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ABSTRACT scatterer-related transfer functions for applicatiorte@field
This paper addresses the problem of Target Activity Detecc-)f rOEOt audn;ort], e.g., [3]. g%elatlv? |m|f).ulse lreséponstafsllr?{aM.
tion (TAD) for binaural listening devices. TAD denotes the & SUPSequent step be used, €.g., for Linearly L.onstral n

problem of robustly detecting the activity of a target sp@ak '_Itn um t\f”tar.]tceD(LfNL.V) b?rirgfo_rmmgf [4]. Idn this ccl))ntdeét, d
in a harsh acoustic environment, which comprises intexferi arget_ <(:j|V|_y € ehc 'Onté )(ljsfper ormet t(')n eT .em €
speakers and noise (‘cocktail party scenario’). In presiou acoustic devices, where the need for computationatlytefiic

work, it has been shown that employing a Feed-forward Ney€Works is most demanding. In order to achieve a com-

ral Network (FNN) for detecting the target speaker actiisty parable perfor_m_ance both on sma!l network sizes an_d §mal|
a promising approach to combine the advantage of differe mounts oftraining Qata, the selection of fe_ature Vectors|
TAD features (used as network inputs). In this contribution _|spensable. Clas_5|cal approaches for Voice Activity B_e_te
we exploit a larger context window for TAD and comparet'on (VAD) are typically single-channel methods explogin

the performance of FNNs and Recurrent Neural Networkéjism.mtive properties of speech signals I.ike statioyaﬁgr—
(RNNs) with an explicit focus on small network topologies monic structure and spectral envelopes in order to diffieren

as desirable for embedded acoustic signal processingisyste 2:2 tgggﬁeigjzsgfhcggg(iaﬁgi?s dn(tjonél)ilf?eer[eSr; tgfeTgs';vee\e/ﬁ[;
More specifically, the investigations include a comparisen ’ ’

tween three different types of RNNs, namely plain RNNs,tarQEt speaker and interfering speech sources as the pibpos

Long Short-Term Memories, and Gated Recurrent Units. ThdAP does. In this case, multlchannell m(_athods are beqef|C|aI,
which can be based, e.g., on localization methods like the

;ce)f;:t;t:ic;t?;gét all versions of RNNs outperform I:NNSSteered Response Poyver (SRP) method [7, 8]. _In a similar
way, the cross-correlation function between two microgson
Index Terms— voice activity detection, target activity de- can be exploited for TAD by looking for peaks at the time lag
tection, recurrent neural networks, binaural listeningices  corresponding to the (known) target source position [9, 10]
and the Magnitude Squared Coherence (MSC) allows for dif-
1. INTRODUCTION ferentiating between a dominant coherent point source and
incoherent background noise [11]. Moreover, it is possible
Knowledge on the activity of a predefined target source i€xploit conventional beamforming methods for TAD by es-
essential for many applications in speech signal procgssintimating the Signal-to-Interference-plus-Noise RatitN[S)
This knowledge can be exploited, e.g., in the context of-autobased on one beamformer and one nullformer steered to the
matic speech recognition, where the speech recognizeldssholknown target source Direction Of Arrival (DOA), yielding a
only be active during target source activity [1]. Anotheplyp  target signal power estimate and a noise (and interference)
cation is the supervised estimation of Relative TransfeicFu power estimate, respectively [12, 13]. Alternatively, nton
tions (RTFs). Since interfering sources have an impactisn thing the look direction of an adaptive nullsteering beamferm
estimation, a reliable detection of target activity becemmra- ~ can provide information on target source activity [14]. Adfin
cial. The relative transfer functions can be used, e.gsifpr  group of TAD methods are probabilistic methods, which were
nal enhancement in the context of binaural listening devicealso investigated in the recent past [15, 16]. Artificial re¢u
like hearing aids [2]. Beyond this, RTFs can be extended téetworks were recently proposed for single-channel VAD [6,
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of the target source is expected. This leads to the feature

13 (Aktar(t), t)

? fcorr(t) = max Tlg(Ak, t)7 (2)
Ak Akiar(t)
o1 (k) va(k) va(k) vs(k) which should exhibit a high value during target source activ
ity. In [14], a method for TAD was proposed, where an adap-
Fig. 1: Sketch of the microphone positions. tive differential nullformer [23] minimizes its output p@m

by adaptively steering a null into a directi@fz(¢t). This
beamformer uses the two microphones on the side of the head
17, 18, 19], but also for combining several features exdct which is closer to the target source (i.e., either microgsah
by using information on the target source DOA [20], outper-and 2, or microphones 3 and 4).dfis (¢) is equal togar(t),
forming the single-channel methods. In this paper, thedatt this would give an indication for target activity and, hence
method will be extended to exploit a longer temporal context
for TAD by using Recurrent Neural Networks (RNNs). Fairt (t) = [cos (¢air (1)) , sin (i (1)) 3)
The remainder of this paper is organized as follows: In . )
Sec. 2, our TAD method is presented with focus on featyréorms a third component for the feature vector. Finally, the
extraction, the process of sequence learning, and theetiffe VECtors
network topologies. In Sec. 3, the implementation setupis d

— [52 2
scribed and experimental evaluations are performed,rigadi For (8) = [0, (1), 00, (1)] )
to concluding remarks in Sec. 4. fs(t) = [cos (¢rar(t)) , sin (¢tar(t))]T (5)

2. RNN-BASED TARGET ACTIVITY DETECTION containing the powers of the microphone signalst) and

v3(k), and the sine and cosine of the known target source

In this section, we provide details about the feature etitac  DOA ¢rar(t) are appended, which yields the feature vector

(Sec. 2.1), sequence learning (Sec. 2.2), and the usednketwo T
topologies (Sec. 2.3). For the clarity of presentation, e r @, = [fSNR(t), feorl®), Fain ()T, £ ()T, F5)T| . (6)
strict our theoretical descriptions to network topologieth

one hidden layer. 2.2. Sequence learning

2.1. Eeature extraction Once the feature vectar; is obtained, the classification task

of TAD is performed, differentiating between activity and
For each block, different features are calculated and stackednactivity of the target speaker. On the one hand, in a tra-
to a feature vectog, (similar to [20, 21]), which will be the ditional approach, a Feed-forward Neural Network (FNN)
input vector of the neural networks. We consider a microserves as a memoryless classifier, where each feature vector
phone configuration as illustrated in Fig. 1, where two pairse, is mapped to the corresponding output veajgri.e., the
of microphones are placed on either side of a head (or morgassification resulty; is only based on the instantaneous
generally, at some distance on a scatterer), in order to bottbservationz; [24]. The hidden state vectdt; consists of
exploit the maximum aperture and allow for unilateral pro-the outputs of every neuron in the hidden layer and is related
cessing on the side of the target source. to the output vectoy; by thesoftmax-function [25].

The first feature is an SINR estimate obtained in a simi-  On the other hand, the various versions of RNNs exploit
lar way as in [12, 13, 22] by steering a filter-and-sum beamthe temporal dependencies between subsequent feature vec-
former and a nullformer (based on signaj$k) andvs (k) in  tors. Each classification result is then dependent on pusvio
Fig. 1) in the known target source DOAy, in order to ob-  hidden state vectors, as well as on the current input vector
tain estimates for target source powéi(t) and noise-plus- of the network. While FNNs can be trained on instantaneous
interference powe#? (), respectively, yielding feature vectors, RNNs must be trained using sequences-of fea
ture vectors (‘sequence learning’). Fig. 2 shows the ppieci
of sequence learning in an unrolled, or unfolded representa
62(t) 1 tion of the network over time. The input sequengestarting

with o up tox 1, whereM is the sequence length, form-
The second feature is basedgp(Ak, t), which is the cross-  ing the context window of the network. The hidden state vec-
correlation function between; (k) and vs(k) for block ¢t.  tor h, represents an RNN layer of a given time step;1
Based on a known or estimated target source D#t),  denotes the same layer on the next time step, and the hori-
a time lagAk(t) can be determined, where the main peakzontal arrow implies the recurrent connection between them

Jsnr(t) =



SINR
@ e @ Fig. 3: Histogram of input data SINRs of the training set in

linear scale. Dashed line is indicating the threshold ofB0 d

Number of feature vectors

Fig. 22 Schematic of sequence learning.

The corresponding output sequengei.e.,yo to yasr—1, de- 3. EXPERIMENTS

livers the predictions of the network for the associated<la

labels. In the sequence classification task of TAD, we conWe evaluated the proposed method in scenarios with up to five
sider the mapping of the input vectors to only the last outpusimultaneously active speech sources in reverberantamvir
vectoryy;—1. By assuming knowledge of the desired output,ments for detecting time intervals, where the SINR exceeds
supervised learning of the neural networks is performe@. Tha threshold of 10dB, which is deemed relevant for practical
Backpropagation (BP) algorithm serves as a learning algaapplications [29].

rithm for FNNs and Backpropagation Through Time (BPTT)

is used for training RNNs [25]. 3.1. Implementation and scenarios

2.3. Network types For training the different network models and parametes, set

a software framework was implemented in Python, largely

For exploiting t_he temporal dependencies among t_he featurgased onthe library ‘Lasagne’ [30], which uses Compute Uni-
vectors according to (6) for the TAD task, we consider threened Device Architecture (CUDA) [31], performing the train-

types of neural networks with memory, namely plain RNNSing using Stochastic Gradient Descent (SGD) [32], an Aver-
[25], Long Short-Term Memories (LSTMs) [26], and Gated aged Cross-Entropy (ACE) cost function, ansbfimax out-

Recurrent Units (GRUS) [27], and compare them to the memF-)ut layer [25]. For regularization, dropout [33] is empldye
oryless FNNs [24]. The hidden state ofthefeed-forwardriayefOr FNNs and synaptic noise [34] for RNNs. To keep the

is calculated as search space for the network parameters low, the number of
h, = f(Wynai + b), (7) hiddenlayersis varie_d froh = 1to L = 6, and the num_ber
of neurons per layer is chosen betweén= 1to N = 32 in
with the weight matrixW,,, the bias vectob, and the non-  powers of two, which leads to a total 86 different config-
linear activation functionf. (7) is also referred to as gate, yrations. A batch of training data comprise28 sequences,
if it is employing a sigmoid function [26]. In the following, with each sequence consisting2tffeature vectors. The fea-
for both FNNs and RNNs the functiofiis chosen to be the tyre vectorz, is computed from the observed signals every
hyperbolic tangent functiotanh [24]. As opposed to mem- mjllisecond according to (6). The dataset consists of hcor
oryless FNNs, the group of RNNs considers the temporal dengs of a desired target speaker, upttsimultaneously active
pendencies of subsequent feature vectardy introducing interferers, and babble noise in the background. The I®fels
recurrent connections to the preViOUS time Steps. The hidanrgets and interferers are chosen to be equa] and by Varying
state vector of a plain RNN is calculated as the number of interferers different SINRs are obtained from
_ the recordings, with a background noise level at -10dB rel-
hi = f(Wanze + Whnhi—1 +5), ® ative to a speech source. The target and interferer position
with the previous hidden state vectby_, weighted by the are static, and varied in an angular range between > HE3fl
matrix Wp,;,. The inability of plain RNNs to model long-time +135°. The speech sources were recorded at a distance of 1 m
dependencies initially motivated the use of LSTMs, proposein a living room-like environment at a sampling frequency of
by [26], who introduced a memory unit, called cell state.sThi f; = 16 KHz. The scenarios are split into a set29f acous-
cell state is accessed by gate units, limiting the effectaofv tic scenes of length 20s (resulting in a total56fl, 000 la-
ishing gradients [28]. GRUs were introduced to reduce théeled feature vectors) for training and validation, arsdous-
complexity of LSTMs while maintaining a similar expressive tic scenes of length 10s (resulting in a total 8% 919 la-
power, by dropping the memory unit and operating with gateébeled feature vectors) for testing purposes. The grourtl tru
units directly on the hidden state vector. For a detailed de- for the target activity was defined by calculating the intan
scription of the hidden state vecthg of an LSTM see [26], neous SINR (with knowledge of the individual target source
and for an GRU consider [27]. and interferer components) and applying a threshold of 10 dB



Performance Complexity
Network type| ACC AUC MCC | N L PP RRT RTT
FNN (nos) | 0.801 0.906 0.539 32 6 5634/712 1785 1.188
FNN (smo) | 0.870 0.950 0.662 32 2 1410/712 1 1
FNN (seq) | 0.889 0.950 0.700 32 6 10498/2308 1.0955 1.074
2
1
4

RNN 0.905 0.961 0.721 16 994/1545 14.021 9.221
LSTM 0.917 0.961 0.732 32 5474 /7403 36.638 22.609
GRU 0.904 0.960 0.710 32 22850/5408 26.969 11.897

Table 1: Classification performance in terms of ACCuracy (ACC), &ténder the Curve (AUC) and Matthew’s Correlation
Coefficient (MCC), and complexity of the compared neuralimeks. N denotes the number of neurons per layethe number
of layers, P the total number of parametei the average number of parameters over all 36 tested cortiignsaer network
type, RRT denotes the relative training time of the fullniag set, and RTT the relative testing time of the full test se

denoted as ‘10 dB-dataset’. This leads to binary output valan ‘FNN (nos)’ on average, although performing sequence
ues, which are used for supervised learning. Fig. 3 shows tHearning. By introducing gate units to control the inforioat
SINR distribution of the training data. The inequality ilms$  flow inside a neuron, ‘LSTM’ and ‘GRU’ are the most de-
labels is afterwards balanced by upsampling the minor clagmanding setups regarding the number of parameters. Tab. 1
until equality in the number of class labels is reached. Théndicates that by recursively averaging, a significant querf
threshold of 10dB is chosen as a typical value for real-worldnance gain of ‘FNN (smo)’ over ‘FNN (nos)’ is observable,
requirements, as, e.g., Least Mean Squares (LMS)-type algoonfirming the benefit of incorporating averaged feature vec
rithms need a sufficiently high SINR for convergence [29].tors into the classification. While ‘FNN (seq)’ outperforms
the other FNNs due to its larger number of inputs and, accord-
3.2 Results ingly the larger number of parameters, all RNNs outperform
all considered feed-forward networks. Especially, tharpla
Six different network types are compared by their perfor-RNN requires roughlyt0 times less parameters compared to
mance as well as their complexity in Tab. 1. For eachFNN (seq)’, but delivers a better performance at the expens
network type, the configuration (defined by the number obf an increased testing time. The recurrent nature of the
neurons per layeV and the number of layers) has been group of RNNs indicate that they have learned the temporal
chosen in terms of Matthew's Correlation Coefficient (MCC)evolution of the feature vectors through their feed-baak-co
[35] on the validation set of the 10 dB-dataset. While MCCnections. LSTMs and GRUs are not able to benefit from their
and Area Under Curve (AUC) [35] of a receiver operatoriong-term memory, which may be due to the nonstationarity
characteristics deliver a viable measure when applied {0 urbf speech signals. While the three recurrent network types
balanced data, the Accuracy (ACC) measure [35], althougperform similarly well for TAD, the plain RNN shows the
commonly used, produces results of limited value. The ratidowest number of parameters, which renders it the model of
P/ P indicates the relative complexity of the chosen networkchoice, especially for embedded applications demanding fo
compared to all other considered configurations. ‘FNN (nos)low complexity.
and ‘FNN (smo)’ are examples for instantaneous learning,
where a single feature vector is classified by an FNN, ex- 4. CONCLUSION
hibiting the lowest number of parameters on average. ‘FNN
(smo)’ uses a recursively averaged feature vegtogiven by  In this paper, a set of TAD features is used at the input of a
T = (1 —a)x: + a®:—1, With a = 0.7, whereas ‘FNN (nos)’ neural network detecting the activity of a desired speaksr.
uses the original feature vectar € 0). ‘FNN (seq)’, ‘RNN’,  main innovation with respect to previous work, we propose
‘LSTM’ and ‘GRU’ are examples of sequence learning ap-to employ recursive layers in the neural network performing
proaches. ‘FNN (seq)’ employs an FNN on a concatenatioefficient TAD for embedded acoustic devices. In the experi-
of a sequence of feature vectars to x, 1, which are in-  mental part using a multitude of challenging acoustic scena
troducing roughlyM times more weights in the first layer ios and comparing six different network types, we illugrat
than ‘FNN (nos)’, wheré! is the sequence length chosen tothat RNNs outperform FNNs, pointing at the plain RNN as
M = 20. In addition, the last three setups represent the groufhe structure of choice, due to the lowest number of tramabl
of RNNs. By additional recurrent connections, the plainparameters involved. Future work will include additioresf
RNN, denoted as ‘RNN’, is only about twice as complex astures to further improve the characterization of the saesar
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