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Abstract 

This paper identifies a number of issues that we 
believe are important for  hardware/software codesign. 
The issues are illustrated b y  a small comprehensible 
example: a priority queue. Based on simulations 
of a real application, we suggest a combined hard- 
ware/software realization of i.he priority queue. 

1 Introduction 

-4 priority queue is a data structure with a simple 
interface which in many applications is a performance 
bottleneck. For example, in event driven simulators, 
the operations on a priority queue may account for 
a significant fraction of the computation time. Since 
the interface to  a priorit,y queue is simple and well 
defined, it seems like an obvious candidate for hard- 
ware realization while leaving other parts of the appli- 
cation in software. Despite its simplicity the priority 
queue illustrates several issues that are also relevant in 
more complex and less transparent examples of hard- 
ware/software codesign: 

0 the significance of an efficient interface between 
software and hardware components, 

0 the difference between optimal algorithms suited 
for software and for hardware realizations, 

0 the importance of estimating dynamic properties 
like communication traffic and execution profiles, 

0 the variety of aspects involved in hardware/ 
software partitioning (speed, communication traf- 
fic, area, pin-count, etc.) 

The paper uses the priority queue to explain and il- 
lustrate issues that we believe are of more general in- 
terest in codesign. In this paper the description of the 

0-8186-6315-4/94 $04.00 0 19!34 IEEE 
81 

specific priority queue example is merged with obser- 
vations of more general codesign issues. The sections 
containing general observations are marked. The pa- 
per is organized as follows: first the functionality of 
the priority queue is specified (section 2),  and a simple 
application is sketched (section 3). Section 4 describes 
efficient realizations of priority queues both in soft,ware 
and in hardware. Based on the properties of these re- 
alizations, section 5 discusses the issues involved in an 
efficient combination of software and hardware real- 
ization. 

2 The priority queue 

This section specifies the functional behavior of a 
priority queue. There are many ways to give such 
a specification. In connection with codesign, a main 
consideration is to specify in a way that is not biased 
towards either hardware or software. 

Informally, a priority queue is a data structure that 
holds a set of elements from a domain with a total 
ordering relation, <, hence, any two elements can be 
compared. 

Domains: 
PQ = ELEMENT& 
ELEMENT = DATA x PRIORITY 

Ordering: 
<:  ELEMENT x ELEMENT -+ BOOL 

Qps < :  PRIORITY x PRIORITY + BOOL 
el < e2 e PRIORITY(e1) < PRIORITY(e2) 

There are three basic operations on the priority queue: 
insert, remove, and minimum. New elements may be 
inserted at any time (unless the queue is full). Sim- 
ilarly, the smallest of the elements currently in the 
queue may at any time be removed (unless the queue 
is empty). Hence, the design of a priority queue must 
ensure that when an element is removed, it is indeed 
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the smallest (according to  the ordering relation). Fi- 
nally, the minimum operation returns the smallest of 
the elements currently in the queue without removing 
the element. 

Operations: 
insert: ELEMENT x PQ t PQ 
remove: PQ + ELEMENT x Pq 

& y ~  minimum: PQ t ELEMENT 

insert(e, pq) E pq U {e} 
remove(pq1 

VeEpq minimum(pq) 5 e A 

- let m = minimum(pq1 
- in (m. pq\{m}) 

3eEpq . minimum(pq1 = e 

At a given time, the minimum element is the element 
with the smallest priority value currently in the pri- 
ority queue; this is the element extracted by the next 
remove operation. 

The exact details of the interface to the priority 
queue are not specified; they are dependent on the 
environment in which the priority queue is going to 
be used, and on t8he realization (hardware/software) 
chosen. For a software realization, the priority queue 
could be specified as an abstract data type with the 
three operations implemented as procedure calls. On 
the other hand, for a hardware realization it could be 
more useful to define the interface in terms of commu- 
nication ports, e.g., interface registers. 

General observation. The specification illustrates 
an important issue, namely the importance of giving 
implementation independent specifications. Although 
we do not have a final proposal, the priority queue 
sketches an approach where the specification is given 
in two levels: the top level specifies functional prop- 
erties in an implementation independent way (also ig- 
noring issues like finite capacities of buffers, speed, 
etc.). The priority queue specification given above is 
an example of this. The bottom level gives one or 
more specifications of implementation dependent in- 
terfaces which may contain restrictions like capacity, 
response time etc. Both hardware and software imple- 
mentations are discussed in section 4. Such a two-level 
approach is also found in VHDL where it is possible to 
define many different implementations of the same en- 
tity and in Larch [4] where it is possible to define many 
different programming language specific interfaces to 
the same abstractly specified component. 

A wide span of different approaches to  cospecifica- 
tion are currently investigated. Some use existing lan- 
guages for hardware description, such as VHDL [2], 
or software, such as C [3], others advocate using an 
unbiased language [8],  and there are also attempts to  

use graphical rather than symbolic specifications [ 5 ] .  

In the next section a specific application of a pri- 
ority queue is presented. Possible realizations in both 
hardware and software are discussed for this applica- 
tion. It is illustrated that these hardware/software 
realizations are radically different. We believe that 
this is often the case. One reason is that software re- 
alizations are based on sequential algorithms, whereas 
hardware solutions often exploit parallelism. 

3 An application 

A priority queue can be used in an event driven 
simulator executing a model of some dynamic system 
(e.g., a network) where certain events (e.g., an activ- 
ity in the network) lead to new events which must be 
simulated a t  a later time. The events awaiting simu- 
lation are stored in a priority queue where the priority 
is the starting time of the event. Hence, the smallest 
element in the priority queue is the next event to be 
simulated. This leads to the following main loop of 
the simulator: 

not empty & 
next:= remove; 
simulate (next) 

The details of simulate are not discussed here, but it 
may lead to insertion of new events into the prior- 
ity queue. A complete simulator contains many other 
parts, for example, a user interface, logging mecha- 
nisms etc., but from a performance point of view the 
loop shown above is a key part. Our experiments with 
the public domain simulator, Netsim, show that more 
than 30% of the run time is spent in the operations 
on the priority queue. The next section contains more 
details about the profiling. 

General observation. In this application the goal is 
to get a speed-up for the cost of additional hardware. 
However, if the additional hardware is too expensive, 
e.g., several ASIC’s are needed, or the speed-up is not 
significant, e.g., it is less than say 10 percent, then 
the conclusion may be that the codesign solution is 
not profitable. Such cost/benefit considerations are 
necessary to direct the development and evaluate the 
final solution. In different applications there might be 
other trade-offs considering, e.g., space or power con- 
sumption. Often it is not possible in advance to give a 
more precise formulation of the cost/benefit trade-offs 
than the informal remarks given above. 
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3.1 Profiling 

This section presents the key observations obtained 
by profiling an existing simulator, Netsim, which is 
public domain and distributed by MIT and University 
of Washington, Seattle. Netsim was primarily chosen 
because the source code is available and its interface 
to the priority queue is very clean. 

The following measurements are used later in this 
paper when discussing hardwarelsoftware partition- 
ing and other codesign issues. A simulation exam- 
ple called nsfworld, distributed along with the Net- 
sim simulator is modified (the example is modified by 
creating 8 parallel copies of the network) and used as 
input data to the simulator when profiling. When pro- 
filing the execution time, the simulator is used as it is 
distributed. 

It must be realized that the profiling results lead to 
an optimization of the priority queue with respect to 
the environment in which it is used (nsfworld); it is 
therefore important that the simulation environment 
is representative of the practical environment of the 
priority queue. Ideally, i5 more careful investigation 
of the practical use of the priority queue should be 
carried out, however, to illustrate the codesign issues 
the single simulation example nsfworld is sufficient. 

As it is illustrated in table 1 the operations on the 

Operation Number of Total execution 
operat ions 

remove 2805 132 

Table 1: Priority queue operations in Netsim. 

priority queue in the pure software solution (the Net- 
sim simulator) take up a significant portion of the ex- 
ecution time. A major speed-up of the priority queue 
would therefore result in an increase in the overall per- 
formance of the simulator. In the rest of the profiling 
experiments a sequence of operations on the priority 
queue has been recorded and used as input for the 
profiling. A few specialized operations used to search- 
and-delete specific events have been filtered out. 

The initial analysis showed that the maximum 
queue length during a simulation is 453, and the av- 
erage queue length is 182. A more detailed analy- 
sis of the insertions into the priority queue is shown 
in table 2. It shows the distribution of priorities of 
new elements a t  the moment of insertion compared to 

the priorities of elements already in the queue, i.e., it 
shows where in the queue a new element belongs. The 
queue is divided into 10 segments of equal size (cor- 
responding to  the columns numbered 1-10, segment 1 
is the first 1/10 of the queue, segment 10 is the last 
1/10 of the queue). Line A shows the absolute distri- 
bution obtained by statically dividing the entire queue 
into segments; line B shows the relative distribut,ion 
obtained by dynamically dividing the portion of the 
queue currently in use into segments. The segments 
are solely used for the profiling; they have no physical 
counterpart in the software and/or hardware realiza- 
tions mentioned in this paper. 

ISeg.11 11 21 31 41 5 1  61 71 81 91101 
I " I 1  I I I I I I I I I I 

I A 11721111121 31 11 11 11 01 0 1 0 1  
I B 11561101 71 21 21 31 2 1  41111 31 
A) Insertions relative to maximum queue length 
B) Insertions relative to dynamic queue length 

Table 2: Distribution of insertions into segments (%). 

Table 2 shows that 95% of the elements are inserted 
into the first 30% (first three segments) of the queue. 
The reason for this could be that sometimes the queue 
is short, and in this situation, elements are always in- 
serted into the first part of the queue. Another expla- 
nation could be that the event based simulator often 
schedules events to be fired soon compared to  the other 
already scheduled events. This later possibility is an- 
alyzed by calculating relative to the dynamic queue 
length (B) instead of the maximum queue length (A).  
The table shows that most of the inserted elements 
(56%) are inserted into the first 10% of the queue even 
when calculating relative to the dynamic queue length 
(see line B). This also follows the distribution found 
in [IO]. 

The observation that elements are usually inserted 
in the first segment calls for a fine grained analysis of 
the very first positions in the priority queue. 

I Position number 11 1 I 2 I 3 I 4 I 5 I 
I Insertion rate 1 1  43.6 I 7.0 I 0.6 I 0.1 I 011 

Table 3: Insertions into the first five positions (%). 

Table 3 gives a detailed overview of the insertion rate 
at the first five positions in the priority queue. Most 
of the scheduled events (43.6%) are sceduled as the 
first event. 
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The first few positions in the priority queue are very 
busy, and it is therefore obvious to seek a codesign so- 
lution that exploit,s this property. Another issue that 
might effect the realization is the dynamic variations 
inside the queue. For example, if the elements are go- 
ing to be stored in a sorted array structure in hardware 
where only adjacent positions are connected, then it is 
important that the elements are not going to be moved 
back and forth over many positions. This int,ernal ac- 
tivity is analyzed in the following measurements. 

Table 4 shows the dynamic variations in queue 
length, when sampled for each k IO-operations ( in-  
sert or remoue). The figure shows that the dynamic 

interval (k) -- 
10 

_ _ ~  - 
Sample I Max. delta I ilv. delta 

queue-size queue-size 
10 0.91 

1000 
- 10000 310 11.22 

~~ 

General observation. This section presented some 
results from profiling an application of the priority 
queue. The results are utilized in section 5 to propose 
a hardware/software partitioning. There is a sirnilar 
need for dynamic performance data in many other ap- 
plications. In our case, a complete C program was 
available for doing the profiling. However, in other 
applications a complete implementation might not be 
available. I t  is therefore important to develop meth- 
ods/tools for analyzing dynamic models early in the 
design phase. 

4 Realization of a priority queue 

Because of the importance of priority queues, many 
different realizations have been proposed both in soft- 
ware and in hardware. A few of these realizations are 
described below. Let n denote the maximum number 
of elements which can be contained in the queue at 
any one time. 

4.1 Software realization 
Table 4: Variations in queue size. 

variation in the queue length is very small. For ex- 
ample, when sampling 1000 IO-operations 1,he aver- 
age case is a change in queue size (delta queue-size) 
of only 5.34. This average case occurs, e.g., if there 
are 503 znsert operations and 497 remove operations 
leading to  a delta queue-size of 503-497=6, hence, the 
insert/re,moue ratio is almost 1 / 1. 

The IO-operations are interleaved as shown in ta- 
ble 5 .  The table is calculated by ignoring minimum 

I Remove ( 1  69 I 2 3  I 6 I 1 I <1 I<II 
Table 5: Successive insert and remove operations (%). 

operations; the numbers show the percentage of the 
operations that occur in sequences of a given length, 
for example, 33% of the insert operations occur in se- 
quences of length 2. I t  can be seen that the common 
case is one insert operation followed by one remove 
operation. 83% (=67+33/2) of the insert operations 
are immediately followed by a remove. These obser- 
vations illustrate that the activity at the front of the 
queue is big, but small inside the queue. 

This section describes well known software realiza- 
tions of a priority queue. A simple realization is ob- 
tained by maintaining a sorted list of the elements 
currently in the queue. Removing an element simply 
consists of copying and deleting the first element of 
the list. On the other hand, an insertion requires that 
the proper place of the new element is found in order 
to keep the list sorted; this requires O(n) (worst case 
operation time). 

There is no need to  keep the elements of the pri- 
ority queue completely sorted, all that i s  needed is 
to know the minimal element currently in the queue. 
The heap [9] is a suitable data structure for which it is 

Figure 1: Heap structure. 

possible to  obtain operation times of O(log(n))  (worst 
case). The heap is a tree like structure (figure 1) where 
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care is taken to maintain a balanced tree. The Net- 
sim simulator mentioned in section 3.1 uses a heap to 
represent the priority queue. 

4.2 Hardware realization 

This section describes a hardware realization of a 
priority queue. Such a realization provides faster oper- 
ations on the queue because it is possible to do many 
steps of the computation in parallel. The interface 
to the priority queue consists of two registers: an in- 
put register, an, and an out,put register, out (figure 
2).  Each of these registers may contain an element 
from the domain of the priority queue, and each has 
additional status information indicating whether the 
register is full or empty. An element may be inserted 
in the queue when the input register is empty. Sim- 
ilarly, an element may be removed when the output 
register is not empty. 

4 
' priority queue j 

case). Hence, there is a potential for reducing the op- 
eration times significantly compared with a software 
realization. 

General observation. The large difference between 
the hardware and the software realization points out 
the importance of computational models that do not 
favor one or the other. We believe that the sequenc- 
ing found in most software makes it difficult to syn- 
thesize a good hardware solution from an optimized 
software description. There are alternative computa- 
tional models avoiding explicit sequencing [l, 71. 

5 Partitioning 

This section discusses how to partition the event 
driven simulator into hardware and software compo- 
nents. To summarize the preceding sections, profiling 
of a large C program (Netsim) reveals that a few pro- 
cedures implementing the priority queue operations 
account for more than 30% of the execution time, one 
could therefore hope for a performance improvement 
by placing some or all of the priority queue in hard- 
ware. However, a number of observations can be made 
from this simple example. 

5.1 Hardware and software differences 

Figure 2: Hardware interface. 

The hardware realization consists of an array of similar 
registers and a number of comparators which ensure 
that elements with a large priority value are moved 
backwards in the queue while small elements are kept 
in the front (figure 3). In fact, the smallest element 
currently in the queue is contained in the first (left- 
most) register. I t  is therefore not necessary to wait for 
the priority queue to be completely sorted when ex- 
tracting the smallest element. The detailed design is 

An efficient software realization of a priority queue 
is a heap whereas the hardware realization is based 
on a linear array of registers with parallel comparison 
and movement of elements. I t  does not seem likely 
that a few simple transformations can synthesize one 
of these realizations from the other; they are based on 
radically different algorithms, in fact, they are based 
on radically different computational models. It seems 
that this might also be the case in many other appli- 
cations of hardwarelsoftware codesign and that this 
should be accounted for in tools and techniques for 
partitioning and synthesis. 

5.2 Integrated circuit constraints in 

Etm The regular structure of the priority queue makes 
out it well suited for realization as an integrated circuit. 

However, the area of a single stage of the queue is dom- 
inated by the size of the registers (one D-flip-flop = 8 
transistors) that is needed to  store each element. A 
synchronous bit-serial realization is assumed; in case 
of a parallel realization the routing and the parallel 
comparators would occupy a major part of the total 
area. Each element consists of two 32-bit integers; one 

Figure 3: Hardware realization. 

not given here, a systolic algorithm is presented in [6]. 
However, it is important to note that a hardware real- 
ization achieves constant operation times (0( 1) worst 
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32-bit int,eger for the priority value, and one for the 
event ident,ifier (pointer to data). Note that one stage 
of the queue is capable of storing two data-elements. 
Therefore, approximately 1000 transistors are needed 
in each stage for the registers only, out of a total of 
approximately 1500. If it is possible to achieve 10000 
transistors per mm2 then 6 queue-stages per mm2 is 
possible, or 300 stages per 50mm2. These figures in- 
dicate that it is possible (but expensive) to realize the 
whole priority queue with the proposed hardware so- 
lution (array of registers). In section 5.4 a better uti- 
lization of the hardware is suggested. 

In the bit-serial realization, the power dissipation 
is higher than a parallel realization with similar tran- 
sistor count and clock-rate, because in the bit-serial 
realization all elements are clocked/shifted forward all 
the time. All elements must be shifted through the 
bit-serial comparators to  compute the internal state 
of the priority queue. 

5.3 Hardware/software interface 

To utilize the fast operation times achieved by a 
hardware realization the interface to the software must 
have a comparable speed. In case of the priorit,y queue, 
small amounts of data is communicated frequently. 
The interface can be established by making the pri- 
ority queue chip memory mapped. Inserting elements 
is, seen from the software side of the interface, similar 
to writing to  a variable or memory location. For ex- 
ample, writing data (an element) to a specific address 
could be interpreted as insert, and reading a specific 
address could be interpreted as a remove operation. 
The latency of such an operation depends on the re- 
alization, but the latency is most likely greater than a 
normal memory operation. 

Netsim simulations show that there are up to 10000 
insert (and 10000 remove) operations per second (us- 
ing a DecStation 5240, 40MHz MIPS). In this section 
an interface spending one micro second per transfer 
is examined (one transfer = 2x32bit). One micro sec- 
ond is arbitrarily chosen, but the idea is to examine 
how fast a bus that is needed. If one micro second 
is used per transfer, then 20000 micro seconds per 
second (2% of the CPU time) are spent waiting on 
the interface. During one micro second a CPU (like 
the MIPS) executes approximately 40 simple instruc- 
tions. In general, if an application uses 80% of the 
CPU time on 20000 priority queue operations per sec- 
ond, and a reduction from 80% to 5% (total speed up 
= 4) is needed then 80000 operations per second are 
required (= 8% of the CPU time). The bus (inter- 
face) between a CPU and the main memory (RAM) 

RAM A 

Figure 4: Hardware/software interface. 

will in most cases be faster than one micro second and 
this bus will therefore be fast enough for the interface 
between the CPU (software) and the priority queue 
(hardware). However this example also shows that a 
latency greater than one micro second can not be tol- 
erated, it will lead to  poor performance. Note that 
the hardware is assumed to be fast, i.e., the latency 
involved in a transfer is dominated by the bus proto- 
col. 

General observation. The efficiency of the inter- 
face is very important. By choosing an inconvenient 
or slow interface one can easily loose the performance 
gain obtained by the hardware realization of the time 
crucial operations. We believe that a variety of differ- 
ent interfaces are needed to efficiently realize the large 
variety found in practical applications. 

5.4 Size of a priority queue 

It is very expensive to create a large priority queue 
using an integrated circuit realization like the one cle- 
scribed in section 4.2 and 5.2. For example, a queue 
with a capacity of 1000 elements may require more 
than one chip. Furthermore, profiling indicates t,hat 
this would also be an inefficient use of the hardware, 
since most of the changes to the queue take place to- 
wards the front, when used to schedule the events in 
Netsim. 

Alternatively, the priority queue can be imple- 
mented by combining two priority queues in serial, 
with one fast priority queue (e.g., a hardware realiza- 
tion as an array of registers) at the front, and one 
slower but bigger priority queue with a better utiliza- 
tion of the area (e.g., a hardware realization imple- 
menting the heap algorit,hm) at the end. The idea 
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Interface 
to software 

Exchange 
Algorithm 

I I I I I b-7 Fast Priority Queue k--q ~ Slow Priority Queue 

Figure 5: 2-stage priority queue. 

is to utilize the fact that if an element with a small 
priority value is inserted into the first part of the pri- 
ority queue, and the minimal element is removed, then 
the queue is still in order, without any access to  the 
slow part of the queue. The second priority queue 
(slow but big) can be implemented using a standard 
RAM unit and a software like algorithm (for example 
a heap). Although both the algorithm/realization of 
the slow priority queue and the exchange algorithm 
between the two queues are important, possible solu- 
tions are not described further in this text. Tables 2 
and 3 show that most of the changes in the priority 
queue take place towards the front, table 5 shows that 
most insert operations are followed by a remove op- 
eration (and visa versa). If t,he fast priority queue is 
able to buffer several elements then the exchange rate 
at the slow priority queue need only be, say, a tenth 
of the IO-rate at the software interface. 

5.5 A hardware/software codesign 

The partitioning of the problemldesign into a hard- 
ware part and a software part can be made in many 
different ways: and the performance of the final de- 
sign depends on this design decision. The bottleneck 
in such a design is probably the interface between the 
software and the hardware (i.e. the data-bus). A nat- 
ural choice is to realize all priority queue operations 
in hardware. In the nsfworltl simulation, see table 1, 
over 10 million transfers on the bus are then needed. 

bus-transfers 

3 (buffered] 2 741 690 

Table 6: Bus-transfers with different sizes of the soft- 
ware priority queue. 

Moving the first element (first priority queue-stage) 
into software the 5 million minimum operations are 
purely software function calls and no bus communica- 
tion is needed for these operations. Note that this re- 
tains the constant operation times. If the first priority 
queue-stage (software-stage) is able to buffer elements 
(holding zero or one element) then more traffic on the 
bus can be saved, see table 6 .  The resulting 3-stage 
realization is illustrated in the following figure: 

Interface Exchmee 

7 1  to software Algorith 

Fast Priority Queue Slow Priority Queue 
Small X,fIWarC 

Priority meue 

Figure 6: 3-stage priority queue. 

The speed of the CPU and the hardwarelsoftware in- 
terface then determines the optimal number of stages 
to be realized in software. 

Moving the first element into software is a small 
change in the design, but the number of bus trans- 
fers on the interface is reduced significantly. If the 
bus transfers are dominating the performance of the 
total system, then the performance of the realization 
changes accordingly. 

General observation. The design shows that there 
is a variety of aspects involved in hardwarelsoftware 
partitioning (speed, communication traffic, area, pili- 
count, etc.). Therefore, a simple profiling of a software 
description is not sufficient. As illustrated above, it is 
necessary to estimate other dynamic properties than 
speed. It seems unlikely, that the partitioning of the 
priority queue could be generated automatically. 

6 Conclusion 

This paper identifies a number of issues that we be- 
lieve are important for hardware/software codesign. 
The issues are illustrated by a small comprehensi- 
ble example: a priority queue. Based on simulations 
of a real application, we suggest a combined hard- 
ware/software realization of the priority queue. 

Acknowledgments 

This work is partially supported by the Commission 
of the European Communities (CEC) under the ES- 
PRIT programme in the field of Basic Research Action 

87 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore.  Restrictions apply. 



proj. no. 8135: “Cobra”, and by the Danish Technical 
Research Council under the “Codesign” programme. 

References 

[l] K. M. Chandy and J .  Misra. Parallel Program 
Design, A Foundation. Addison-Wesley, 1988. 

[a] W. Ecker. Using VHDL for HW/SW co-spe- 
cification. In Gerry Musgrave, editor, Proceedings 
of EURO-DAC ’93, European Design Automation 
Conference, pages 500-505. IEEE Computer So- 
ciety Press, September 1993. 

[3] Rajesh K. Gupta and Giovanni De Micheli. Sys- 
tem level synthesis using re-programmable com- 
ponents. In The European Conference on Design 
Automation, pages 2-7. IEEE, March 1992. 

[4] John V. Guttag, James J. Horning with S. J .  Gar- 
land, K .  D. Jones, A. Modet, and J. M. Wing. 
Larch: Languages and Tools for Formal Specifi- 
cation. Texts and Monographs in Computer Sci- 
ence. Springer-Verlag, 1993. 

[5] David Harel. Statecharts: A visual formalism for 
complex systems. Science of Computer Program- 
ming, 8:231-274, 1987. 

[6] Charles E. Leiserson. Area-Eficient VLSI Com- 
putation. ACM Doctorial Dissertation Awards. 
The MIT Press, 1983. 

[7] Jprrgen Staunstrup. A Formal Approach to Hard- 
ware Design. Kluwer Academic Publishers, 1994. 

Towards a common model 
of software and hardware components. In Jerzy 
Rozenblit and Klaus Buchenrieder, editors, Code- 
sign: Computer Aided Software/Hardware Engi- 
neering. IEEE Press, 1994. 

[8] Jprrgen Staunstrup. 

[9] J.W.J. Williams. Algorithm 232 (heapsort). 
Communications of the ACM, 71347-348, 1964. 

[lo] F. Paul Wyman. Improved event-scanning mech- 
anisms for discrete event simulation. Communi- 
cations of the ACM, 18(6):350-353, June 1975. 

88 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore.  Restrictions apply. 


