
Conditional Imitation Learning
for Multi-Agent Games

Andy Shih
Computer Science Department

Stanford University
andyshih@cs.stanford.edu

Stefano Ermon
Computer Science Department

Stanford University
ermon@cs.stanford.edu

Dorsa Sadigh
Computer Science Department

Stanford University
dorsa@cs.stanford.edu

Abstract—While advances in multi-agent learning have enabled
the training of increasingly complex agents, most existing tech-
niques produce a final policy that is not designed to adapt to a
new partner’s strategy. However, we would like our AI agents
to adjust their strategy based on the strategies of those around
them. In this work, we study the problem of conditional multi-
agent imitation learning, where we have access to joint trajectory
demonstrations at training time, and we must interact with and
adapt to new partners at test time. This setting is challenging
because we must infer a new partner’s strategy and adapt our
policy to that strategy, all without knowledge of the environment
reward or dynamics. We formalize this problem of conditional
multi-agent imitation learning, and propose a novel approach to
address the difficulties of scalability and data scarcity. Our key
insight is that variations across partners in multi-agent games are
often highly structured, and can be represented via a low-rank
subspace. Leveraging tools from tensor decomposition, our model
learns a low-rank subspace over ego and partner agent strategies,
then infers and adapts to a new partner strategy by interpolating
in the subspace. We experiments with a mix of collaborative
tasks, including bandits, particle, and Hanabi environments.
Additionally, we test our conditional policies against real human
partners in a user study on the Overcooked game. Our model
adapts better to new partners compared to baselines, and robustly
handles diverse settings ranging from discrete/continuous actions
and static/online evaluation with AI/human partners.

Index Terms—multi-agent, imitation learning, conditional poli-
cies, adaptive policies, low-rank, collaboration

I. INTRODUCTION

Many important robotics applications naturally involve mul-
tiple agents, from assistive robotics to self-driving cars. New
techniques in deep multi-agent reinforcement learning have
led to breakthrough performance in many multi-agent tasks,
such as Go [52], Hanabi [20], and poker [5]. Although
these methods have shown impressive results, many of their
formulations lack a key factor that is central to multi-agent
interactions – the ability to adapt quickly to another agent.

For example, in cooperative games such as Hanabi [3,
20, 31], much of the focus has been on training a single
set of partners to achieve a high score with each other. As
a result, these methods produce agents that are skilled not
at playing Hanabi in general, but at playing Hanabi with
their training partners. Even in competitive or mixed settings,
most current frameworks do not act with the opponent in
mind [5, 47]. For example, state-of-the-art poker agents “play
a fixed strategy that does not adapt to the observed tendencies

of the opponents” [5]. Recent works on the game of Diplomacy
consider the “exploitability” of their own agent (e.g. if adaptive
opponents can take advantage of their agent), but do not adapt
to or exploit their opponents’ behavioral patterns in return [24].

Rather, success in a multi-agent task should be measured
in terms of the ability to perform well at the task with a new
partner. Indeed, a skillful musician can adjust to the playing
style of new partners (Figure 1), and a skillful poker player can
exploit the bluffing patterns of new opponents. Similarly, we
should train agents that are able to adapt their actions based
on the tendencies of new partners.

In this work, we explore the paradigm of conditional multi-
agent imitation learning (conditional MAIL). Our goal is to
learn a policy that can adapt to new partners, by training only
on a dataset of demonstrations without any other assumptions
such as access to environment reward or dynamics. Concretely,
we are provided with expert demonstrations on how to coor-
dinate with various partners sampled from some fixed partner
distribution. Then, given the actions of new partners, we would
like to adapt our actions to best coordinate with them.

Conditional MAIL is a flexible framework, but there are two
core challenges: 1) multi-agent evaluation and 2) data scarcity.

1) Evaluation: Unlike the single-agent case where we can
accurately estimate the performance of the learned policy,
the learned policy performance for the multi-agent setting
depends highly on the partner’s strategy and the potential non-
stationarity of that policy.

To look at trade-offs of evaluation cost and effectiveness,
we experiment with three evaluation methods in our paper:
offline, static and online evaluation. Offline evaluation simply
measures the log-likelihood of a held out expert dataset as
a proxy for reward, and can be evaluated without access to
the environment even at test time. Another direct approach,
which we refer to as static evaluation, is to behavioral-clone
(BC) a test dataset of trajectories, and evaluate our ego agent
against these BC agents. The downside of static evaluation is
that BC agents have rigid behavior and work poorly if out of
distribution. This is exacerbated in multi-agent games, where
other agents can quickly push the joint state out of distribution.

A more costly evaluation choice is online evaluation by
pairing our conditional policy against non-stationary partners,
such as human partners. Online evaluation is more meaningful
but also more tedious. A highlight of our work is the ability

ar
X

iv
:2

20
1.

01
44

8v
1

 [
cs

.L
G

]
 5

 J
an

 2
02

2

fast
soft

slow

loud

fast
soft

slow

loud

test

train
y1, …, ym

y

Dy1, …, Dym

D̃y

ap

ae

ap

Fig. 1. We consider the setting of adapting to a
new partner in a multi-agent task. During train-
ing, the ego-agent (pianist in white) learns from
demonstrations from pairs of cellists and pianists
playing music in coordination. We denote each cel-
list/pianist pair with a different shade of purple/red,
with the cellists representing the partners, and the
pianists representing the experts. At test time, the
ego-agent must coordinate with the cellist y in blue.
To coordinate well, the pianist in white can first
build a mental model from the training data of
how to coordinate with partners of various strat-
egy (loud/soft, fast/slow). Then, he can infer the
strategy of the new partner in blue, and correctly
accompany her playing style.

of our policy to interact and adapt to human users in an
online fashion, demonstrated on the game of Overcooked.
Our policies finetune their behavior after each episode of
interaction with the user.

2) Data Scarcity: Another challenge with conditional
multi-agent imitation learning is data scarcity. To learn a con-
ditional policy, we need training data consisting of a diverse
set of coordination behavior, which is often hard to come by
in practice. For example, the Overcooked dataset [7] only has
around 15 joint trajectories per game layout. A limited dataset,
combined with the lack of access to environment dynamics for
simulation, means that our algorithms must learn an adaptable
latent space using only a handful of demonstrations.

To this end, our paper proposes a novel approach of synthe-
sizing a low-rank space of policies via tensor decomposition.
Learning a low-rank policy space enables us to scale to
high dimensional environments, while avoiding the inherent
difficulties of learning a non-linear latent space on limited
data. Inspired by works that model the value function of rein-
forcement learning tasks with low-rank decomposition [22, 58]
and works that model human preferences in recommendation
systems also with low-rank decomposition [28, 50, 59], we
hypothesize that policies of either AI or human partners
can admit a low-rank structure as well. We use techniques
from tensor decomposition, in particular Tensor Trains, to
model this low-rank representation in a scalable way. This
formulation then allows us to adapt quickly to a new partner
by interpolating in the low-rank subspace.

A. Contributions

The contributions of our paper are three-fold. First, our pa-
per examines the various components (e.g. training objective,
evaluation metric, user study integration) of the framework of
conditional multi-agent imitation learning. Second, we propose
a model with a structured low-rank prior aimed to address the
challenges of data scarcity for the conditional MAIL frame-
work. Finally, we run a wide range of experiments touching
on all three methods of offline/static/online evaluation. Our
experiments suggest that our tensor decomposition model with
low-rank inductive bias can adapt better than baseline methods

such as meta-learning, multi-task learning, or non-linear latent
modelling approaches.

In particular, we experiment with our model across various
settings with both AI/human partner distributions and up to 60
dimensional state spaces with both continuous/discrete actions.
We study a collaborative contextual multi-armed bandit task,
a continuous-action particle environment, and the card game
Hanabi. For these environments, we generate partners by train-
ing AI agents with different random seeds. We then do a more
comprehensive evaluation on the task of Overcooked [7, 55],
which consists of human-human gameplay on 5 different
layouts of the game. We deploy our adaptive policy learned
from these human-human demonstrations in a user study with
crowd-sourced workers on Prolific, and our study suggests that
our models is robust to non-stationary human partners as well.

II. RELATED WORK

MARL. Many advancement have been made in multi-agent
RL in training a group of agents to succeed at a task together,
typically via centralized learning [19, 40]. In multi-agent
imitation learning, techniques have been proposed based on
adversarial training [53, 60] or structure learning in the setting
of unassigned roles [36]. In these works, the focus is on
training policies for one full set of agents in the environment,
whereas our goal is to train a policy to adapt to new partners.
Non-stationarity. Conditional imitation learning fits under the
general framework of non-stationarity in the other agent’s
behavior [29]. There are many types of non-stationarity, with
one line of work focusing on learning procedures that can take
advantage of the other agent’s learning process [18, 61] or
latent strategy dynamics [56, 57]. The non-stationarity in our
problem arises from the introduction of new partners, and from
the strategy drift of our partners over time. This is related to
context-detection [13, 30] techniques that identify the partner
behavior as switching between one of a finite number of
stationary strategies. In contrast, our approach can fit a policy
for a new partner with a continuous latent space over strategies,
and induces on a low-rank prior. Also related are convention
modeling approaches [51] which target adaptation to new
partners using modular policy networks.

Partner Modeling. Many works on partner modeling have
been successful with predicting a human partner’s intentions
for robotics [2, 15, 32, 33], motion planning [43], games [41],
driving [49], and more [10, 34, 37]. In [44], they first run
unsupervised clustering to learn partner types, and then run
a solver on the MDP taking into account the inferred partner
types. These works generally require a strong model of the
environment so that after inferring the partner intent, they
are able to incorporate the intent into a planner for the
ego agent. Our framework differs in that we train only on
trajectory datasets, without access to environment reward,
dynamics, or a planner. This makes our setting challenging,
but more applicable to general tasks for which we do not have
knowledge of the environment.
Imitation Learning. Since we are working with multiple
partners, we can draw similarities to hierarchical/conditional
imitation learning methods that context switch between a set
of low-level policies [12, 35]. From this perspective, our
approach is related to learning a continuous range of low-level
policies, and choosing between them based on inference over
the partner strategy. The framework of meta-imitation learn-
ing [17] is also relevant, where they learn to solve a new RL
task with just a single expert demonstration. On the other hand,
there are works that learn from heterogeneous demonstrations
too [39, 46]. The main difference between our setting and the
single agent IL methods are that their test environment has
no non-stationarity, and that their demonstrations are directly
over the experts, whereas our goal is to predict expert actions
given demonstrations of the partner.
Sequence Prediction. Multi-agent trajectory prediction [1,
25, 48] and multivariate time-series prediction [9] are closely
related to the framework of predicting the expert actions given
the partner actions. Whereas some works [1] aim to predict the
actions of every agent given the past actions of every agent,
our setting aims to predict the expert actions given access to
only the partner actions.

III. PROBLEM STATEMENT

ap

φs

ae

Fig. 2. Partner strategies φ are
sampled from an underlying dis-
tribution Φptnr. The strategy of
a partner affects its actions ap

taken at a state s. We model
the experts as having inferred the
partner strategy, so their action
ae at state s also depends on φ.

We consider a two-player Markov Game with states S, and
actions A = A × A. Agents take actions independently of
each other, i.e. π(a|s) = π0(a|s)π1(a|s). Without loss of
generality, the ego agent policy (that we control) is π0 and
the partner policy is π1.

One standard framework in multi-agent imitation learning is
to train a single pair of policies (π0, π1) to mimic trajectories
from a pair of experts [53]. This framework, however, does
not consider generalization to new partners. We are interested

in the adaptive setting – can we train an agent to play well
against a new partner, whose actions come from a different
policy than that of a partner from the training set?

We assign each partner an ID y and strategy φ as a
sample drawn from some fixed distribution Φptnr. We assume
that the agents generating the training dataset are stationary,
having converged to the stochastic policy πφ(a|s, φ). Since
we are in the imitation learning setting, for each partner y
we have joint trajectories Dy = {(si, aei , a

p
i)}ki=1, where ae’s

are expert action, and ap’s are partner actions. We assume
that the expert has inferred the partner’s strategy φ through
prior repeated interactions, and acts based on a stochastic
policy πexpert(a|s, φ). Hence, even though the agents take
simultaneous actions, we model a dependency from φ to ae.

At training time, we have access to batches of joint trajecto-
ries Dy1 , . . . , Dym , corresponding to supervision for the train-
ing partners with underlying strategies φ1, . . . , φm ∼ Φptnr. At
test time, we interact with a new partner y0 and adapt our ego
agent to best coordinate with the new partner.

A. Evaluation Metrics

As alluded to earlier, there are many evaluation metrics we
can consider when interacting with the test partner.

1) Offline Evaluation: One option is a purely offline eval-
uation without the environment, in which case we require
joint trajectories in the test set for evaluation. We split the
joint trajectories from the test set Dy0 into partial trajectories
consisting of the partner actions D̃y0 and the expert actions
D̂y0 . Under this setup, adapting to a new partner y0 with
strategy φ0 corresponds to generating a good ego-agent policy
given observations of the partner’s actions D̃y0 . We write
our objective as minimizing the KL-divergence between the
(unknown) expert policy and the generated ego-agent policy,
denoted as π(a|s, D̃y0).

inf
π

∑
si∈D̃y0

KL(πexpert(a|si, φ0) ||π(a|si, D̃y0))

= sup
π

∑
si∈D̃y0

Eπexpert(a|si,φ0)[log π(a|si, D̃y0)] (1)

As the entropy of the expert policy is a constant, this
objective corresponds to maximizing the log-likelihood of the
actions of the expert policy. Although we don’t have access
to the expert policy, we estimate the objective by treating the
expert trajectories D̂y0 as samples from the expert policy.

2) Static Evaluation: If we have access to the environment
dynamics and rewards at test time, we can pair our ego agent
with new partner agents and measure the environment reward.
Either the partner agent policies are provided at test time, or
we behavioral-clone their policies from a test dataset.

In both offline and static evaluation, the partner agent is
stationary, governed by some fixed strategy. Based on the
formulation in Figure 2, we can then write our desired policy
as a mixture of how an expert would react to each partner

type, weighted by the probability of each partner type given
observations D̃y0 .

π(a|s, D̃y0) =

∫
φ

πexpert(a|s, D̃y0 , φ)p(φ|s, D̃y0)dφ

=

∫
φ

πexpert(a|s, φ)p(φ|D̃y0)dφ (2)

3) Online Evaluation: Lastly, we can relax our assumptions
and measure the environment reward attained when pitting
our adaptive ego agent against non-stationary partners at test
time. The test partner policies may drift over time, and may
not correspond to a fixed strategy φ. This requires us to
continuously finetune our ego agent policy as new interaction
data is collected. Notably, for this online evaluation method,
we can pair our adaptive policy against crowd-sourced human
players, whose behavior will be naturally influenced by the
actions that our ego agent makes.

The highlight of the conditional multi-agent imitation learn-
ing framework is that training only requires a static dataset of
joint trajectories from diverse partner/expert pairs, making it
generalizable to many tasks in the real world. As we have
seen, the general aim is to learn a conditional expert policy
πexpert(a|s, φ) over a latent space of strategies φ, and to infer φ
using observations of a new partner’s actions at test time. By
continuously updating φ based on newly collected trajectories,
the ego agent can adapt even to non-stationary partners, all
without training on the environment rewards or dynamics.

IV. LEARNING A LOW RANK POLICY SPACE

Learning a conditional expert policy πexpert(a|s, φ) along
with a model p(φ|D̃y0) for inferring partner strategy is chal-
lenging. In addition, learning a non-linear latent space over
strategies can struggle with overfitting when data is limited.

Instead we propose to learn a low-rank latent space that is
both scalable to high dimensional environments and suitable
for low data settings. Our method aims to impose a more
structured prior on the latent space that may reduce the
expressiveness of the model, but in return cut back on the
model’s reliance on large amounts of data.

Given the scalability and data-efficiency benefits of impos-
ing a low-rank prior, the main question is then – how restrictive
is a low-rank prior on the model’s ability to learn a good
latent space over strategies for conditional MAIL? Based on
existing evidence in the literature, we argue that multi-agent
tasks have two significant sources of structure, which suggest
that the space of reasonable policies may indeed lie on a very
low-dimensional subspace.
• Task constraints – the reward and dynamics of the

Markov Game can be viewed as imposing soft con-
straints, ruling out actions that are clearly suboptimal.
These soft constraints, in the form of Q-functions of
the environment, can filter out the majority of possible
policies, in particular those that often take low-value
actions. Recent work has shown that the Q-functions of
RL environments have surprisingly low rank [22, 58].

• Partner Similarities – the partners from the distribution
Φptnr may only take on a small subspace of possible
strategies, both when considering human or AI partners.
For example, exploiting common similarities between hu-
mans is what drives the success of collaborative filtering
methods [28, 50, 59]. Beyond human partners, it has
also been observed that neural network agents trained
via stochastic gradient descent span a surprisingly low-
dimensional subspace [26, 38].

In summary, the underlying Markov Game already rules out
a large swath of undesirable policies, and the partner sampling
distribution further restricts the space of possible partners.
With this in mind, we explore the use of a low rank model to
capture the existing structure in the latent space of strategies.

Our proposed model makes use of low-rank tensor decom-
position. In particular, we have three dimensions of interest in
this low-rank structure: strategy φ, states s, and actions a. Un-
like its matrix counterpart, the low-rank tensor decomposition
does not have a unique formulation. Popular methodologies
include the CANDECOMP/PARAFAC decomposition [6, 27],
the Tucker decomposition [54] and the Tensor Train decom-
position [11]. In this work, we focus on the Tensor Train
decomposition due to its scalability properties [4, 45, 59].

A. Tensor Train Decomposition

The Tensor Train decomposition is a compact and scalable
representation of high-dimensional functions. A Tensor Train
of rank r can represent an n-dimensional function (each
dimension taking on I values) with O(nIr2) parameters,
whereas a naı̈ve representation requires O(In) parameters.
Apart from scaling better than other low-rank tensor decompo-
sition alternatives, the Tensor Train also comes equipped with
rank-reducing approximation algorithms [11, 45].

The discrete form of a Tensor Train represents a high-
dimensional function g : I1 × . . . × In → Rk by keeping n
“cores” (i.e. 3-dimensional tensors) of shape Ai = ri−1×Ii×
ri. The values [r0, . . . , rn] are the rank of the tensor, where
each ri is an integer, with r0 = 1 and rn = k. For convenience,
we will refer to a Tensor Train with r1 = . . . = rn−1 = r
simply as having rank r. The values I1, . . . , In are the modes
of the Tensor Train, indicating the number of values the input
to each dimension can take on. To evaluate a tensor train on
an input x1 . . . xn, we simply index into the cores at each
dimension (resulting in a series of matrices), and perform a
series of matrix multiplication.

g(x1, . . . , xn) = A1[:, x1, :]× . . .×An[:, xn, :]

The intermediate matrices have shape 1 × r and r × k at
the endpoints, and r × r in between, so the series of matrix
multiplications will produce an output value in Rk as desired.

We would like to directly use the Tensor Train g as our
policy network, by having two cores: a partner-strategy core
and a state core. Then we set the output dimension k to be
equal to the size of the action space |A|. But, we face two
issues. First, the mode of the state core (e.g. the total number
of states in the state space) may be too large. Second, we only

#!(!)#"(")

×

Fig. 3. Given an observation s from
a partner with ID y, the functional
Tensor Train evaluates a matrix-valued
outputs g1(y), g2(s). Then the Tensor
Train performs matrix multiplication,
and the resulting vector is the action
logits for the policy.

observe the partner identities y, and not the partner strategies
φ, so we need to interpret tensor core for the partner strategies
differently. We address these issues next.

B. Functional Tensor Train

Although the Tensor Train format scales favorable with
respect to the dimensionality, the modes of each dimension
I1, . . . , In can still be too large (and infinite for continuous
inputs) for some practical applications. For example, one of
our dimensions of interest is the state s of a Markov Game,
which would correspond to a mode equal to the total number
of possible states. For most environments, storing a Tensor
Train in this format is unmanageable.

An appealing solution is that of the functional Tensor
Train [4, 23]. The key insight is that, instead of representing
cores with tensors of size ri−1×Ii×ri, we can generalize them
to matrix-valued functions gi : Ii → Rri−1×ri . Indexing into
a core to retrieve an ri−1× ri matrix now becomes evaluating
the matrix-valued function in each dimension:

g(x1, . . . , xn) = g1(x1)× . . .× gn(xn)

Previous works limit themselves to piece-wise polynomials
in these matrix-valued functions [23], in order to support
operations such as integration and cross-approximation. In
this work, we instead propose to parameterize each matrix-
valued function with a neural network, forgoing support for
these operations in order to maximizing flexibility. Using the
functional variant of Tensor Trains, we can handle dimensions
with extremely large modes or even continuous inputs.

C. Conditional Policies

We next describe how to use the functional Tensor Train to
fit policies of different partners strategies. We want to represent
the latent space over partner strategies using the first core of
our functional Tensor Train. For any given partner, we only
observe its identity y and not its strategy φ. Therefore, we let
the partner strategy core of our Tensor Train take in the (one-
hot vector) identity y as input, and use the 1×r matrix-valued
output as the partner strategy φ. This is not restrictive, since
the neural network mapping φ = g1(y) is flexible.

The setup of our architecture is as follows (Figure 3). We
have the neural network (strategy core) that maps the one-hot
partner ID to a 1 × r vector φ – the latent representation of
the partner strategy. We have another neural network (state
core) that maps the state observation to a r× |A| matrix. The
state encodes the role of the agent (ego or partner), so the
same policy network is used for both the ego and the partner.
The result of the matrix multiplication is used as the logits

for the policies, and this enforces a low-rank prior in the log-
probabilities of the actions.

log π(A|s) =
1

Z
g1(y)× g2(s) (3)

At train time we learn the parameters of g1, g2 via Maximum
Likelihood Estimation (MLE) on both the ego and the partner
actions. The objective is Equation 1 for both the ego and part-
ner agent, plugging in their policies as defined by Equation 3.

At test time, given a new test partner, we set its partner ID
to a random vector y0. This gives us a random initialization of
the strategy vector φ = g1(y0). Then as we interact with the
test partner, we can fine-tune the strategy core g1 via MLE on
the newly collected test partner’s actions (e.g. Equation 1 on
the partner actions).

The structure of the Tensor Train makes it easy to finetune
to new partners at test time. Given a new partner with ID y0,
we fine-tune only the partner-strategy core of the Tensor Train,
keeping the parameters of the state core fixed. In essence, the
learning phase during training is fitting a low-rank subspace
over policies for different partners, and the adaptation phase
at test time is doing inference over the partner strategy and
interpolating the output actions in that subspace. Moreover,
we do not need to specify the number of testing partners in
advance, since we can randomly initialize the ID vector y0
and update the mapping g1(y0). Finally, our method avoids
overfitting by enforcing a low-rank inductive bias.

V. EXPERIMENTS

We run a variety of experiments to evaluate our approach
for adapting to new partners in multi-agent games, span-
ning discrete/continuous actions, full/partial observability, and
AI/human partners. For the first set of experiments, we gener-
ate partner distributions by training AI partners with different
random seeds. We study a collaborative multi-armed bandit
task, a particle environment with continuous actions, and
the game of Hanabi using 4 players. For the second set of
experiments, we explore the distribution over human partners
instead. We focus on the game of Overcooked [7, 55] by
training and performing static evaluation on human-human
demonstrations collected from [7]. Then, we follow it up with
online evaluation against real human partners, by deploying
our adaptive agents in a user study to play Overcooked with
crowd-sourced humans. Our experiments show the applicabil-
ity of our framework to a broad range of different settings. We
describe the tasks in detail in their corresponding sections.

We compare our approach (lrp: low-rank partners) with four
baselines: a meta-learning (maml) [16], a multi-task learning
(mt) [8], and a modular policy (mod) [14, 51] approach, and
a non-linear latent space approach (lt). We implement these
methods using the Garage toolkit [21].

The meta-learning approach optimizes for performance after
taking inner gradient descent steps on a new sampled task. In
our experiments we take one inner gradient step, which has
been shown [42] to also give good performance. The multi-
task approach aims to share representations across policies

for different partners, by appending the partner ID to the
state observations and predicting with a single network. The
modular policy approach aims to separate task and partner
representations with modular policy networks, in order to
transfer the task representation to a new partner. Finally, the
non-linear latent space method concatenates learned partner
embeddings with state observations, and maps this joint input
directly to the action space. These baseline methods can work
well when the number of training tasks is large, but unlike our
method, they do not have a strong (low-rank) inductive bias.
This can make it difficult for them to generalize well when
the number of training tasks is small.

A. Collaborative Bandits

In our collaborative bandit environment, two players simul-
taneously pick an action, scoring a point if and only if they
chose the same action and the score for that action is 1. We
design our bandit environment to have 1000 states, with an
action space of 10. At each state, roughly 30% of the actions
give a score of 1, and the rest give a score of 0. In other words,
the coordination challenge is in breaking the tie between the
equally optimal joint actions.

We generate partners by training AI agents using different
seeds. The AI agents are trained to output, at a given state,
any one of the actions with a score of 1. We train a set of
16 training partners and 4 testing partners using the same RL
algorithm but each with a different seed. The random seed
affects the sampled states of the environment, the network
initialization for each agent, and the stochasticity in the
optimization process.

First, we can experimentally check that these partner poli-
cies generated by self-play with different seeds are indeed low-
rank. We tabularize the policy distribution of all the partners
as a tensor T of size [1000,10,16] (states, actions, #partners),
and fit a low-rank Tensor Train to T (Table I). The experiment
suggests that the tabularized policy tensor has a low rank (of
4), which is in line with phenomena observed by [26, 38].

TABLE I
FITTING TENSOR TRAINS WITH VARIOUS RANKS TO PARTNER POLICIES
TRAINED WITH DIFFERENT RANDOM SEEDS ON THE BANDIT ENV. THE

MODEL FITS THE DATA WELL FROM A RANK OF 4 ONWARDS.

rank 1 2 3 4 5 6 7

log-loss 38.36 38.28 37.90 22.09 22.03 22.11 22.21

In Figure 4, we plot the performance of different techniques
for adapting to a new partner. The loss is the negative log-
likelihood of the held-out expert actions for the test partners,
which for the bandit task is equivalent to the partner actions.
We see that our low-rank partner approach adapts best to new
partners at test time from this partner distribution arising from
self-play. This suggests that our low-rank partner approach is
indeed capturing the low-rank subspace of the data-generating
process, as revealed by Table I, and correctly inferring the
strategy of the new partner. The underlying Tensor Train is
able to leverage the correlation between actions at different

Fig. 4. Collaborative bandit task. The partner policies are generated by self-
play with different random seeds. We use 16 training and 4 testing partners.
We set the rank of the Tensor Train to 4. We compute the loss of adapting to
each new testing partner, and plot the average loss over all the testing partners.

Fig. 5. We visualize the 2-player
collaborative particle environment. The
two players work together to move a
particle on a 2D plane from from posi-
tion xs, ys to xt, yt. The players input
2D action vectors simultaneously, and
the position of the particle moves ac-
cording to the sum of the action vectors
of the two players at each timestep.

states (due to the low-rank structure), and adapt quickly instead
of learning the action distributions at each state separately.

B. Particle Environment

To test our model on continuous actions, we consider a
2D collaborative particle environment where the two players
have to move a particle from a start location xs, ys to a target
location xt, yt (Figure 5). Each player takes a 2D continuous
action representing the velocity of the particle. The task is
collaborative – at each timestep the particle moves according
to the sum of the actions (i.e. velocities) given by the two
players, with reward being the negative distance to the target.
We follow a similar setup as earlier, training policies to play
against 16 train partners obtained via self-play, and adapt to 4
test partners, without any access to environment reward. As an
upper bound, the self-play agents are able to achieve a reward
of 313±7 when playing with themselves. In Table II we report
the environment reward attained by the adaptive agents before
and after adapting to a new partner using a trajectory of 200
timesteps. We see that the low-rank partner approach achieves
the best reward of the 5 compared methods.

TABLE II
REWARD IN PARTICLE ENV BEFORE/AFTER ADAPTING TO TEST PARTNERS.

lrp mt mod maml lt

before 297± 4 274 ± 4 290 ± 5 272 ± 11 289 ± 4
after 303± 4 300 ± 4 300 ± 4 275 ± 7 294 ± 4

C. Hanabi

The Hanabi environment differs from the other environ-
ments in that it has partial observability, and it involves more
than two agents. Nonetheless, the framework of conditional
multi-agent imitation learning can be applied to these settings

Fig. 6. Results from the game of Hanabi with 4 players, where our ego
agent is adapting to a new set of other 3 partners each time. Hanabi is a
collaborative turn-based game with partial observability, as every player can
only see other player’s cards but not their own. In our experiments, our low-
rank model showed better adaptation performance after 1000 timesteps of
demonstrations from a new partner.

as well. In particular, we can handle the ego-agent as usual,
and treat the other n− 1 agents as one joint partner agent. Of
course, more careful handling of the interaction between the
n− 1 players is possible, which we leave for future work.

In Hanabi [3], a group of agents (4 in our case) work
together to play cards from their hands in a specific order,
almost akin to multi-agent Solitaire. The catch is that players
can see everyone else’s cards except their own. Since their is
no communication, the players must develop conventions with
each other, hence adapting to a new conventions is critical to
success with a new partner.

We study a small version of the game with 1 color, 5 ranks,
4 players, and hand sizes of 2. As before, we generate training
and testing partner/expert pairs using self-play with different
random seeds. In Figure 6 we plot the loss (negative log-
likelihood) of the policies as they adapt to a new partner, with
the x-axis denoting the size of the demonstration used for
adaptation. Of the compared methods, our low-rank approach
exhibits the best adaptation performance after 1000 samples.

D. Overcooked

Next, we study the task of Overcooked, a two-player game
with the goal of working together to cook and serve food to
customers. Players each control a separate avatar in 2D layouts
(Figure 7), where ingredients and kitchenware are scattered
in different locations. Players cannot occupy the same cell,
and must interact with the kitchen objects in a certain order
to score points (place an onion in the stove, wait, put the
cooked onion on a plate, and serve the plate). Of the 5 layouts,
Cramped Room is the simplest. Asymmetric Advantages and
Forced Coordination split the partners into two islands. Lastly,
Coordination Ring and Counter Circuit have narrow passages
that prevent the partners from passing each other.

We test our method on a dataset of human-human demon-
strations [7], consisting of data for each of the 5 layouts shown
in Figure 7, with around 8 training and 8 testing pairs of
humans per layout (39 training pairs and 37 testing pairs in
total). The roles of the players are not symmetric; for each

demonstration pair we treat player 0 as the expert and player
1 as the partner. The state is a feature vector of size 62, and
there are 6 available actions for each player.

In Figure 7, we show the results of offline evaluation on each
of the five layouts from the dataset. Similar to before, we plot
the negative log-likelihood loss over the held-out expert data in
the test dataset. The demonstration for each human-human pair
in the dataset contains about 1000 timesteps on average, which
means the total available sample size is limited. Nevertheless,
we can see our low-rank partner approach performs well, by
inferring the strategy of the partner and predicting the expert
actions that can complement this partner.

TABLE III
REWARD IN OVERCOOKED BEFORE/AFTER ADAPTING TO TEST PARTNERS,

AVERAGED OVER THE 5 LAYOUTS SHOWN IN FIGURE 7.

lrp mt mod maml lt

before 21 ± 2 23± 2 17 ± 2 7 ± 1 21 ± 2
after 24± 2 21 ± 2 19 ± 2 9 ± 1 22 ± 2

Next, we look into static evaluation in Table III, where
we examine the environment rewards attained by the policies
when playing with new static partners (averaged over all 5 lay-
outs). However, we are given only a dataset of demonstrations,
and not the partner policies themselves. As a workaround, we
first run Behavioral Cloning over the demonstration dataset
to obtain a set of BC partner policies, which we then use to
evaluate with our adaptive policies. The rewards attained using
this approach are generally poorer because the BC partner poli-
cies struggle at novel states, which occur often for conditional
MAIL. Still, the results from static evaluation align closely
with the same trends we observe from offline evaluation, with
the low-rank policy exhibiting good adaptation performance.

VI. USER STUDY: ONLINE ADAPTATION TO HUMANS

To see if our method translates well to collaboration with
humans, we conduct a study with real humans via a web ver-
sion of Overcooked. Unlike previous experiments that evaluate
against offline datasets or static partners, the user study pairs
our adaptive policies against (non-stationary) humans.

A. Participants and Procedures

We recruited 40 workers from the crowd-sourcing platform
Prolific and 10 local participants, for a total of 50 users (48%
Female, median age: 28). The participants were paid at the
standard minimum wage rate, and participants from Prolific
were prescreened to be from United States and Canada to limit
the network latency of playing the online Overcooked game
in real time. After providing informed consent, our users were
provided text instructions along with a video demonstration
of how to play the game. They were then asked to answer a
3-question quiz to check that they understand the rules of the
game. Our study is approved by IRB-49406.

We use the Counter Circuit layout and the adaptive AI
policies for Overcooked trained from the previous section.
Each participant plays against all 5 of the adaptive policies

Cramped Room

Asymmetric
Advantages

Coordination Ring

Forced Coordination

Counter Circuit

Fig. 7. Overcooked: we use the human-human dataset from [7]. For each of
the 5 layouts in the dataset, we compute the loss of adapting to each new
testing partner, and plot the average loss over all the testing partners. For each
new partner we have around 1k samples of their actions.

shown in Figure 8, in a randomized order, repeated twice for
a total of 10 games (40 seconds per game). In each game,
the human participant controls Player 2, and the AI agent
controls Player 1. The AI agents adapt their policies based only
on the human’s actions (without access to true or estimated
environment rewards).
- Independent Variables: We vary the policy used to control
the AI agent. We choose from one of lrp, mt, mod, maml, lt
in a random order for each user.
- Dependent Measures: We measure the score (environment
reward) attained by the human-AI pair. We report the score
from the first interaction (before adapt) and from the second
interaction (after adapt) for each policy.
- Hypothesis: Based on the results from offline/static experi-
ments, we hypothesize that lrp policy best adapts to the human
partners, as measured by after adapt score.
- Results: In Figure 8 we plot the results of our online user
study. Only the lrp and lt policies attain a reward of 20 after
adaptation, with the lrp indeed giving the highest after adapt

Fig. 8. User study: of the 5 policy types, lrp reaches the highest reward after
adapting to human partners.

score of 26 ± 2 (statistically significant compared to all the
baselines, p < 0.05). This aligns with the trends we observe
from the static/offline evaluation of the Overcooked game, in
which the lrp also adapted well to new partners.

VII. CONCLUSION

Summary. We study the problem of adapting to new partners
in multi-agent tasks, under the imitation learning setting of
predicting the expert’s actions from the partner’s actions. We
formalize the problem setting, learning objective, and the
different evaluation metrics for this framework of conditional
multi-agent imitation learning. To address the challenges with
learning from limited data, we then propose a low-rank tensor
decomposition approach using Tensor Trains. Using a low-
rank prior, our model infers the strategy of a new partner
and predicts the corresponding expert actions based on the
estimated strategy. We describe how to scale up Tensor Trains
by parameterizing their functional variant with neural net-
works, and demonstrate their ability to adapt to new partners
on a variety of environments spanning offline, static, and
online evaluation. We test on a collaborative bandit task,
a continuous-action particle task, the Hanabi game with 4-
players, and finally the game of Overcooked in a user study.
Our work promotes the novel framework of conditional multi-
agent imitation learning, and establishes a promising approach
for this framework through incorporating low-rank structure.
Limitations and Future Work. Our model conditions on a
new partners actions, but does not actively steer the interaction,
e.g., in a Bayesian active learning style. Exploring more
active adaptation methods can lead to better convergence
guarantees, which is important if a new partner defaults to
some non-informative behavior. Moreover, for the non-human
experiments, we currently generate the set of partners using
self-play with random seeds. Incorporating techniques from
literature of training diverse sets of agents can improve the
adaptation to new partners.

VIII. ACKNOWLEDGMENT

The authors would like to acknowledge NSF awards
2006388 and 2125511, the Air Force Office of Scientific
Research, and the Office of Naval Research.

REFERENCES

[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,
Alexandre Robicquet, Fei-Fei Li, and Silvio Savarese.
Social LSTM: human trajectory prediction in crowded
spaces. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, 2016.

[2] Muhammad Awais and Dominik Henrich. Human-robot
collaboration by intention recognition using probabilistic
state machines. In 19th International Workshop on
Robotics in Alpe-Adria-Danube Region (RAAD 2010),
pages 75–80. IEEE, 2010.

[3] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil
Burch, Marc Lanctot, H Francis Song, Emilio Parisotto,
Vincent Dumoulin, Subhodeep Moitra, Edward Hughes,
et al. The hanabi challenge: A new frontier for ai
research. Artificial Intelligence, 280:103216, 2020.

[4] Daniele Bigoni, Allan P Engsig-Karup, and Youssef M
Marzouk. Spectral tensor-train decomposition. SIAM
Journal on Scientific Computing, 38(4):A2405–A2439,
2016.

[5] Noam Brown and Tuomas Sandholm. Superhuman AI for
multiplayer poker. Science, 365(6456):885–890, 2019.

[6] J Douglas Carroll and Jih-Jie Chang. Analysis of
individual differences in multidimensional scaling via an
n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[7] Micah Carroll, Rohin Shah, M. Ho, T. Griffiths, S. Se-
shia, P. Abbeel, and A. Dragan. On the utility of learning
about humans for human-ai coordination. In Advances
in Neural Information Processing Systems, 2019.

[8] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[9] Kanad Chakraborty, Kishan Mehrotra, Chilukuri K Mo-
han, and Sanjay Ranka. Forecasting the behavior of
multivariate time series using neural networks. Neural
networks, 5(6):961–970, 1992.

[10] Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu,
and Siddhartha Srinivasa. Trust-aware decision making
for human-robot collaboration: Model learning and plan-
ning. ACM Transactions on Human-Robot Interaction
(THRI), 9(2):1–23, 2020.

[11] Andrzej Cichocki, Namgil Lee, Ivan V Oseledets, A-
H Phan, Qibin Zhao, and D Mandic. Low-rank tensor
networks for dimensionality reduction and large-scale
optimization problems: Perspectives and challenges part
1. arXiv preprint arXiv:1609.00893, 2016.

[12] Felipe Codevilla, Matthias Müller, Antonio López,
Vladlen Koltun, and Alexey Dosovitskiy. End-to-end
driving via conditional imitation learning. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pages 4693–4700. IEEE, 2018.

[13] Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan,
and Paulo M Engel. Dealing with non-stationary en-
vironments using context detection. In Proceedings of

the 23rd international conference on Machine learning,
pages 217–224, 2006.

[14] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter
Abbeel, and Sergey Levine. Learning modular neural
network policies for multi-task and multi-robot transfer.
In 2017 IEEE international conference on robotics and
automation (ICRA), pages 2169–2176. IEEE, 2017.

[15] Anca D. Dragan and Siddhartha S. Srinivasa. Formal-
izing assistive teleoperation. In Robotics: Science and
Systems (RSS), 2012.

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learn-
ing, pages 1126–1135. PMLR, 2017.

[17] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. One-shot visual imitation learning
via meta-learning. In Conference on Robot Learning,
pages 357–368. PMLR, 2017.

[18] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat,
Shimon Whiteson, Pieter Abbeel, and Igor Mordatch.
Learning with opponent-learning awareness. In Pro-
ceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 122–
130. International Foundation for Autonomous Agents
and Multiagent Systems, 2018.

[19] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[20] Jakob N. Foerster, H. Francis Song, Edward Hughes,
Neil Burch, Iain Dunning, Shimon Whiteson, Matthew M
Botvinick, and Michael H. Bowling. Bayesian action
decoder for deep multi-agent reinforcement learning. In
International Conference on Machine Learning, 2018.

[21] The garage contributors. Garage: A toolkit for repro-
ducible reinforcement learning research. https://github.
com/rlworkgroup/garage, 2019.

[22] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk.
High-dimensional stochastic optimal control using con-
tinuous tensor decompositions. The International Journal
of Robotics Research, 37(2-3):340–377, 2018.

[23] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk.
A continuous analogue of the tensor-train decomposition.
Computer Methods in Applied Mechanics and Engineer-
ing, 347:59–84, 2019.

[24] Jonathan Gray, Adam Lerer, Anton Bakhtin, and Noam
Brown. Human-level performance in no-press diplomacy
via equilibrium search. In International Conference on
Learning Representations, 2021.

[25] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable
trajectories with generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2255–2264, 2018.

[26] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gra-
dient descent happens in a tiny subspace. arXiv preprint

https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

arXiv:1812.04754, 2018.
[27] Richard A. Harshman. Foundations of the parafac proce-

dure: Models and conditions for an ”explanatory” multi-
model factor analysis. 1970.

[28] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative filter-
ing. In Proceedings of the 26th international conference
on world wide web, pages 173–182, 2017.

[29] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag,
and Enrique Munoz de Cote. A survey of learning in
multiagent environments: Dealing with non-stationarity.
arXiv preprint arXiv:1707.09183, 2017.

[30] Pablo Hernandez-Leal, Benjamin Rosman, Matthew E
Taylor, L Enrique Sucar, and Enrique Munoz de Cote. A
bayesian approach for learning and tracking switching,
non-stationary opponents. In Proceedings of the 2016
International Conference on Autonomous Agents & Mul-
tiagent Systems, pages 1315–1316, 2016.

[31] Hengyuan Hu and Jakob N Foerster. Simplified action
decoder for deep multi-agent reinforcement learning. In
International Conference on Learning Representations,
2019.

[32] Shervin Javdani, Siddhartha Srinivasa, and J. An-
drew (Drew) Bagnell. Shared autonomy via hindsight
optimization. In Proceedings of Robotics: Science and
Systems, Rome, Italy, July 2015.

[33] Hong Jun Jeon, Dylan Losey, and Dorsa Sadigh. Shared
autonomy with learned latent actions. In Proceedings of
Robotics: Science and Systems (RSS), July 2020.

[34] Bing Cai Kok and Harold Soh. Trust in robots: Chal-
lenges and opportunities. Current Robotics Reports,
pages 1–13, 2020.

[35] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k,
Yisong Yue, and Hal Daumé. Hierarchical imitation and
reinforcement learning. In International Conference on
Machine Learning, pages 2917–2926. PMLR, 2018.

[36] Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey.
Coordinated multi-agent imitation learning. In Interna-
tional Conference on Machine Learning, pages 1995–
2003. PMLR, 2017.

[37] Séverin Lemaignan, Mathieu Warnier, E Akin Sisbot,
Aurélie Clodic, and Rachid Alami. Artificial cognition
for social human–robot interaction: An implementation.
Artificial Intelligence, 247:45–69, 2017.

[38] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing
Systems, pages 6389–6399, 2018.

[39] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail:
Interpretable imitation learning from visual demonstra-
tions. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, pages
3815–3825, 2017.

[40] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter
Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Ad-

vances in Neural Information Processing Systems, 2017.
[41] Truong-Huy Dinh Nguyen, David Hsu, Wee-Sun Lee,

Tze-Yun Leong, Leslie Pack Kaelbling, Tomas Lozano-
Perez, and Andrew Haydn Grant. Capir: Collaborative
action planning with intention recognition. In Seventh
Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 2011.

[42] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[43] Stefanos Nikolaidis, David Hsu, and Siddhartha Srini-
vasa. Human-robot mutual adaptation in collaborative
tasks: Models and experiments. The International Jour-
nal of Robotics Research, 36(5-7):618–634, 2017.

[44] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu,
and Julie Shah. Efficient model learning from joint-
action demonstrations for human-robot collaborative
tasks. In 2015 10th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pages 189–196.
IEEE, 2015.

[45] Ivan V Oseledets. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317,
2011.

[46] Rohan R. Paleja, Andrew Silva, Letian Chen, and
Matthew C. Gombolay. Interpretable and personal-
ized apprenticeship scheduling: Learning interpretable
scheduling policies from heterogeneous user demonstra-
tions. In Advances in Neural Information Processing
Systems 33 (NeurIPS), 2020.

[47] Philip Paquette, Yuchen Lu, Steven Bocco, Max O Smith,
Satya Ortiz-Gagné, Jonathan K Kummerfeld, Satinder
Singh, Joelle Pineau, and Aaron Courville. No-press
diplomacy: Modeling multi-agent gameplay. In Advances
in Neural Information Processing Systems, 2019.

[48] Ashwini Pokle, Roberto Martı́n-Martı́n, Patrick Goebel,
Vincent Chow, Hans M Ewald, Junwei Yang, Zhenkai
Wang, Amir Sadeghian, Dorsa Sadigh, Silvio Savarese,
et al. Deep local trajectory replanning and control
for robot navigation. In 2019 International Conference
on Robotics and Automation (ICRA), pages 5815–5822.
IEEE, 2019.

[49] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and
Anca D. Dragan. Information gathering actions over
human internal state. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 66–73, 2016.

[50] J Ben Schafer, Dan Frankowski, Jon Herlocker, and
Shilad Sen. Collaborative filtering recommender systems.
In The adaptive web, pages 291–324. Springer, 2007.

[51] Andy Shih, Arjun Sawhney, Jovana Kondic, Stefano
Ermon, and Dorsa Sadigh. On the critical role of
conventions in adaptive human-{ai} collaboration. In
International Conference on Learning Representations,
2021.

[52] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian

Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[53] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano
Ermon. Multi-agent generative adversarial imitation
learning. In Advances in Neural Information Processing
Systems (NIPS), pages 7461–7472, December 2018.

[54] Ledyard R Tucker. Some mathematical notes on three-
mode factor analysis. Psychometrika, 31(3):279–311,
1966.

[55] Rose E. Wang, Sarah A. Wu, James A. Evans, Joshua B.
Tenenbaum, David C. Parkes, and Max Kleiman-Weiner.
Too many cooks: Coordinating multi-agent collaboration
through inverse planning. In International Foundation
for Autonomous Agents and Multiagent Systems, 2020.

[56] Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and
Dorsa Sadigh. Influencing towards stable multi-agent
interactions. In Proceedings of the 5th Conference on
Robot Learning (CoRL), November 2021.

[57] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn,
and Dorsa Sadigh. Learning latent representations to
influence multi-agent interaction. In Proceedings of the
4th Conference on Robot Learning (CoRL), November
2020.

[58] Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi.
Harnessing structures for value-based planning and re-
inforcement learning. In International Conference on
Learning Representations, 2020.

[59] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean
Wu. Tt-rec: Tensor train compression for deep learning
recommendation models. In Conference on Machine
Learning and Systems (MLSys), 2021.

[60] Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-
agent adversarial inverse reinforcement learning. In
International Conference on Machine Learning, pages
7194–7201. PMLR, 2019.

[61] Chongjie Zhang and Victor Lesser. Multi-agent learning
with policy prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, 2010.

APPENDIX

We provide more details on the training and testing setup
of conditional MAIL. We assume the multi-agent environment
has n agents indexed 0 to n−1, and the ego-agent is agent 0.

Algorithm 1: Training on diverse trajectories
Input: A dataset D of k joint trajectories. Each joint

trajectory is collected from a different group of
n agents that have converged with each other.

Output: A joint policy πψ that will be used as an
adaptive policy, with trainable parameters ψ.

1 Initialize a joint policy πθ,ψ;
2 while training do
3 for j ← 1, k do
4 θ ← θ +∇θ

∑
Dj

∑n−1
i=0 log πθ,ψ(ai|s, ψj);

5 ψ ← ψ +∇ψ
∑
Dj

∑n−1
i=0 log πθ,ψ(ai|s, ψj);

Return: πψ

In Algorithm 1, we have a dataset of k joint trajectories,
where each joint trajectory corresponds to the behavior of a
group of n agents playing in the environment. We assume
that the agents have converged to each other, so the k joint
trajectories can be thought of as data from different equilibria
of the n-player environment. Our goal as the ego-agent is to
produce the action for player 0 (i.e. a0). To do so we learn
a joint policy πθ,ψ that has the policy parameters θ as well
as the partner-strategy parameters ψ that is different based on
the index of the joint trajectory (i.e. the partner ID, or the
equilibria ID). This formulation is agnostic to the algorithm
used (e.g. lrp, mt, mod), but concretely for lrp we note that
θ corresponds to g1 and ψ corresponds to g2 in Equation 3.

Algorithm 2: Adapting to new partners

Input: A new group of partner policies π1:n−1, and
the policy πψ from Algorithm 1.

1 Re-initialize partner-strategy parameters ψ;
2 while environment steps do
3 a0 ← πψ(a0|s);
4 for i← 1, n− 1 do
5 ai ← πi(ai|s);
6 ψ ← ψ +∇ψ

∑n−1
i=1 log πψ(ai|s, ψ0);

7 s← T (·|s, a0:n−1);

At test time we need to coordinate with one new group of
partners. The group has n − 1 partner policies for the n − 1
roles ranging from π1 to πn−1, and the goal of our ego-agent
policy is to produce the actions a0 for agent 0. Our ego-agent
policy πψ is in fact a joint policy: its predictions for the other
n − 1 actions will be used to finetune its parameters ψ, and
only its predictions for action a0 will be used to step through
the environment (combined with the actions a1:n−1 from the
other partner policies).

	I Introduction
	I-1 Evaluation
	I-2 Data Scarcity

	I-A Contributions

	II Related Work
	III Problem Statement
	III-A Evaluation Metrics
	III-A1 Offline Evaluation
	III-A2 Static Evaluation
	III-A3 Online Evaluation

	IV Learning a Low Rank Policy Space
	IV-A Tensor Train Decomposition
	IV-B Functional Tensor Train
	IV-C Conditional Policies

	V Experiments
	V-A Collaborative Bandits
	V-B Particle Environment
	V-C Hanabi
	V-D Overcooked

	VI User Study: Online Adaptation to Humans
	VI-A Participants and Procedures

	VII Conclusion
	VIII Acknowledgment
	Appendix

