

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 09, 2024

The priority queue as an example of hardware/software codesign

Høeg, Flemming; Mellergaard, Niels; Staunstrup, Jørgen

Published in:
Proceedings of the Third International Workshop on Hardware/Software Codesign

Link to article, DOI:
10.1109/HSC.1994.336720

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Høeg, F., Mellergaard, N., & Staunstrup, J. (1994). The priority queue as an example of hardware/software
codesign. In Proceedings of the Third International Workshop on Hardware/Software Codesign (pp. 81-88).
IEEE. https://doi.org/10.1109/HSC.1994.336720

https://doi.org/10.1109/HSC.1994.336720
https://orbit.dtu.dk/en/publications/5b1e487e-fc08-4dfe-93d2-0bae5ebcba1d
https://doi.org/10.1109/HSC.1994.336720

The Priority Queue as an Example of Hardware/Software Codesign

Flemming Hpreg, Niels Mellergaard, and Jprrgen Staunstrup

Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark
e-mail: {fhoeg,nm,jst}@id.dtu.dk

Abstract

This paper identifies a number of issues that we
believe are important for hardware/software codesign.
The issues are illustrated b y a small comprehensible
example: a priority queue. Based on simulations
of a real application, we suggest a combined hard-
ware/software realization of i.he priority queue.

1 Introduction

-4 priority queue is a data structure with a simple
interface which in many applications is a performance
bottleneck. For example, in event driven simulators,
the operations on a priority queue may account for
a significant fraction of the computation time. Since
the interface to a priorit,y queue is simple and well
defined, it seems like an obvious candidate for hard-
ware realization while leaving other parts of the appli-
cation in software. Despite its simplicity the priority
queue illustrates several issues that are also relevant in
more complex and less transparent examples of hard-
ware/software codesign:

0 the significance of an efficient interface between
software and hardware components,

0 the difference between optimal algorithms suited
for software and for hardware realizations,

0 the importance of estimating dynamic properties
like communication traffic and execution profiles,

0 the variety of aspects involved in hardware/
software partitioning (speed, communication traf-
fic, area, pin-count, etc.)

The paper uses the priority queue to explain and il-
lustrate issues that we believe are of more general in-
terest in codesign. In this paper the description of the

0-8186-6315-4/94 $04.00 0 19!34 IEEE
81

specific priority queue example is merged with obser-
vations of more general codesign issues. The sections
containing general observations are marked. The pa-
per is organized as follows: first the functionality of
the priority queue is specified (section 2), and a simple
application is sketched (section 3). Section 4 describes
efficient realizations of priority queues both in soft,ware
and in hardware. Based on the properties of these re-
alizations, section 5 discusses the issues involved in an
efficient combination of software and hardware real-
ization.

2 The priority queue

This section specifies the functional behavior of a
priority queue. There are many ways to give such
a specification. In connection with codesign, a main
consideration is to specify in a way that is not biased
towards either hardware or software.

Informally, a priority queue is a data structure that
holds a set of elements from a domain with a total
ordering relation, <, hence, any two elements can be
compared.

Domains:
PQ = ELEMENT&
ELEMENT = DATA x PRIORITY

Ordering:
<: ELEMENT x ELEMENT -+ BOOL

Qps < : PRIORITY x PRIORITY + BOOL
el < e2 e PRIORITY(e1) < PRIORITY(e2)

There are three basic operations on the priority queue:
insert, remove, and minimum. New elements may be
inserted at any time (unless the queue is full). Sim-
ilarly, the smallest of the elements currently in the
queue may at any time be removed (unless the queue
is empty). Hence, the design of a priority queue must
ensure that when an element is removed, it is indeed

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

the smallest (according to the ordering relation). Fi-
nally, the minimum operation returns the smallest of
the elements currently in the queue without removing
the element.

Operations:
insert: ELEMENT x PQ t PQ
remove: PQ + ELEMENT x Pq

& y ~ minimum: PQ t ELEMENT

insert(e, pq) E pq U {e}
remove(pq1

VeEpq minimum(pq) 5 e A

- let m = minimum(pq1
- in (m. pq\{m})

3eEpq . minimum(pq1 = e

At a given time, the minimum element is the element
with the smallest priority value currently in the pri-
ority queue; this is the element extracted by the next
remove operation.

The exact details of the interface to the priority
queue are not specified; they are dependent on the
environment in which the priority queue is going to
be used, and on t8he realization (hardware/software)
chosen. For a software realization, the priority queue
could be specified as an abstract data type with the
three operations implemented as procedure calls. On
the other hand, for a hardware realization it could be
more useful to define the interface in terms of commu-
nication ports, e.g., interface registers.

General observation. The specification illustrates
an important issue, namely the importance of giving
implementation independent specifications. Although
we do not have a final proposal, the priority queue
sketches an approach where the specification is given
in two levels: the top level specifies functional prop-
erties in an implementation independent way (also ig-
noring issues like finite capacities of buffers, speed,
etc.). The priority queue specification given above is
an example of this. The bottom level gives one or
more specifications of implementation dependent in-
terfaces which may contain restrictions like capacity,
response time etc. Both hardware and software imple-
mentations are discussed in section 4. Such a two-level
approach is also found in VHDL where it is possible to
define many different implementations of the same en-
tity and in Larch [4] where it is possible to define many
different programming language specific interfaces to
the same abstractly specified component.

A wide span of different approaches to cospecifica-
tion are currently investigated. Some use existing lan-
guages for hardware description, such as VHDL [2],
or software, such as C [3], others advocate using an
unbiased language [8], and there are also attempts to

use graphical rather than symbolic specifications [5] .

In the next section a specific application of a pri-
ority queue is presented. Possible realizations in both
hardware and software are discussed for this applica-
tion. It is illustrated that these hardware/software
realizations are radically different. We believe that
this is often the case. One reason is that software re-
alizations are based on sequential algorithms, whereas
hardware solutions often exploit parallelism.

3 An application

A priority queue can be used in an event driven
simulator executing a model of some dynamic system
(e.g., a network) where certain events (e.g., an activ-
ity in the network) lead to new events which must be
simulated a t a later time. The events awaiting simu-
lation are stored in a priority queue where the priority
is the starting time of the event. Hence, the smallest
element in the priority queue is the next event to be
simulated. This leads to the following main loop of
the simulator:

not empty &
next:= remove;
simulate (next)

The details of simulate are not discussed here, but it
may lead to insertion of new events into the prior-
ity queue. A complete simulator contains many other
parts, for example, a user interface, logging mecha-
nisms etc., but from a performance point of view the
loop shown above is a key part. Our experiments with
the public domain simulator, Netsim, show that more
than 30% of the run time is spent in the operations
on the priority queue. The next section contains more
details about the profiling.

General observation. In this application the goal is
to get a speed-up for the cost of additional hardware.
However, if the additional hardware is too expensive,
e.g., several ASIC’s are needed, or the speed-up is not
significant, e.g., it is less than say 10 percent, then
the conclusion may be that the codesign solution is
not profitable. Such cost/benefit considerations are
necessary to direct the development and evaluate the
final solution. In different applications there might be
other trade-offs considering, e.g., space or power con-
sumption. Often it is not possible in advance to give a
more precise formulation of the cost/benefit trade-offs
than the informal remarks given above.

52

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

3.1 Profiling

This section presents the key observations obtained
by profiling an existing simulator, Netsim, which is
public domain and distributed by MIT and University
of Washington, Seattle. Netsim was primarily chosen
because the source code is available and its interface
to the priority queue is very clean.

The following measurements are used later in this
paper when discussing hardwarelsoftware partition-
ing and other codesign issues. A simulation exam-
ple called nsfworld, distributed along with the Net-
sim simulator is modified (the example is modified by
creating 8 parallel copies of the network) and used as
input data to the simulator when profiling. When pro-
filing the execution time, the simulator is used as it is
distributed.

It must be realized that the profiling results lead to
an optimization of the priority queue with respect to
the environment in which it is used (nsfworld); it is
therefore important that the simulation environment
is representative of the practical environment of the
priority queue. Ideally, i5 more careful investigation
of the practical use of the priority queue should be
carried out, however, to illustrate the codesign issues
the single simulation example nsfworld is sufficient.

As it is illustrated in table 1 the operations on the

Operation Number of Total execution
operat ions

remove 2805 132

Table 1: Priority queue operations in Netsim.

priority queue in the pure software solution (the Net-
sim simulator) take up a significant portion of the ex-
ecution time. A major speed-up of the priority queue
would therefore result in an increase in the overall per-
formance of the simulator. In the rest of the profiling
experiments a sequence of operations on the priority
queue has been recorded and used as input for the
profiling. A few specialized operations used to search-
and-delete specific events have been filtered out.

The initial analysis showed that the maximum
queue length during a simulation is 453, and the av-
erage queue length is 182. A more detailed analy-
sis of the insertions into the priority queue is shown
in table 2. It shows the distribution of priorities of
new elements a t the moment of insertion compared to

the priorities of elements already in the queue, i.e., it
shows where in the queue a new element belongs. The
queue is divided into 10 segments of equal size (cor-
responding to the columns numbered 1-10, segment 1
is the first 1/10 of the queue, segment 10 is the last
1/10 of the queue). Line A shows the absolute distri-
bution obtained by statically dividing the entire queue
into segments; line B shows the relative distribut,ion
obtained by dynamically dividing the portion of the
queue currently in use into segments. The segments
are solely used for the profiling; they have no physical
counterpart in the software and/or hardware realiza-
tions mentioned in this paper.

ISeg.11 11 21 31 41 5 1 61 71 81 91101
I " I 1 I I I I I I I I I I

I A 11721111121 31 11 11 11 01 0 1 0 1
I B 11561101 71 21 21 31 2 1 41111 31
A) Insertions relative to maximum queue length
B) Insertions relative to dynamic queue length

Table 2: Distribution of insertions into segments (%).

Table 2 shows that 95% of the elements are inserted
into the first 30% (first three segments) of the queue.
The reason for this could be that sometimes the queue
is short, and in this situation, elements are always in-
serted into the first part of the queue. Another expla-
nation could be that the event based simulator often
schedules events to be fired soon compared to the other
already scheduled events. This later possibility is an-
alyzed by calculating relative to the dynamic queue
length (B) instead of the maximum queue length (A).
The table shows that most of the inserted elements
(56%) are inserted into the first 10% of the queue even
when calculating relative to the dynamic queue length
(see line B). This also follows the distribution found
in [IO].

The observation that elements are usually inserted
in the first segment calls for a fine grained analysis of
the very first positions in the priority queue.

I Position number 11 1 I 2 I 3 I 4 I 5 I
I Insertion rate 1 1 43.6 I 7.0 I 0.6 I 0.1 I 011

Table 3: Insertions into the first five positions (%).

Table 3 gives a detailed overview of the insertion rate
at the first five positions in the priority queue. Most
of the scheduled events (43.6%) are sceduled as the
first event.

83

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

The first few positions in the priority queue are very
busy, and it is therefore obvious to seek a codesign so-
lution that exploit,s this property. Another issue that
might effect the realization is the dynamic variations
inside the queue. For example, if the elements are go-
ing to be stored in a sorted array structure in hardware
where only adjacent positions are connected, then it is
important that the elements are not going to be moved
back and forth over many positions. This int,ernal ac-
tivity is analyzed in the following measurements.

Table 4 shows the dynamic variations in queue
length, when sampled for each k IO-operations (in-
sert or remoue). The figure shows that the dynamic

interval (k) --
10

_ _ ~ -
Sample I Max. delta I ilv. delta

queue-size queue-size
10 0.91

1000
- 10000 310 11.22

~~

General observation. This section presented some
results from profiling an application of the priority
queue. The results are utilized in section 5 to propose
a hardware/software partitioning. There is a sirnilar
need for dynamic performance data in many other ap-
plications. In our case, a complete C program was
available for doing the profiling. However, in other
applications a complete implementation might not be
available. I t is therefore important to develop meth-
ods/tools for analyzing dynamic models early in the
design phase.

4 Realization of a priority queue

Because of the importance of priority queues, many
different realizations have been proposed both in soft-
ware and in hardware. A few of these realizations are
described below. Let n denote the maximum number
of elements which can be contained in the queue at
any one time.

4.1 Software realization
Table 4: Variations in queue size.

variation in the queue length is very small. For ex-
ample, when sampling 1000 IO-operations 1,he aver-
age case is a change in queue size (delta queue-size)
of only 5.34. This average case occurs, e.g., if there
are 503 znsert operations and 497 remove operations
leading to a delta queue-size of 503-497=6, hence, the
insert/re,moue ratio is almost 1 / 1.

The IO-operations are interleaved as shown in ta-
ble 5 . The table is calculated by ignoring minimum

I Remove (1 69 I 2 3 I 6 I 1 I <1 I<II
Table 5: Successive insert and remove operations (%).

operations; the numbers show the percentage of the
operations that occur in sequences of a given length,
for example, 33% of the insert operations occur in se-
quences of length 2. I t can be seen that the common
case is one insert operation followed by one remove
operation. 83% (=67+33/2) of the insert operations
are immediately followed by a remove. These obser-
vations illustrate that the activity at the front of the
queue is big, but small inside the queue.

This section describes well known software realiza-
tions of a priority queue. A simple realization is ob-
tained by maintaining a sorted list of the elements
currently in the queue. Removing an element simply
consists of copying and deleting the first element of
the list. On the other hand, an insertion requires that
the proper place of the new element is found in order
to keep the list sorted; this requires O(n) (worst case
operation time).

There is no need to keep the elements of the pri-
ority queue completely sorted, all that i s needed is
to know the minimal element currently in the queue.
The heap [9] is a suitable data structure for which it is

Figure 1: Heap structure.

possible to obtain operation times of O(log(n)) (worst
case). The heap is a tree like structure (figure 1) where

84

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

care is taken to maintain a balanced tree. The Net-
sim simulator mentioned in section 3.1 uses a heap to
represent the priority queue.

4.2 Hardware realization

This section describes a hardware realization of a
priority queue. Such a realization provides faster oper-
ations on the queue because it is possible to do many
steps of the computation in parallel. The interface
to the priority queue consists of two registers: an in-
put register, an, and an out,put register, out (figure
2). Each of these registers may contain an element
from the domain of the priority queue, and each has
additional status information indicating whether the
register is full or empty. An element may be inserted
in the queue when the input register is empty. Sim-
ilarly, an element may be removed when the output
register is not empty.

4
' priority queue j

case). Hence, there is a potential for reducing the op-
eration times significantly compared with a software
realization.

General observation. The large difference between
the hardware and the software realization points out
the importance of computational models that do not
favor one or the other. We believe that the sequenc-
ing found in most software makes it difficult to syn-
thesize a good hardware solution from an optimized
software description. There are alternative computa-
tional models avoiding explicit sequencing [l, 71.

5 Partitioning

This section discusses how to partition the event
driven simulator into hardware and software compo-
nents. To summarize the preceding sections, profiling
of a large C program (Netsim) reveals that a few pro-
cedures implementing the priority queue operations
account for more than 30% of the execution time, one
could therefore hope for a performance improvement
by placing some or all of the priority queue in hard-
ware. However, a number of observations can be made
from this simple example.

5.1 Hardware and software differences

Figure 2: Hardware interface.

The hardware realization consists of an array of similar
registers and a number of comparators which ensure
that elements with a large priority value are moved
backwards in the queue while small elements are kept
in the front (figure 3). In fact, the smallest element
currently in the queue is contained in the first (left-
most) register. I t is therefore not necessary to wait for
the priority queue to be completely sorted when ex-
tracting the smallest element. The detailed design is

An efficient software realization of a priority queue
is a heap whereas the hardware realization is based
on a linear array of registers with parallel comparison
and movement of elements. I t does not seem likely
that a few simple transformations can synthesize one
of these realizations from the other; they are based on
radically different algorithms, in fact, they are based
on radically different computational models. It seems
that this might also be the case in many other appli-
cations of hardwarelsoftware codesign and that this
should be accounted for in tools and techniques for
partitioning and synthesis.

5.2 Integrated circuit constraints in

Etm The regular structure of the priority queue makes
out it well suited for realization as an integrated circuit.

However, the area of a single stage of the queue is dom-
inated by the size of the registers (one D-flip-flop = 8
transistors) that is needed to store each element. A
synchronous bit-serial realization is assumed; in case
of a parallel realization the routing and the parallel
comparators would occupy a major part of the total
area. Each element consists of two 32-bit integers; one

Figure 3: Hardware realization.

not given here, a systolic algorithm is presented in [6].
However, it is important to note that a hardware real-
ization achieves constant operation times (0(1) worst

85

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

32-bit int,eger for the priority value, and one for the
event ident,ifier (pointer to data). Note that one stage
of the queue is capable of storing two data-elements.
Therefore, approximately 1000 transistors are needed
in each stage for the registers only, out of a total of
approximately 1500. If it is possible to achieve 10000
transistors per mm2 then 6 queue-stages per mm2 is
possible, or 300 stages per 50mm2. These figures in-
dicate that it is possible (but expensive) to realize the
whole priority queue with the proposed hardware so-
lution (array of registers). In section 5.4 a better uti-
lization of the hardware is suggested.

In the bit-serial realization, the power dissipation
is higher than a parallel realization with similar tran-
sistor count and clock-rate, because in the bit-serial
realization all elements are clocked/shifted forward all
the time. All elements must be shifted through the
bit-serial comparators to compute the internal state
of the priority queue.

5.3 Hardware/software interface

To utilize the fast operation times achieved by a
hardware realization the interface to the software must
have a comparable speed. In case of the priorit,y queue,
small amounts of data is communicated frequently.
The interface can be established by making the pri-
ority queue chip memory mapped. Inserting elements
is, seen from the software side of the interface, similar
to writing to a variable or memory location. For ex-
ample, writing data (an element) to a specific address
could be interpreted as insert, and reading a specific
address could be interpreted as a remove operation.
The latency of such an operation depends on the re-
alization, but the latency is most likely greater than a
normal memory operation.

Netsim simulations show that there are up to 10000
insert (and 10000 remove) operations per second (us-
ing a DecStation 5240, 40MHz MIPS). In this section
an interface spending one micro second per transfer
is examined (one transfer = 2x32bit). One micro sec-
ond is arbitrarily chosen, but the idea is to examine
how fast a bus that is needed. If one micro second
is used per transfer, then 20000 micro seconds per
second (2% of the CPU time) are spent waiting on
the interface. During one micro second a CPU (like
the MIPS) executes approximately 40 simple instruc-
tions. In general, if an application uses 80% of the
CPU time on 20000 priority queue operations per sec-
ond, and a reduction from 80% to 5% (total speed up
= 4) is needed then 80000 operations per second are
required (= 8% of the CPU time). The bus (inter-
face) between a CPU and the main memory (RAM)

RAM A

Figure 4: Hardware/software interface.

will in most cases be faster than one micro second and
this bus will therefore be fast enough for the interface
between the CPU (software) and the priority queue
(hardware). However this example also shows that a
latency greater than one micro second can not be tol-
erated, it will lead to poor performance. Note that
the hardware is assumed to be fast, i.e., the latency
involved in a transfer is dominated by the bus proto-
col.

General observation. The efficiency of the inter-
face is very important. By choosing an inconvenient
or slow interface one can easily loose the performance
gain obtained by the hardware realization of the time
crucial operations. We believe that a variety of differ-
ent interfaces are needed to efficiently realize the large
variety found in practical applications.

5.4 Size of a priority queue

It is very expensive to create a large priority queue
using an integrated circuit realization like the one cle-
scribed in section 4.2 and 5.2. For example, a queue
with a capacity of 1000 elements may require more
than one chip. Furthermore, profiling indicates t,hat
this would also be an inefficient use of the hardware,
since most of the changes to the queue take place to-
wards the front, when used to schedule the events in
Netsim.

Alternatively, the priority queue can be imple-
mented by combining two priority queues in serial,
with one fast priority queue (e.g., a hardware realiza-
tion as an array of registers) at the front, and one
slower but bigger priority queue with a better utiliza-
tion of the area (e.g., a hardware realization imple-
menting the heap algorit,hm) at the end. The idea

86

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

Interface
to software

Exchange
Algorithm

I I I I I b-7 Fast Priority Queue k--q ~ Slow Priority Queue

Figure 5: 2-stage priority queue.

is to utilize the fact that if an element with a small
priority value is inserted into the first part of the pri-
ority queue, and the minimal element is removed, then
the queue is still in order, without any access to the
slow part of the queue. The second priority queue
(slow but big) can be implemented using a standard
RAM unit and a software like algorithm (for example
a heap). Although both the algorithm/realization of
the slow priority queue and the exchange algorithm
between the two queues are important, possible solu-
tions are not described further in this text. Tables 2
and 3 show that most of the changes in the priority
queue take place towards the front, table 5 shows that
most insert operations are followed by a remove op-
eration (and visa versa). If t,he fast priority queue is
able to buffer several elements then the exchange rate
at the slow priority queue need only be, say, a tenth
of the IO-rate at the software interface.

5.5 A hardware/software codesign

The partitioning of the problemldesign into a hard-
ware part and a software part can be made in many
different ways: and the performance of the final de-
sign depends on this design decision. The bottleneck
in such a design is probably the interface between the
software and the hardware (i.e. the data-bus). A nat-
ural choice is to realize all priority queue operations
in hardware. In the nsfworltl simulation, see table 1,
over 10 million transfers on the bus are then needed.

bus-transfers

3 (buffered] 2 741 690

Table 6: Bus-transfers with different sizes of the soft-
ware priority queue.

Moving the first element (first priority queue-stage)
into software the 5 million minimum operations are
purely software function calls and no bus communica-
tion is needed for these operations. Note that this re-
tains the constant operation times. If the first priority
queue-stage (software-stage) is able to buffer elements
(holding zero or one element) then more traffic on the
bus can be saved, see table 6 . The resulting 3-stage
realization is illustrated in the following figure:

Interface Exchmee

7 1 to software Algorith

Fast Priority Queue Slow Priority Queue
Small X,fIWarC

Priority meue

Figure 6: 3-stage priority queue.

The speed of the CPU and the hardwarelsoftware in-
terface then determines the optimal number of stages
to be realized in software.

Moving the first element into software is a small
change in the design, but the number of bus trans-
fers on the interface is reduced significantly. If the
bus transfers are dominating the performance of the
total system, then the performance of the realization
changes accordingly.

General observation. The design shows that there
is a variety of aspects involved in hardwarelsoftware
partitioning (speed, communication traffic, area, pili-
count, etc.). Therefore, a simple profiling of a software
description is not sufficient. As illustrated above, it is
necessary to estimate other dynamic properties than
speed. It seems unlikely, that the partitioning of the
priority queue could be generated automatically.

6 Conclusion

This paper identifies a number of issues that we be-
lieve are important for hardware/software codesign.
The issues are illustrated by a small comprehensi-
ble example: a priority queue. Based on simulations
of a real application, we suggest a combined hard-
ware/software realization of the priority queue.

Acknowledgments

This work is partially supported by the Commission
of the European Communities (CEC) under the ES-
PRIT programme in the field of Basic Research Action

87

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

proj. no. 8135: “Cobra”, and by the Danish Technical
Research Council under the “Codesign” programme.

References

[l] K. M. Chandy and J . Misra. Parallel Program
Design, A Foundation. Addison-Wesley, 1988.

[a] W. Ecker. Using VHDL for HW/SW co-spe-
cification. In Gerry Musgrave, editor, Proceedings
of EURO-DAC ’93, European Design Automation
Conference, pages 500-505. IEEE Computer So-
ciety Press, September 1993.

[3] Rajesh K. Gupta and Giovanni De Micheli. Sys-
tem level synthesis using re-programmable com-
ponents. In The European Conference on Design
Automation, pages 2-7. IEEE, March 1992.

[4] John V. Guttag, James J. Horning with S. J . Gar-
land, K . D. Jones, A. Modet, and J. M. Wing.
Larch: Languages and Tools for Formal Specifi-
cation. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, 1993.

[5] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8:231-274, 1987.

[6] Charles E. Leiserson. Area-Eficient VLSI Com-
putation. ACM Doctorial Dissertation Awards.
The MIT Press, 1983.

[7] Jprrgen Staunstrup. A Formal Approach to Hard-
ware Design. Kluwer Academic Publishers, 1994.

Towards a common model
of software and hardware components. In Jerzy
Rozenblit and Klaus Buchenrieder, editors, Code-
sign: Computer Aided Software/Hardware Engi-
neering. IEEE Press, 1994.

[8] Jprrgen Staunstrup.

[9] J.W.J. Williams. Algorithm 232 (heapsort).
Communications of the ACM, 71347-348, 1964.

[lo] F. Paul Wyman. Improved event-scanning mech-
anisms for discrete event simulation. Communi-
cations of the ACM, 18(6):350-353, June 1975.

88

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 08,2010 at 11:59:07 UTC from IEEE Xplore. Restrictions apply.

