

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 15, 2024

The Importance of Interfaces: A HW/SW Codesign Case Study

Jensen, Dan C. Raun; Madsen, Jan; Pedersen, Steen

Published in:
5th International Workshop on Hardware/Software Codesign

Link to article, DOI:
10.1109/HSC.1997.584584

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, D. C. R., Madsen, J., & Pedersen, S. (1997). The Importance of Interfaces: A HW/SW Codesign Case
Study. In 5th International Workshop on Hardware/Software Codesign (pp. 87-91). IEEE.
https://doi.org/10.1109/HSC.1997.584584

https://doi.org/10.1109/HSC.1997.584584
https://orbit.dtu.dk/en/publications/a0c9100c-a3f3-42ee-a4a1-fdb60a8fae2e
https://doi.org/10.1109/HSC.1997.584584

The Importance of Interfaces: A HW/SW Codesign Case Study

Dan C. R. Jensen* Jan Madsen Steen Pedersen

Department of Information Technology
Technical University of Denmark

Abstract

This paperpresents a codesign case study in image anal-
ysis. The main objective is to stress the importance of han-
dling HW/SW interfaces more precisely at the system level.

In the presented case study, there is an intuitive and sim-
ple HW/SW interface, which is based upon the functional
modules in the application. However; it is found, that this
seemingly sound choice caused a number of practical prob-
lems and sub-optimal solutions during the implementation
of the proto type system.

1. Introduction

In this paper we will concentrate on the interface prob-
lems, as they evolved during the implementation of a
HW/SW codesign case study for image analysis. The ag-
plication was chosen both for its speed up potential, when
realised as a mixed HW/SW system, and from a seemingly
well defined separation in modules with precise interface
specifications. The intention was to use this realistic and
computationally challenging example as a relative simple
test bench in the development of codesign methods and
tools [7, 8, 12, 131.

Though the design and implementation of the HW us-
ing ASICs indeed was challenging, a considerable part of
the time spent in realising the system was, as this paper will
show, used dealing with interfaces. The objectives of the pa-
per are therefore:

To stress the importance of being able to handle
HW/S W interfaces.

To argue for the need for a methodology, which support
interface modelling and synthesis from abstract speci-
fication to realisation, in analogy to the methodologies
used for HW and SW development.

~~

'Dan C. R. Jensen is now with: GN Danavox AS, MArkaxvej 2A, DK-
2630 Taastrup, Denmark

2. The optical flow case study

At the Department of Information Technology* al. the
Technical University of Denmark a research framework
dealing with different aspects of codesign has been carried
out for the last three years.

The case study presented in this paper is one of the larger
experimental works within this framework, and it is car-
ried out together with the image analysis group at the De-
partment of Mathematical Modelling2, IMM, also al: the
Technical University of Denmark. The objective was the
realisation of a highly effective implementation of an in-
betweening algorithm within the field of optical flow I[lO].
Using this in-betweening algorithm, it is possible to calcu-
late 110 new images between each of the 48 frames in a 24
hour sequence of satellite weather images. This is then used
to present a smooth animation of the weather dynamics in
the weather forecasts. The initial implementation of the sys-
tem was done at IMM as a C-program.

The in-betweening algorithm consists of three well sep-
arated parts with well defined interface, see figure 1 and ta-
ble l.

Figure 1. Overview of the in-betweening algorithm mod-
ules. The four interfaces and the three functional units, A, B
and C, are described in the C-program. The computational
complexity is illustrated by the actual run time of this C-
program, which is shown for each module.

The characteristics of three functional parts, A, B, and C,
are as follows:

'http://www.it.dtu.dk
2http://www.im.dtu.dk

87
0-8186-7895-XI97 $10.00 0 1997 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:29:40 EDT from IEEE Xplore. Restrictions apply.

http://www.it.dtu.dk

Interfaces

-
High end

workstation

Table 1. Definition of data types and data set sizes for the
four interfaces in figure 1.

I

-./...) 3D-Convolution
I system
I

A: 3D-convolution. The convolution is for a single result
pixel, Ch,v , t , given by the equation

Each pixel in the result is the sum of the products of the
neighbouring pixels, Pz,y,z, and a set of constants, Kz,y,z,
called the kemel. Both the kernel size, 2n + 1, and the
dynamic range of the individual kernel values should be as
large as possible. In the target application, in-betweening
of weather satellite images, there is a image sequence con-
sisting of 48 frames, each having 5 12 x 5 12 eight bit pixels.
To calculate the globally optimised optical flow, 12 different
convolutions using a 15 x 15 x 15 kernel, (n = 7), over this
data set must be performed [5].
B: Local optimisation. After the convolutions using the 12
kernels, the most dominant local flow velocity values are
found, using an eigenvalue and eigenvector analysis. This
produces two sets of 16 bit normal velocity vectors and 4 bit
weights, a total of 40 bits per pixel [4].
C: Global optimisation. All the local dominant flow
vectors are evaluated in one large matrix of equations,
where each pixel contributes with to rows and two columns,
to ensure the coherence of the flow field Ell]. The final
part, the creation of the the in-between images, is now
done directly from the velocity field and the original image
sequence.

In the pure software solution, which is used as the def-
inition of the application, this implementation of the algo-
rithm using the sequence of 48 input frames and 12 kernels
requires one week of CPU time on a high end workstation.

The aim of the case study is to reduce this time to less than
30 minutes using a combined HW/SW solution, which is a
speed up of around 300 times. It is obvious from figure 1,
that the 3D-convolution is the prime candidate for a HW re-
alisation. However, as the optimisation parts still requires
around 25 minutes in the SW realisation, there is only 5
minutes left for the 3D-convolution. Basically, this requires
5.1011 multiply-add operations performed in 5 minutes, or
in other words 1,7. lo9 multiply-add operationslsecond has

to be carried out. Therefore, a 3D-convolution system based
upon a dedicated hardware convolution engine had to be im-
plemented [5].

3. System design considerations

It was decided to follow a data path design strategy,
primarily to ensure the high system throughput. The 3D-
convolution part was chosen for HW implementation as
shown in the overview of the system in figure 2.

’ - - t u New image
sequence SW HW

I

Figure 2. Overview of the 3D system with identification
of the three functional units and interfaces.

In the more detailed design process the major problems
turned out to be memory and communication bandwidth.
From the 12 Mbyte of input data, the 3D-convolution mod-
ule produces 604 Mbyte of output. Each pixel in the in-
put sequence is used in 40.500 computations with the actual
convolution parameters. This requires the use of a number
of local memories to off load the workstation, parallelisation
and pipelining in the design of the computational units, and
an advanced caching scheme to feed these units in order to
meet the computational requirements.

Beside from obtaining the required performance, a num-
ber of additional requirements were posed on the implemen-
tation of the system:

A general and well known communication between the
3D-convolution engine and the workstation should be
used, i.e. we did not want to build a system, which was
tied to one specific type of workstation.

The interface between the workstation and 3D-
convolution engine must be scalable, i.e. if a higher
bandwidth is required, this must be achieved by chang-
ing from one standard network technology, including
boards and drivers, to another standard technology.
We did not want to invent a new communication
technology.

As much of the system as possible should be realised
using off-the-shelf products.

The industrial VME-bus and Motorola 68040 CPU board
running the 0 3 9 operating system was chosen as the best

88

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:29:40 EDT from IEEE Xplore. Restrictions apply.

way to satisfy these requirements. The resulting system
setup is shown in figure 3.

VMEbus System I

I

sw I Interface ! HW

Figure 3. The 3D system with the VME-based 3D engine
on the VMEbus boards and a more detailed interface presen-
tation.

It is obvious from this figure, that the well defined and
simple HWISW interface interpretation, which is used at the
system definition level in figure 2, is not at all adequate at
this next level in the design process. Although made from
of-the-shelf parts, the implementation required more atten-
tion than presumed, simply by the time needed to unpack,
install, and get these parts working together.

However, the system design requirements regarding scal-
ability are met by this implementation, e.g. if the band-
width requirements of interface 2 cannot be met by the cho-
sen 10 MBit/s Ethernet interface, this can be changed to a
100 MBitIs FDDI interface with only little additional effort
in the implementation process.

4.3D convolution engine

A number of possible implementations of the convolu-
tion engine were analysed, [2,5,14,15], and the chosen de-
sign, together with some of the module data, is shown in fig-
ure 4. As indicated in the figure, the convolution engine is
based on three ASICs, each having 75 processing elements
(PES). These elements consists of a fast multiply-add block
with pipeline registers and two sets of kernel registers. The
PES are arranged in a systolic structure [9], which makes
one ASIC produce 2.3. lo9 multiply-add operationslsecond,
when clocked at 30 MHz. One ASIC contains 384.000 tran-
sistors and the computational performance has been verified
by measurements [11.

As the system is pipelined, flushing can not be avoided,
but by using two banks of kernel registers an efficiency of
more than 97 9% can be obtained.

The control functions in the 3D-engine ranges from
decoding and executing instruction codes, such as read
pixel data from VMEbus to local DRAM memory or start
computations, to managing the detailed timing of the

n

ASIC 2D convolution ASIC KERNEL 256 kb SRAM
CACHE 15 kb 20ns 2-p RAM 4 Mb 70ns SRAM

CTRL 7 EPLD 7128 PLDs TMP 4 Mb 35ns SRAM

DRAM 64 Mb DRAM TRAN 256 kb SRAM

RES

Figure 4. Overview of the data path structure and the
memory structure and sizes of the 3D-engine. The prototype
system is implemented using 7 18 x 26cm2 PCBs.

readwrite signals for the physical memory devices. This
controller was from the beginning chosen to be hardwired,
i.e. implemented in a FPGA on one of the boards. However,
the detailed design showed, that this task did not fit in any
of the available FPGAs. If the FPGA had the room for all
the functions, the required speed could not be obtained.
The result was then to make a controller hierarchy ancl use
7 PLDs for the complete controller shown in figure 4.

The 3D-convolution prototype has been fully imple-
mented and tested. This includes the design and test of the
ASICs, the memory structures, and the controller as shiown
in figure 4. The prototype also includes the communication
between the workstation and the VME-based system. This
was implemented as a clientlserver system using TCPDP
and sockets. In this environment, the programmers interface
to the 3D-convolution system is a C-library with function
calls.

The prototype system has also been tested using a 3D-
convolution application from a volume data set from a ined-
ical image analysis application [3]. The HW/SW prototype
system here showed a speed up of more than 100 times com-
pared to the SW implementation when using the volume

89

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:29:40 EDT from IEEE Xplore. Restrictions apply.

data set, which consist of one 15 x 15 x 15 kernel and 256 im-
ages of 5 12 x 5 12 pixels.

5. Interface discussion

Having established a prototype on which experiments
can be carried out, we are able to discuss the applicability
of the selected interfaces.

From the beginning of the design process, it was decided
to keep the initial structure of the specification in order to
have a simple and well defined HW/SW interface. However,
as outlined in this pager, this seemingly simple interface
turned out to be quite complicated to implemented, mainly
due to the bandwidth requirement and protocol conversions,
i.e. getting data from the workstation to the VME-bus. It
turns out that the bandwidth requirement of 604 Mbyte can
be reduced to 302 Mbyte by simply adding a square root
function to the HW [6] . I.e. Bandwidth requirement could
be reduced by moving functionality from SW to HW.

The interface to the HW performing the convolution, was
initially controlling a simple stream of data, in order to feed
a pipelined and highly parallelised architecture. However,
due to the limitation of the bandwidth, sophisticated mem-
ory structures had to be introduced, turning the simple data
flow oriented architecture into a rather complicated archi-
tecture, in which the data streams between different mem-
ory modules (temporary storage, cache, etc.) and the ASICs
have to be controlled at a very detailed level. I.e. the
controller which initially looked like a simple ring-counter,
turned out to be a rather complicated hierarchical controller,
in which a top controller controls the execution and ordering
of a number of specialised sub-controllers. This controller
design could be simplified by moving the top controller from
HW to SW. This would also make the top controller easily
modifiable. The question is then whether the SW should be
placed in the work station, in the CPU of the interface, or
in a dedicated CPU on the HW board. In any case, it would
have been interesting to try out these alternatives in a system
level model.

6. Lessons learned

In the following we will try to summarise the lessons
learned regarding the selection and implementation of the
HWfSW interfaces.

The case study presented in this paper has demonstrated
an important aspect of the relation among different levels
of abstraction. I.e. the best module structure at the speci-
fication level, which for the case study expressed a simple
and well defined HW/SW interface, may not reflect the best
structure at the implementation level, no matter how simple
and well defined it may seem.

Many of the interface problems stems from the lack of
having an accurate system model which could be analysed
and refined along the design process. The actual prototype
was the first executable “model” of the complete system.

For modelling the HW (ASIC as well as off-the-shelf
components) a language like VHDL could have been used.
However, the effort to describe and model the off-the-shelf
components could easily be as large as implementing the
system.

Thus, the case study has demonstrated the need for be-
ing able to analyse and refine interface structures in order to
foresee potential problems at the lower levels in the design
process. We believe that what is needed, is a methodology
which will allow the interfaces to be developed concurrently
with the development of HW and SW.

7. Acknowledgements

The work presented here is part of the Codesign research
framework, which is funded by the Danish Technical Re-
search Council.

References

[I] J. P. Brage and S . Pedersen. The case study homepage:
http: //~~~.it.dtu.dk/“case3d. 1994.

[2] J. P. Brage and S . Pedersen. A case study in architectural
and technological trade-offs. NORCHIP-94, pages 78-85,
November 1994.

[3] M. Bro-Nielsen. Medical Image Registration and Surgery
Simulation. PhD thesis, Department for Mathematical Mod-
elling, Technical University of Denmark, 1996. Submitted.

141 A. R. Henriksen. Analysis and realisation of in betweening
algorithm. Master’s thesis, Department of Computer Sci-
ence, Technical University of Denmark, July 1995. In Dan-
ish.

[5] D. C. R. Jensen. 3D convolution VLSI ASIC. Master’s the-
sis, Department of Computer Science, Technical University
of Denmark, August 1994. In English.

[6] I. Klotchkov and S . Pedersen. A codesign case study: Im-
plementing arithmetic functions in fpga’s. Proceedings of
ECBS’96, pages 389-395, March 1996.

Aspects of system mod-
elling in hardwareisoftware partitioning. Proceedings of 7th
IEEE Intemational Workshop on Rapid Systems Prototyp-
ing, RSP’96, pages 18 - 23, June 1996.

Pace: A dynamic pro-
gramming algorithm for hardwardsoftware partitioning.
Proceedings of 4th International Workshop on Hard-
wardsofmare Codesign, CodedCASHE’96, pages 85 - 92,
March 1996.

[7] P. V. Knudsen and J. Madsen.

[8] P. V. Knudsen and J. Madsen.

[9] S . Kung. VLSIArray Processors. Prentice Hall, 1987.
[101 R. Larsen. Estimation of visual Motion in Image Sequences.

PhD thesis, Institute for Mathematical Modelling, Technical
University of Denmark, 1994.

90

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:29:40 EDT from IEEE Xplore. Restrictions apply.

[111 J. Lund-Larsen. Solutions to large systems of linear equa-
tions. Master’s thesis, Department of Computer Science,
Technical University of Denmark, January 1996. In Danish.

[121 J. Madsen and J. P. Brage. Codesign analysis of a computer
graphics application. Design Automation for Embedded Sys-
tem, l(1-2):121 - 145, January 1996.

[13] J. Madsen, J. Grode, P. Knudsen, M. Petersen, and A. Hax-
thausen. Lycos: the lyngby co-synthesis system. Design Au-
tomation for Embedded Systems, 1997. to appear.

[141 J. E. Poulsen. Design of high speed VLSI circuits. Master’s
thesis, Department of Computer Science, Technical Univer-
sity of Denmark, February 1994. In Danish.

Synthesis of a 3D convolution algo-
rithm from a VHDL description. Master’s thesis, Depart-
ment of Computer Science, Technical University of Den-
mark, February 1994. In Danish.

[15] S. R. Rasmussen.

91

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 23,2010 at 10:29:40 EDT from IEEE Xplore. Restrictions apply.

