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Abstract—In this work, we investigate an online service man-
agement problem in vehicular edge computing networks. To
satisfy the varying service demands of mobile vehicles, a service
management framework is required to make decisions on the
service lifecycle to maintain good network performance. We
describe the service lifecycle consists of creating an instance of
a given service (scale-out), moving an instance to a different
edge node (migration), and/or termination of an underutilized
instance (scale-in). In this paper, we propose an efficient online
algorithm to perform service management in each time slot,
where performance quality in the current time slot, the service
demand in future time slots, and the minimal observed delay
by vehicles and the minimal migration delay are considered
while making the decisions on service lifecycle. Here, the future
service demand is computed from a gated recurrent unit (GRU)-
based prediction model, and the network performance quality
is estimated using a deep reinforcement learning (DRL) model
which has the ability to interact with the vehicular environment in
real-time. The choice of optimal edge location to deploy a service
instance at different times is based on our proposed optimization
formulations. Simulation experiments using real-world vehicle
trajectories are carried out to evaluate the performance of our
proposed demand-prediction based online service management
(DOSM) framework against different state-of-the-art solutions
using several performance metrics.

Index Terms—Service Management, Migration, Instantiation,
Demand Prediction, Edge Computing, Vehicular Networks

I. INTRODUCTION

Vehicular edge computing networks are becoming popular
in recent years [1]. Vehicular applications are categorized
under the 5G ultra-reliable and low latency communication
(URLLC) slice which require vehicles to be connected in
real-time with the infrastructure to get assistance in different
low-latency driving tasks. Edge computing is known to assure
faster service availability by bringing computing resources in
close proximity to vehicles. Nonetheless, providing a seamless
connection to highly mobile vehicles while maintaining low-
latency service availability requires efficient service manage-
ment which dynamically relocates the services in real-time as
vehicles move across the service region. This paper focuses on
the aspects of online service management in an edge-enabled
vehicular environment.

Several relocation techniques have been proposed in the
literature but most of the existing approaches are reactive and
suitable for delay-tolerant vehicular applications and not very
effective when vehicles need to perform delay-sensitive tasks.
To achieve delay-efficient network performances, the research

propose to maintain collaborative service relocation/migration
within edge nodes [2], [3]. The existing service migration
techniques use different performance parameters including,
delay [4], energy consumption [5], [6], signalling cost [7] and
so on. Mada et al. [8] propose service migration scheme across
centralized cloud and edge cloud, and to cope with the varying
mobility patterns, this work proposes to always reoptimize
migration decision during each time slot without any prior
knowledge on the need for service migration. Recent studies
have considered proactive approaches as a better solution [6]
where prediction of different user/network parameters (like
distance prediction [9], probabilistic mobility prediction [10]
cost prediction [11], and so on) is carried out before making
migration decisions. Some of this existing work is in the
context of cloud computing which cannot be applied for edge-
enabled networks [11], [12].

With that, most of the current works are reactive with
different performance requirements, and existing studies on
proactive approaches either use probabilistic structures or the
choice of prediction parameter is different from the one con-
sidered in our framework. Not only this, in our work other than
migration, two new actions i.e. deletion/termination (scale-in)
or instantiation of an instance (scale-out) on the same egde
node are considered while performing service management.
Here, scale-in helps to free up underutilized edge resources
and the scale-out tries to enhance the network performance by
instantiating a brand-new service instance on the same edge
before deciding to transfer an existing instance to avoid the
disruption. Moreover, our design aims to work in an online
manner for seamless provisioning of services to the vehicles.

In this paper, we propose demand-prediction based online
service management (DOSM) framework that works in con-
junction with varying service demands with the aim of reduc-
ing service delay and migration delay while performing service
lifecycle decisions (i.e. migrate, scale-in or scale-out). The key
aspects of our design framework are: 1) demand prediction:
We use a light-weight and time-efficient gated recurrent unit
(GRU)-based neural network to predict the service demand
and estimate the future utilization of service resources. 2)
decision making network: This takes the estimated future load
and current network performance to make a decision on the
service lifecycle. 3) Deep reinforcement learning (DRL) agent:
Here, we incorporate DRL into our framework to take account
of real-time network performance and possible impacts of
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vehicle mobility. We exploit the actor-critic framework where
the actor uses optimization mathematics to calculate optimal
edge location for migration/deletion/instantiation of service
instance and critic to estimate the network performance quality
in terms of the observed service delay. To demonstrate the
effectiveness of our proposed framework, we carry out sim-
ulation experiments with real-world vehicle trajectories and
realistic network constraints.

II. SYSTEM MODEL

In this work, we consider a vehicular edge computing
network with 5G coverage. It consists of a set 𝐸 of edge nodes,
each co-located with evolved nodeB (eNB), and a set 𝑆 of
services that need to be placed/deployed at edge nodes. Each
edge node 𝑒𝜖𝐸 has its memory storage 𝜙𝑚𝑎𝑥𝑒 and computation
capacities 𝑓𝑒 (𝐻𝑧) to describe CPU frequency that edge node
can allocate, and each instance of service 𝑠𝜖𝑆 has its input data
size 𝐷𝑖 (𝑏𝑖𝑡𝑠), the computation intensity 𝐶𝑠 (𝑐𝑦𝑐𝑙𝑒𝑠/𝑏𝑖𝑡), the
storage requirement 𝜙𝑠 (𝑏𝑦𝑡𝑒𝑠) and maximum allowed delay
𝑇 𝑡ℎ𝑠 (𝑠𝑒𝑐). We have a set 𝑉 of vehicles that move frequently and
request low-latency services to accomplish different vehicular
tasks. The total number of vehicles requesting for services 𝑠

from edge 𝑒 is indicated as service demand 𝑉 𝑠𝑒 . Using 5G
network connections, the vehicles associate with the nearest
edge node and get access to the requested service.

Fig. 1: The System Model

A service/application is a facility like collision risk, in-
tersection safety, platoon, and so on (defined by European
Telecommunications Standards Institute (ETSI)), and each
service instance is a virtual machine (VM) image. To maintain
delay-efficient service availability, the placement and reloca-
tion of service instances must be handled as per the vehicle’s
movement in an online manner. Therefore, each service has
a lifecycle controlled by our proposed DOSM framework
which resides over the edge management platform, according
to ETSI architecture framework [13]. Our DOSM framework
benefits from the use of two-layer architecture for running
services/applications [14], [15], as shown in Fig. 1. It consists
of the base layer (BL) that includes the operating system, the
system kernel, and so on, and the instance layer (IL) containing
the application-specific data and its running state. The layered
VM images in our DOSM framework enable fast relocation of
services where only IL is relocated/placed and the transfer of

common BL is avoided for which we assume all edge nodes
share a copy of it.

Without loss of generality, we assume a time-slotted sys-
tem structure corresponding to 𝑡 = 1, 2, ....T where our
DOSM framework performs periodic checks to monitor the
current availability of services to the vehicles and ensures that
placement of services is adaptive to traffic variations. One
slot lasts for 𝜏 seconds. At each time unit 𝑡, the network
collects the requests generated for each service type within
the coverage of all edge nodes and determines the network
performance for the current time unit. Next, by intelligently
making the prediction of traffic for the next time unit, the
service management framework will decide on one of the
below-given decisions prior to the traffic starting to avail
that service. The prediction of traffic is important here to
keep up with the IoV environment where the services belong
to the URLLC slice and the sub-second reaction times are
needed. Overall, the service lifecycle decision set consists of
the following:

• MIGRATE: This involves moving a service instance layer
from one edge node to another edge node.

• SCALE-IN: This involves deletion of a service instance
layer from an edge node where it is underutilized

• SCALE-OUT: This involves the instantiation of another
instance of the same service type on the same edge node
where the demand is high.

• NO-CHANGE: This indicates no change in service de-
ployment is needed within the network.

III. DEMAND-PREDICTION BASED ONLINE SERVICE
MANAGEMENT (DOSM) FRAMEWORK

Fig. 2: The Architecture of DOSM Framework

We depict the architecture of our proposed DOSM frame-
work in Fig. 2. The key concept of the DOSM framework is to
work in an online manner. For every 𝜏 seconds, the network
performs checks and collects the service requests from the
environment. Our environment consists of a real traffic of taxis
in the city of San Francisco [16] where vehicles are moving
and associating with the nearest edge node and generating a
continuous set of requests which require real-time analysis and
has different requirements on service quality in terms of delay.



Our DOSM framework has two major components- decision-
making network and a DRL agent.

A. Decision Making Network

This part of the network makes a predictive decision (i.e.
four decisions discussed in Section II) that needs to be
performed over the service’s lifecycle. We use GRU, a variant
of recurrent neural network, because of its ability to store
states over time and learn temporal information to predict
future demand data. The choice of GRU is also because of
its computational efficiency and low memory overhead which
makes it lightweight and time-efficient in predicting data. The
key idea of the predictive decision is to look into service
demand (i.e. the number of vehicles requesting service 𝑠 from
different edge nodes) ahead of the time frame and then take the
decision accordingly. The predictive decision is repeated every
time frame T where each time frame consists of 𝑛×𝜏 time slots.
Each time frame corresponds to a batch of service requests
(input values) received in it. We pre-process the collected
service request data using Z-score standardization, to scale it
into a definite range and prevent training data from diverging.
Next, for a given batch size, a set of future service demands 𝑉 𝑠𝑒
is predicted which will help to compute the percent utilization
U𝑠 of service resources. The U𝑠 is calculated as,

U𝑠 (%) = 𝑉 𝑠𝑒

𝐼𝑠C
× 100,∀𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 (1)

Here, 𝐼𝑠 is the total number of instances deployed for service
𝑠, and C is the total number of vehicles each instance can
handle or provide parallel connections. In this paper, we use
a batch size of 150 which predicts a set of 15 (i.e. 10% of
150) values for the next 15 time slots (i.e. T = 15 × 𝜏) with
good accuracy. After each time frame T, we roll it by one
frame, update the batch data by including a new set of service
requests received and make a new set of predictions. This
process runs repeatedly in a continual manner intending to
extend the acquired stream of knowledge.

Once we have a set of predictions, the entire decision pro-
cess becomes simple which is summarized in Fig. 2. The net-
work runs continuously and performs data acquisition from an
environment to sample a batch of input data. The collected data
is pre-processed and used as an input of GRU model to predict
a set of future service demands. The next step is to make use
of a trained critic network (from the DRL agent, explained in
Section III-B) and calculate the network performance in terms
of 𝑄𝑣𝑎𝑙𝑢𝑒. In case of poor network quality and high service
utilization (i.e. > 90%), the instantiation of a new service
instance is needed (with DECISION=SCALE_OUT). On the
contrary, if service utilization is not very high (i.e. < 90%),
the service migration is needed over the new optimal edge
location (with DECISION=MIGRATE) to enhance network
performance. On the other hand, if the network quality is good
and service utilization is low (i.e. < 30%), the underutilized
instance can be deleted if more than 1 instance exists for that
service type (with DECISION=SCALE_IN). If the service
utilization is more than 30% with good 𝑄𝑣𝑎𝑙𝑢𝑒 then the

network will continue with the same deployments, and no
change is needed. Note that the decision is further sent to
the policy network of the DRL agent to decide on an optimal
edge node location where migration/deletion/instantiation of a
service instance is performed.

B. DRL Agent

Driven by the time-varying nature of vehicular networks,
it is imperative that the real-time environment be taken into
account while performing service management. We choose
to integrate DRL in our framework to address the changing
network conditions in terms of performance quality and use
it to make effective service management decisions through
time. The DRL consists of an agent and environment where
the agent interacts with the environment to observe state 𝛿𝑡 ,
take an action 𝔞, and finally, in response, a feedback F is
received which helps to make future decisions such that good
network performance is maintained. Here, network state 𝛿𝑡 at
time unit 𝑡 corresponds to the vehicle identification, requested
service type, and the vehicle location. We exploit the actor-
critic architecture of DRL which contains policy network and
value network.

1) Policy Network: In our design, the policy network takes
the output of the decision making network as input to generate
an action that determines where (i.e. location of optimal edge
node) to migrate/instantiate/delete a service instance based on
the current network state. We use integer linear programming
(ILP) formulation to determine the optimal edge location. We
start with the initial placement of services and define it as
𝑥𝑠𝑒 that are used at the beginning of the network as zero𝑡ℎ

time (𝑡 = 0) configurations. Here, 𝑥𝑠𝑒 is 1 if edge node 𝑒

hosts service 𝑠; otherwise, it is 0. Given a set of services
and 𝐼𝑠 number of service instances for each service type with
their computation and delay requirements, the 𝑥𝑠𝑒 finds the
optimal choice of edge servers to place the service instances
at the beginning of the network. The calculation of 𝑥𝑠𝑒 is done
from our previous work in [17] that finds the optimal edge
servers for the initial placement of services with the objective
of minimizing the maximum edge resource usage and service
delay.

Using 𝑥𝑠𝑒 as input, we aim to minimize the service delay
𝑇𝑠 and migration delay 𝑇𝑚 while calculating the new optimal
edge locations based on the decision we have from decision
making network.

Definition 1 (Service Delay (𝑇𝑠)): Service delay is the delay
observed by vehicles while accessing service 𝑠 from edge node
𝑒 and it includes propagation delay, transmission delay, and
computation delay (i.e. 𝑇𝑠 = 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑐𝑜𝑚𝑝). As a
rule of thumb, the propagation delay 𝑇𝑝𝑟𝑜𝑝 is the ratio of the
distance between vehicles and edge nodes where the instance
of service 𝑠 is deployed, and the propagation speed over the
medium. Whereas, the transmission delay 𝑇𝑡𝑟𝑎𝑛𝑠 is the ratio
between the input data size (of service request packet) and the
transmission rate.

𝑇𝑡𝑟𝑎𝑛𝑠 =
𝐷𝑖

𝑅𝑥 (𝑣, 𝑒)
(2)



The transmission rate between vehicle 𝑣 and edge node 𝑒

where service 𝑠 is deployed is,

𝑅𝑥 (𝑣, 𝑒) = 𝑊 log2

(
1 + 𝑑𝑖𝑠𝑡 (𝑣, 𝑒)−2𝑃

𝑁𝑜

)
(3)

Here, 𝑊 , 𝑃, and 𝑁𝑜 are the channel bandwidth, transmission
power, and noise power, respectively. The computation delay
𝑇𝑐𝑜𝑚𝑝 over edge node 𝑒 to process the service 𝑠 request is:

𝑇𝑐𝑜𝑚𝑝 =
𝐷𝑖𝐶𝑠

𝑓𝑒
(4)

Definition 2 (Migration Delay (𝑇𝑚)): In our model, it is the
transmission delay observed while migrating an instance of
service from one edge node to another edge node.

𝑇𝑚 =
𝜙𝑚

𝑅𝑥 (𝑒𝑖 , 𝑒 𝑗 )
(5)

Here, 𝜙𝑚 is the total size of VM data that need to be migrated
which is equal to the sum of instance layer size (𝜙𝑠) and user
context (𝜙𝑣 ×𝑉 𝑠𝑒 )(𝜙𝑣 is the storage requirement of each user)
and 𝑅𝑥 (𝑒𝑖 , 𝑒 𝑗 ) is the capacity of a typical wired WAN (wide
area network) connectivity between edge nodes.

Finally, based on the possible decision (discussed in
Section II) that can be sent to the actor of the policy network,
the optimization formulation is divided into three solvable
sub-problems.

MIGRATE Decision: In this problem, an instance of
service 𝑠 needs to be migrated to another edge node with the
objective of minimal service delay and minimal migration
delay. We use binary variable 𝑧𝑠𝑒 to define the new optimal
edge location and binary variable 𝑘𝑠𝑒𝑖 ,𝑒 to define the optimal
migration link between edge node 𝑒𝑖 and edge node 𝑒. We
mathematically formulate our objective function as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑒𝑖 ,𝑒

𝑇𝑠𝑧
𝑠
𝑒 + 𝑇𝑚𝑘

𝑠
𝑒𝑖 ,𝑒

(6)

subject to,

𝑧𝑠𝑒𝑇𝑠 ≤ 𝑇 𝑡ℎ𝑠 ,∀𝑒 ∈ 𝐸 (7)

𝑧𝑠𝑒 (𝜙𝑒 + 𝜙𝑚) ≤ 𝜙𝑚𝑎𝑥𝑒 ,∀𝑒 ∈ 𝐸 (8)

𝑘𝑠𝑒𝑖 ,𝑒𝑇𝑚 ≤ 𝜏,∀𝑒𝑖 , 𝑒 ∈ 𝐸 (9)

𝑧𝑠𝑒 + 𝑘𝑠𝑒𝑖 ,𝑒 = 2,∀𝑒𝑖 , 𝑒 ∈ 𝐸 (10)∑︁
𝑒∈𝐸

𝑘𝑠𝑒𝑖 ,𝑒 = 1,∀𝑒𝑖 ∈ 𝐸 (11)∑︁
𝑒∈𝐸

|𝑧𝑠𝑒 − 𝑥𝑠𝑒 | ≤ 2 (12)∑︁
𝑒∈𝐸

𝑧𝑠𝑒 = 𝐼𝑠 (13)

𝑘𝑠𝑒𝑖 ,𝑒, 𝑧
𝑠
𝑒 ∈ {0, 1}; 𝑠 ∈ 𝑆,∀𝑒, 𝑒𝑖 ∈ 𝐸 (14)

Constraint (7) ensures that the total service delay experienced
by vehicles along different edge nodes is less than the given
threshold. Constraint (8) limits the storage load over the edge

node by the maximum storage capacity of that edge node
while migrating new instance on it. Here, 𝜙𝑒 represents the
pre-occupied resources of an edge node. Constraint (9) limits
the migration delay to be less than one time slot. Constraint
(10) ensures that an instance is migrated to edge node 𝑒 𝑗
only if a low migration delay link exists to that edge node.
Constraint (11) guarantees each edge node has a unique low
delay link to another edge node. Constraint (12) ensures that
an instance is migrated from one edge node to another edge
node only if placement decision of 𝑥𝑠𝑒 (old placement) is
different from 𝑧𝑠𝑒 (new placement) for service 𝑠. Constraint
(13) guarantees that total 𝐼𝑠 number of instances must be
placed along different edge nodes. Finally, (14) defines the
𝑧𝑠𝑒 and 𝑘𝑠𝑒𝑖 ,𝑒 as a binary integer decision variable.

SCALE_OUT Decision: In this problem, the instantiation of
a new instance of same service type takes place at one of the
optimal edge locations where instance of service 𝑠 is already
placed. The objective is to minimize the service delay while
choosing the optimal edge location, and formulated as,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑒

𝑇𝑠𝑧
𝑠
𝑒 (15)

subject to, (7), (8), (14) and∑︁
𝑒∈𝐸

𝑧𝑠𝑒 = 𝐼𝑠 + 1 (16)

𝑧𝑠𝑒 ≤ 2𝑥𝑠𝑒,∀𝑒 ∈ 𝐸 (17)

Constraint (16) ensures the placement of one additional
instance compared to the existing number of instances to
perform scaling out by instantiation of another instance of
the service type 𝑠. Constraint (17) gaurantees the scaling
must take place at the existing edge node where service 𝑠 is
already placed as 𝑥𝑠𝑒.

SCALE_IN Decision: In this problem, the deletion of
one existing and underutilized instance of service type 𝑠 is
performed. With the similar objective as in (15), the deletion
of an instance is subject to (7), (8), (14) and,∑︁

𝑒∈𝐸
𝑧𝑠𝑒 = 𝐼𝑠 − 1 (18)

𝑧𝑠𝑒 ≤ 𝑥𝑠𝑒,∀𝑒 ∈ 𝐸 (19)

Constraint (18) ensures the placement of one less instance
compared to the existing 𝐼𝑠 instances. Constraint (19) guaran-
tees the deletion must take place at one of the existing edge
nodes where service 𝑠 is already deployed at 𝑥𝑠𝑒.

2) Value Network: The value network takes the current state
and feedback as input to estimate the network’s performance
quality function (i.e. 𝑄𝑣𝑎𝑙𝑢𝑒). Here, feedback is a response in
terms of observed service delay (i.e. F = E [𝑇𝑠 (𝑡)]) generated
for the corresponding action 𝔞 of the policy network. In our
design, the value network contains three fully-connected layers
and updates its parameters \ to minimize the mean square loss
function L𝑄 based on the feedback F and its corresponding



request parameters. The loss function is computed as:

L𝑄 (\) =
1
N

N∑︁
𝑖=1

[
(𝑦𝑡𝑖 −𝑄𝑣𝑎𝑙𝑢𝑒 (𝔞; \))2] (20)

The 𝑦𝑡 is a target value which is calculated as:

𝑦𝑡 =

{
𝜎(𝑇 𝑡ℎ𝑠 , F ) F < 𝑇 𝑡ℎ𝑠

0 else
(21)

Here, 𝜎(𝑇 𝑡ℎ𝑠 , F ) is the standard deviation between the delay
threshold and observed service delay. The 𝑄𝑣𝑎𝑙𝑢𝑒 changes
between 0 to 1, a small value implies poor performance
which is updated to the decision-making network for better
management of the service lifecycle. In our design, we use a
threshold of 0.5 to indicate the poor (𝑄𝑣𝑎𝑙𝑢𝑒<0.5 ) and good
(𝑄𝑣𝑎𝑙𝑢𝑒>0.5) network performance. The choice of 0.5 is not
random but is based on our previous study performed in [17].

Note that due to space limitation, we skip the basics on
GRU and DRL, and interested readers are referred to [18].

IV. PERFORMANCE EVALUATION

The implementation of DOSM is carried out using MAT-
LAB software. We consider the vehicle trajectory from real-
world dataset [16] where a maximum of 500 taxis traveling
along the city from which we extract the area of 15×15𝑘𝑚2 for
our experiments. The key parameters are summarized in Table
I. We gather possible service types and related information
from ETSI standards [19], [20]. For the value network, we
use a fully-connected network with 3 hidden layers, each with
512, 256, and 64 neurons, respectively, and the output layer is a
single neuron that expresses the 𝑄𝑣𝑎𝑙𝑢𝑒 with the linear transfer
function. The maximum number of episodes to train a network
is 1500 with each episode having a maximum of 20 iterations
and a batch size of 100. For the GRU model, we use 2 GRU
layers (400 and 200 hidden units), 2 fully connected layers
(100 neurons each), an output layer, and a regression layer.
The maximum number of epochs is set to 150 with a batch
size of 150. We compare our proposed DOSM framework
with existing migration schemes [21], [22], including never
migrate (NM), always migrate (AM), and migration using
DRL without demand prediction (DRL). Similar to our DOSM
framework, we run baselines algorithms in an online manner
for fair comparison in the experiments.

TABLE I: Parameters

Service Type 𝑇 𝑡ℎ
𝑠 𝐷𝑖 𝐶𝑠 (𝐾 ) 𝜙𝑠 Parameter Value

Emergency Stop 0.1 3200 36 𝑈 (50, 150) 𝐸 9
Collision Risk 0.1 4800 40 𝑈 (50, 150) 𝑓𝑒 10 GHz
Accident Report 0.5 4800 28 𝑈 (50, 150) 𝐶𝑚𝑎𝑥

𝑒 2 GB
Parking 0.1 1200 80 𝑈 (150, 300) 𝜙𝑣 1 MB
Traffic Control 1 1200 45 𝑈 (150, 300) 𝑅𝑥 (𝑒, 𝑒) 1Gbps
Platoon 0.5 4800 88 𝑈 (150, 300) C 30
Face Detection 0.5 3200 50 𝑈 (150, 300) 𝑃 40 dBm
Intersection Safety 0.05 1800 42 𝑈 (50, 150) 𝑁𝑜 -100dBm
- - - - - 𝑊 1MHz

A. Results

In this section, we evaluate and discuss the performance of
our proposed DOSM framework using different metrics. We

plot the performance of our GRU-based prediction model in
Fig. 3. Here, training loss and test loss indicate the error in the
training data and test data, respectively. We use mean square
error (MSE) as our loss function where the smaller the value,
the better the prediction. The training loss in Fig. 3a tends to
decrease with the increasing epoch whereas test loss in Fig. 3b
for all types of services remains below the average value of 2.
In addition, we plot the mean prediction error in Fig. 3c which
we define as the ratio between the absolute difference of the
true observed value and predicted value, and the true observed
value. It can be noted that the maximum deviation of predicted
value from true value ranges between 2% (i.e. 0.02) to 5.6%
(i.e.0.056) only. The significance of low prediction error is
important in our design as our proposed service management
framework is based on the predicted demand. All of these
performance plots for the GRU-based model indicate higher
performance of our designed prediction model.

(a) Training Loss (b) Test Loss

(c) MPE

Fig. 3: GRU-based Prediction Performance

Next, we evaluate the delay performance of our proposed
DOSM framework against different baselines in Fig. 4. The
average service delay during different time units is shown
in Fig. 4a. As can be seen, the average delay is highest in
NM where service placement is static. On the other hand,
the average service delay for our DOSM framework is low
and nearly similar to AM and DRL. The lower delay of AM
is due to the fact that the services are always checked for
migration and when needed it is migrated to the nearest edge
node to follow the vehicles. The good delay performance
of DRL is also reasonable because of its ability of real-
time interaction with the environment to address the changing
network conditions. However, with the similar service delay
observed in DOSM, AM, and DRL, there are number of other
performance parameters (discussed next) which do not make
AM and DRL suitable compared to our proposed DOSM.

Fig. 4b compares the migration delay in each time slot. As
can be seen, the proposed DOSM achieves the lowest delay
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Fig. 4: Performance Results

most of the time as the number of migrations is not just depen-
dent on the performance of the network during the current time
slot but also due to the ability of DOSM to accurately predict
the possible future demand before making any decision on
service relocation. Also, DOSM has the lowest mean migration
delay compared to AM and DRL. Fig. 4c further compares
the running time for all three algorithms during different time
slots. We can observe that our proposed DOSM framework
maintains the same service delay performance with lesser time
complexity when compared to AM and DRL.

Fig. 4d plots the possible range of percentage of services
migrated during each time slot using different algorithms.
Since our proposed DOSM framework triggers the migration
based on the predicted demand along with the current network
performance, the number of migrated services during each
time slot remains comparatively low when compared with
DRL and AM. On the contrary, AM and DRL consider the
delay performance of the current time slot only while deciding
on migration decisions, and this results in more services being
migrated each time. We also plot the range of the total number
of impacted vehicles due to migration during each time slot in
Fig. 4e. On an average, the number of impacted vehicles that
suffer disruption due to migration is approximately 50% less
in DOSM when compared to DRL, and approximately 70%
less when compared to AM.

In Table II, we depict the total number of times optimization
formulation is solved to find the optimal migration locations
for different service types and the total number of times
services are actually migrated for efficient network perfor-
mance. We can observe that our proposed DOSM has a clear
advantage over AM and DRL in terms of computation load
and migration load. The resources at the edge are limited and
keeping migration triggers as low as possible is important.
From the user’s perspective, fewer migrations result in lower
service disruption or downtime which is significant particularly
when the demand is high and network resources are congested.

TABLE II: Load Performance

AM DRL DOSM
Total Number of Optimization Runs N𝑜 1200 798 612
Total Number of Migrations N𝑚 572 323 279
Computation Load (%) = (N𝑜/1200*) × 100 100% 66.50% 51%
Migration Load (%) = (N𝑚/1200*) × 100 47.66% 26.91% 23.25%

* (T/𝜏) × 𝑆 = (750/5) × 8 = 1200

V. CONCLUSION

In this paper, we considered a vehicular edge computing
network consisting of mobile vehicles that move frequently
and request services from the edge network to accomplish
different vehicular tasks. To maintain efficient network per-
formance, it is important that the deployment of services must
follow the vehicle’s movement and be relocated to the nearest
edge node in an online manner. In this regard, we studied the
problem of online service management for multiple vehicular
services with different design parameters and different delay
requirements. We focused on minimizing service delay along
with minimal migration load and minimal service interruption
which may happen due to frequent migrations. We developed
and integrated a proactive demand prediction model with the
proposed optimization formulation to make good decisions
related to service management. Finally, we carried out perfor-
mance study to demonstrate the superiority of our proposed
DOSM framework over the baseline methods in terms of
several important performance metrics.
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