Forwarders are labeled with the node degree. Forwarders C
and E have highest degree among forwarders that cache the square and circle
content chunk respectively.

The problem is simplified by solving only one MDS prob-

lem for the graph G, via the greedy approximation algorithm

which costs O(|V |) in time. Forwarders in the dominator set

should always hold redundant content chunks, while others

should always evict. However, if two forwarders within one

network hop belong to the evict set, the redundant content

chunks among them are not evicted which is illustrated by the

circle chunks in Fig. 2(d).
A hybrid rule between running MDS problem for content

graphs and network graphs is adopted, which is inspired by

the degree heuristic from the greedy approximation algorithm.

Specifically, nodes with higher degree are chosen to join the

dominator set. Thus, as illustrated in Fig. 2(e), the decision

rule should be:

• High-degree forwarders should hold redundant chunks.

• Low-degree forwarders should evict redundant chunks.

C. Distributed Algorithm
The decision rule only applies for two forwarders. To extend

it to the entire AS, the hold and evict operations must be

coordinated. In Fig. 1, forwarders A, B and C all cache the

same content chunk. Degree of B is lower than A, but higher

than C. Under the decision rule, B should evict the chunk for

A while holding it for C. To resolve the conflict, forwarders

with lower degree should evict first. Therefore, C should evict

first and notify B to hold. When B takes its turn to evict, the

content chunk is being held and cannot be evicted.
Forwarders take turns to periodically execute a procedure

evict() to evict redundant content chunks while notify-
ing other forwarders within one network hop with higher
node degrees to hold the content chunks. A round should

finish when all forwarders in the AS have finished executing

evict() once. We design a deadlock-free distributed algo-

rithm to coordinate the execution, such that in the same round,

forwarders with lower degree should execute evict() not
after forwarders with higher degree within one network hop.

The algorithm maintains for each forwarder a sequence
number representing how many times evict() has been

executed. evict() is executed for a forwarder if both of

the following conditions holds for its sequence number:

1. is strictly less than all sequence numbers of other lower

degree forwarders within one network hop away. (All low-

degree forwarders within one hop have finished the current
round of evict())

Algorithm 1 Distributed Algorithm

Input: A Forwarder running this algorithm
1: procedure CHECKEVICT(A)
2: N ← 1-hop neighbor forwarders of A
3: for v ∈ N do
4: if deg(v) < deg(A) ∧ seq(v) ≤ seq(A) then
5: return � Condition 1 is violated
6: else if deg(v) > deg(A) ∧ seq(v) < seq(A) then
7: return � Condition 2 is violated
8: end if
9: end for

10: EVICT(A) � Conditions 1 and 2 are satisfied
11: seq(A) ← seq(A) + 1
12: end procedure
13: for every eviction interval do
14: CHECKEVICT(A)
15: end for

2. is less than or equal to all sequence numbers of other higher

degree forwarders within one network hop away. (All high-

degree forwarders within one network hop have finished the

previous round of evict())

Algorithm 1 illustrates the proposed distributed algorithm

in detail2. The eviction interval determines the frequency of

evicting redundant content chunks in the AS.

III. SYSTEM ARCHITECTURE

The proposed system uses the following main components:

1) A control plane using native CCN packets is built to support

signaling among forwarders which ensures backward compati-

bility with vanilla CCN forwarders; 2) Cache summaries which

are encoded by Bloom filters, with a mechanism to minimize

the effect of time decay of cache encodings. 3) Lifetime for

held content chunks which is set dynamically to filter popular

content chunks. 4) The forwarding logic of CCN which is

modified to redirect requests after eviction.

A. Control Plane

The control plane is built on top of CCN using native CCN

packets for control messages. The control follows the Pull
paradigm of CCN [3] in which a request is sent to obtain a

response with the content3.

CCN interest and data packets contain a payload field, which

is overloaded in control messages to carry the protocol data

of the control plane, which has the following header: i) 4-bit

version field. ii) 4-bit type field that multiplexes at most 16

types of control messages. There are three types of control

messages. For example, The DISC (discover) type (0x00)

performs discovery among forwarders and exchange of short

data such as node degree and sequence number.

The node degree of CCN forwarders is the number of

remote forwarders. But information producers and consumers

are abstracted as faces in CCN, thus it is not possible to

obtain the node degree by counting the number of faces. A

DISC interest is sent to all faces periodically at every discover
interval, to compute the node degree: In CCN, the ingress

face index is associated with each incoming packet. Thus, we

2deg(), seq() returns the degree and sequence number of a forwarder.
3In the terminology of CCN, an interest packet requests for some content

and data packet is returned carrying a chunk of that content.

can maintain a mapping from face index to an entry storing

per-forwarder information. A new entry is created if the face

index does not exist. The node degree is simply the number of

entries in the mapping. A DISC data packet is returned with

the information, when received, the entry in the mapping is

updated. If no DISC data packet is returned for the fifth time,

the entry in the mapping is removed. The packet format of

DISC control message is shown in Fig. 5(a).

In our experiments, the name /ust.hk/co-op is reserved

for control messages and is not used by other CCN packets.

Thus, the control plane processes only packets with this name

on top of CCN. Control messages are not cached and only

forwarded to one hop. Vanilla CCN forwarders are not affected

by control messages because /ust.hk/co-op is not found

in their cache nor forwarding rules. Therefore, our scheme

is backward compatible with legacy systems, allowing AS

operators to partially deploy our scheme, which is considered

a practical advantage.

B. Cache Encodings

When a forwarder executes evict(), it is responsible for:

i) Exchanging cache encodings with higher degree forwarders

within one network hop, since they will be the only ones

to hold the redundant content chunks. ii) Signaling those

forwarders to hold redundant content chunks and evict the

local chunks. iii) Installing special forwarding rules to redirect

future requests for the evicted chunks.

Summary cache [4] demonstrated the efficiency of us-

ing Bloom filters to encode caches while supporting set-

membership queries. In CCN, content chunks are uniquely

represented by their names, thus it is sufficient to encode

content names in Bloom filters. Every time cache encodings

are needed, a new Bloom filter is created from scratch instead

of updating the Bloom filter as the cache changes.

The challenge is that the accuracy of cache encodings

decay with time as the encoded cache changes. To overcome

this, the time between the Bloom filter creation and its use

should be minimized. To this end, a 4-way handshake is

designed to perform signaling and exchange cache encoding

between two forwarders, using two types of control messages,

HOLD-REQ (hold request, type 0x01) and HOLD-ACK (hold

acknowledgement, type 0x02), as illustrated in Fig. 3.4

C. Lifetime of Cache Contents

The held content chunks are given a lifetime, after which

they are amenable by cache replacement. When a content

chunk is first being held, it is given an initial lifetime L0

that allows popular content chunk to accumulate cache hits

before expiration. The lifetime of contents is extended by the

value L1 whenever a content chunk receives a request (on a

cache hit). Longer lifetime is given to popular content chunks.

If the number of cache misses per second is large, then the

cache has failed to serve as many requests as possible. Hence,

4Cache encodings are large and the MTU (Maximum Transmission Unit)
of the underlying network layer is likely to be exceeded. Hence, a reliable
protocol is implemented to deliver the resulting chunks reliably.

A B

Interest Packet (I) Data Packet (D)

i) I: HOLD-REQ

ii.2) D: HOLD-REQ
ii.1) I: HOLD-ACK

iii) D: HOLD-REQ

Bloom Filter

Cache

iii)

Bloom Filter

Cache

ii.2)

do_evict() do_hold()
iv) v)

Fig. 3. Forwarder A initiates cache encoding exchange with forwarder B
using 4-way handshake. i) A starts by sending B a HOLD-REQ interest.
ii) B, after receiving HOLD-REQ interest, encodes the cache using Bloom
filter and sends it to A using HOLD-REQ data packet and then sends A a
HOLD-ACK interest. iii) Similarly, when A receives HOLD-ACK interest, its
cache is encoded and the encoding is sent to B using HOLD-ACK data packet.
iv) When A also receives HOLD-REQ data packets, it has everything from
B, and evicts redundant content chunks, by running do_evict(). v) When
B receives HOLD-ACK data packet from A, it has everything from A, and
holds redundant content chunks, by running do_hold().

L0 is set to be inversely proportional to the number of cache
misses per second which aims at reducing the lifetime of held

contents and speeding up the cache replacements. Let h0 be

the tunable hold initial constant and μ be the moving average

of the cache misses per second, then L0 = h0

μ . Similarly, L1

is inversely proportional to the time between two successive

requests to account for the popularity of the content. Let h1

be the tunable hold extent constant, tprev be the time-stamp

of previous request, and tcurr be the current time-stamp of the

incoming request then L1 = h1

(tcurr−tprev)
.

D. Request Redirection

Special forwarding rules called Redirect Rules are installed

after evicting a content chunk. The Redirect Rule associates

the name of the evicted content chunk to the face index of the

forwarder that holds it. They have precedence over normal

forwarding rules, and are associated with the content lifetime,

such that they would expire when the corresponding chunk

expires. Moreover, the number of cache misses per second is

exchanged among forwarders using DISC control messages.

False Redirection refers to the event when an interest is

redirected to a forwarder that does not cache the content chunk,

yet it is identified as redundant because of Bloom filters’ false
positives. Redirected interest should not be forwarded again,

since it could end up at another forwarder that does not cache

the content chunk, resulting in forwarding loops, and False

redirection errors could accumulate. A timer is maintained for

each pending redirected interest to resend the interest without

using Redirected Rules and redirected interests are dropped on

cache misses. Since requests are redirected only to forwarders

within one network hop, and not forwarded further, request

redirection must provide a shorter path than retrieving the

content chunk from the origin server.

When content chunks return from request redirection, they

should not be cached to avoid the problem of cache redun-

dancy. A flag bit is added to both the interest and data packets,

and the modified forwarding logic is illustrated in Fig. 4.

IV. IMPLEMENTATION DETAILS

A. Configuration of Bloom Filter Parameters

A Bloom filter is a m-bit bit vector associated with k
independent hash functions. Suppose n names have been

added, then the false positive probability p is given by p =

Interest Packet

RDCT-RTNRDCT

Cache

Data Packet
Continue CCN

Packet Processing

Return Data Packet
RDCT-RTN:=RDCT

Drop

Add to Cache

RDCT-RTN:=0

Forward Packet
Downstream

10
Miss

Hit

1
0

Fig. 4. Modified CCN packet processing logic. RDCT-RTN (redirect return)
is introduced to data packets. It is 0 except the data packet is returned from
request redirection. If it is 1, then the data packet is not cached. RDCT
(redirect) is introduced to interest packets to indicate request redirection. It is
1 if the interest packet is forwarded using Redirect Rules. The data packet is
returned with RDCT-RTN set to the value of RDCT set in the interest packet.

Interest Packet Payload

Data Packet Payload Seq. Num.

32 bits

Chunk Number

16 bits

Seq. Num. Chunk Number

m k Bit Vector

32 bits 16 bits m bits

ChunkBloom Filter Packet

Transport
Layer
Payload
1400 bits

0x01 0x01 OR 0x02

0x01 0x01 OR 0x02

Version Type
4 bits 4 bits

Transport Layer Header

(a)

(b)

(c)

Interest Packet Payload

Version Type

Data Packet Payload

4 bits 4 bits

Degree

16 bits

Seq. Num.

32 bits

Cache Misses / Second

32 bits

Cache Size

32 bits0x01 0x00

0x01 0x00

Fig. 5. (a) Packet format of DISC control message (type 0x00). (b) Packet
format of HOLD-REQ (type 0x01) and HOLD-ACK (type 0x02) control
messages. (c) Packet format to transfer a large Bloom filter over the network,
split into chunks that are carried by the reliable transport layer.

(1− [1− 1/m]kn)k. n is equal to the cache size since Bloom

filters are used to encode caches. According to [4], the optimal

number of hash functions k∗ that minimizes p provided m
and n is given by k∗ = (m ln 2)/n. Double hashing [5]

can construct k hash functions from 2 hash functions, while

keeping the same assymptotic p: All forwarders share the

same family of hash functions, hi(x) = (g1(x) + ig2(x))
mod m, i ∈ {1, 2, ...}. g1 and g2 are the most and least

significant 16 bits of the well-known 32-bit Fowler-Noll-Vo

hash function. Thus it is sufficient to transfer the value of m,

k, and the bit vector over the network as shown in Fig. 5(c).

The content is typically split into chunks that can fit into

a single packet as it is more communication efficient to fill a

packet entirely. For example, the size of Ethernet packets is

1500 bytes. Assuming all headers including CCN and transport

layer take at most 100 bytes, then 1400 bytes are usable as the

payload in the transport layer. A packet is used for every 500

content chunks in the cache5. For a cache with 500 chunks,

m = (1400 − 6) ∗ 8 = 11152 bits, after subtracting 6-byte

header for m and k in Fig. 5(c). k∗ = 15, p = 2.23× 10−5.

Complexity Analysis. The forwarder needs to exchange

Bloom filter between each one-hop neighbor forwardering,

thus the message complexity is linear in the node degree. For

each 500 cache slots, an extra packet is used to carry the

Bloom filter. Thus, the message complexity is also stepwise-

linear in the cache size.

B. Transport Layer

To achieve reliability, a transport layer is implemented on

top of HOLD-REQ and HOLD-ACK control messages. The

messages carry cache encodings and supports chunking to

5The transport layer needs to know how many Bloom filter chunks to
request. This is obtained by first having forwarders exchange cache sizes
using DISC control messages, then divide the cache size by 500.

perform reliable transfer similar to selective repeat and timeout

report after the fifth retry.

Suppose forwarder A requests cache encoding from for-

warder B by sending one interest for each chunk to B, with

a transport layer header comprising: i) 16-bit chunk number.

ii) 32-bit sequence number, used to invalidate stale interests

since A periodically requests cache encoding from B. The

sequence number is increased by one when A receives all
chunks from B successfully. A timer is associated with each

pending interest, when it elapses before data returns, the

interest is retransmitted. After the fifth retransmission, timeout
is reported to the 4-way handshake and the transfer is aborted.

The last received sequence number is recorded at B. When an

interest with greater sequence number is received, B creates a

new cache encoding and interests with out-of-order sequence

numbers are discarded. Otherwise, B returns the requested

chunk of cache encoding. The packet format of HOLD-REQ
and HOLD-ACK control messages are shown in Fig. 5(b).

V. EVALUATION

Our scheme is implemented on a real-world production-

ready code distribution, the CICN’s Metis forwarder [3].

A. Experimental Settings

Fig. 6 shows the network topology, expanded from the

router-level stub AS topology from [6]. A Metis forwarder

instance is deployed to each router, represented by a virtu-

alized container in a data center. As such we can build any

topology within a data center by using tc tool for controlling

the traffic. Thus, we can emulate and run on a real network

with the real code of Metis instead of using an event driven

simulation. Note that, in the experiments, caching is disabled

at the ISP routers.

San Jose

North Carolina

Content Server

B Backbone Router

G ISP Gateway Router

Access Router

ISP Router

Transit Link

Z

X Y

ISP

D

B B

G G Group D

C

B B

GGroup C

B B
G

B

Group B

B

B
GA

Group A Amsterdam

Fig. 6. Expanded stub AS topology used in evaluation, consisting three geo-
graphical regions and four groups connected by one ISP, whose connectivity
is emulated by using five connected routers. Using tc, round-trip latencies
in the ISP are set to the following: San Jose – North Carolina: 50 ms; North
Carolina – Amsterdam: 100 ms; San Jose – Amsterdam: 150 ms.

Content servers and clients are placed across the topology

to generate the CCN traffic. Each server serves content with a

distinct prefix. To resemble content generated within the AS, a

server is placed at an access router of each group. To maintain

content from external origins, multiple servers are placed at

ISP routers. At the remaining access routers (2 in Group A,

4 in Group B, 5 in Group C and 2 in Group D), an internal
client is placed, requesting for content available internally and

externally. To generate requests coming from external sources,

an external client is placed at one of the ISP router, requesting

content generated within the AS only.

There are three types of traffic for internal clients: i) Local

traffic: Traffic served within the same group. ii) Internal traffic:

Traffic crossing groups but within the AS. iii) External traffic:

Traffic crossing the AS boundaries. Each client generates in

total one million interests, requesting for content that are

equally split among servers according to the traffic patterns,

which are combinations of the three types of traffic below:

Traffic Pattern Local Traffic Internal Traffic External Traffic
Mostly Local 50% 25% 25%
Mostly Internal 25% 50% 25%
Mostly External 15% 10% 75%

Thus, a total of 14 million interests are generated. Each

client receives one million chunks, assuming one chunk per

content. Interest generation follows Poisson process with mean

rate λ = 500 interests per second. Forwarding rules are

manually inserted to Metis forwarders using the equal-cost

multi-path routing strategy. A random face is chosen uniformly

if more than one face is available.

The Zipf–Mandelbrot distribution is used for the per-

chunk popularity distribution which has the following p.m.f.:

f(k;N, q, s) = 1/(k+q)s
∑N

j=1 1/(j+q)s
, where N is the number of

unique objects in the content universe, s is the skewness
parameter, while the popularity of the first q content chunks

are largely similar. For each server, requests are generated by

the algorithm described in ProwGen [7], where the fraction

of unique content chunk is 0.3, and the fraction of one-
timers is 0.7 as recommended. Each client requests in total

1, 000, 000 × 0.3 = 300, 000 unique content chunks, where

300, 000× 0.7 = 210, 000 chunks are requested only once.

B. Experimental Results

Default Parameters Value Default Parameters Value
Cache Size (No. of Entries) 1500 Eviction Interval (ms) 1500
Zipf–Mandelbrot Skewness 0.9 Zipf–Mandelbrot q 0
Hold Initial Constant h0 2000 Hold Extend Constant h1 100

Default parameters are shown in the table above. Each

setting is run for 5 times with different random seeds to

obtain 95% confidence interval for the metrics. Performance is

compared with ubiquitous–LRU, since it is the only available

caching strategy implemented in Metis.

Fig. 7(a,b) shows the performance compared to ubiquitous–

LRU. We achieve up to 15% reduction of server load, quanti-

fied by the number of interests that reach the content servers.

As a result, we achieve up to 15% reduction of traffic volume

in transit links, regardless of cache sizes and skewness in the

Zipf–Mandelbrot distribution. In general, we perform better
when: i) Cache sizes are large. ii) The content popularity

distribution is more skewed (higher skewness and lower q).

This is because with larger cache sizes, or more skewed

Zipf–Mandelbrot distributions, the cache can absorb a greater

amount of popular content, and precisely hold the content

chunks that are actually more popular.

Fig. 7(c) shows the traffic overhead, which is the propor-

tion of traffic volume of control messages compared to the

Fig. 7. Performance and overhead of our proposed scheme. (a) Reduction
of server load compared to ubiquitous–LRU (the higher the better) . (b)
Reduction of transit link traffic compared to ubiquitous–LRU (the higher the
better) (c) Traffic overhead incurred by control messages. (d) Ratio of False
Redirection compared with the total number of interests redirected.

total traffic volume, is less than 3%. This does not include

additional traffic resulting from False redirection. There is

a linear increase of traffic overhead with respect to cache

size, due to the number of packets used to carry cache

encoding scaling linearly with cache sizes. The number of

False Redirects (Fig. 7(d)) are insignificant (i.e., less than

0.35% of total interests redirected). These results show the

benefits of employing the 4-way handshake and configuration

of Bloom filter parameters in the system design.

VI. RELATED WORK

Caching is arguably the area that has received the most

attention from the CCN community. In [8], the PCP caching

scheme is proposed to avoid caching unpopular data (espe-

cially the predominant one-timers) at access routers and bring

popular data to end users in a progressive way. Extending

the concept of centrality, [9] introduces content popularity

and cache placement to betweenness and closeness centrality,

and proposed a caching scheme that aims at increasing such

centralities. A lightweight method to approximate betweenness

centrality without global topology knowledge is proposed in

[10]. It is used to cache data at node(s) along the request-

return path with highest centrality. In [11], attenuated Bloom

filters are used to retrieve content cached at multiple hops

away and eliminate redundant content at one hop away, where

the cache is split into two partitions to ensure availability

for retrieval. Taking advantage of in-network caching, [12]

describes proactive caching under mobility using entropy as

an indicator to place content while limiting redundancy. Object

caching is introduced in [13], that aims at caching a sequence

of continuous chunks from the start of an object. In [14] an

analysis of looped replacement is conducted, where requests

to chunks of an object results in cache misses despite the

cache containing part of the object. The article also evalu-

ated different cache admission policies which would suppress

looped replacement. Using consistent hashing, forwarders in

[15] are only responsible for caching disjoint subsets of

content. Caching is modeled as the ski-rental problem, and

a random online algorithm is proposed. [16] proposed an

efficient Convolution Neural Network (CNN) based cache

manager. [17] modeled the Pending Interest Table (PIT) which

plays integral part in the dynamics of the cache and [18]

proposed a congestion controller for the PIT to regulate the

traffic incoming to the cache. In [19], NDN is applied to the

area of content delivery networks (CDN) and a CDN that is

built on top of NDN is proposed.

VII. CONCLUSIONS

In this paper, we present the design and implementation

of a two-tiered (on- and off-path) caching scheme for CCN.

The on-path caching simply relies on ubiquitous-LRU for

its simplicity whereas the off-path tier deploys cooperative

redundancy elimination and caching to increase the utility of

the caches. We discuss several design choices and present

control protocols to make it possible to deploy the scheme

in a real CCN network. Our protocols do not rely on TCP/IP

and adopt CCN itself for communication. We extended the

Metis forwarder of the CICN project with these protocol and

experimented with it in a data center where we emulated a stub

AS network topology. The results show considerable improve-

ments compared to the ubiquitous-LRU on many performance

metrics. Porting the scheme to the faster VPP implementation

of CCN is part of our future work plan.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton et al., “Networking Named
Content,” in ACM CoNEXT, 2009.

[2] J. M. Wang, J. Zhang, and B. Bensaou, “Intra-AS Cooperative Caching
for Content-Centric Networks,” in ACM ICN, 2013.

[3] The Linux Foundation. (2021) Fast Data project (fd.io) Community
ICN (CICN). [Online]. Available: https://wiki.fd.io/view/Cicn

[4] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: a scalable
wide-area Web cache sharing protocol,” IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281–293, 2000.

[5] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” Random Structures & Algorithms,
vol. 33, no. 2, pp. 187–218, 2008.

[6] P. Mérindol, V. Van den Schrieck et al., “Quantifying Ases Multicon-
nectivity Using Multicast Information,” in ACM IMC, 2009.

[7] M. Busari and C. Williamson, “ProWGen: a synthetic workload gen-
eration tool for simulation evaluation of web proxy caches,” Computer
Networks, vol. 38, no. 6, pp. 779–794, 2002.

[8] J. M. Wang and B. Bensaou, “Progressive caching in CCN,” in IEEE
GLOBECOM, 2012.

[9] J. A. Khan et al., “NICE: Network-Oriented Information-Centric Cen-
trality for Efficiency in Cache Management,” in ACM ICN, 2018.

[10] J. Pfender et al., “Easy as ABC: A Lightweight Centrality-Based
Caching Strategy for Information-Centric IoT,” in ACM ICN, 2019.

[11] T. Mick et al., “MuNCC: Multi-Hop Neighborhood Collaborative
Caching in Information Centric Networks,” in ACM ICN, 2016.

[12] N. Abani et al., “Proactive Caching with Mobility Prediction under
Uncertainty in Information-Centric Networks,” in ACM ICN, 2017.

[13] Y. Thomas, G. Xylomenos, C. Tsilopoulos et al., “Object-Oriented
Packet Caching for ICN,” in ACM ICN, 2015.

[14] Y. Yamamoto et al., “Analysis on Caching Large Content for Information
Centric Networking,” in ACM ICN, 2018.

[15] K. Thar et al., “Online Caching and Cooperative Forwarding in Infor-
mation Centric Networking,” IEEE Access, vol. 6, pp. 59 679–59 694,
2018.

[16] K. H. Chiu, J. Zhang, and B. Bensaou, “Cache Management in
Information-Centric Networks using Convolutional Neural Network,” in
IEEE GLOBECOM, 2020.

[17] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “A Markov Model
of CCN Pending Interest Table Occupancy with Interest Timeout and
Retries,” in IEEE ICC, 2016.

[18] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “Leveraging the
Pending Interest Table Occupancy for Congestion Control in CCN,” in
IEEE LCN, 2016.

[19] C. Ghasemi et al., “ICDN: An NDN-Based CDN,” in ACM ICN, 2020.

