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ABSTRACT

This paper addresses the problem of Target Activity Detec-
tion (TAD) for binaural listening devices. TAD denotes the
problem of robustly detecting the activity of a target speaker
in a harsh acoustic environment, which comprises interfering
speakers and noise (‘cocktail party scenario’). In previous
work, it has been shown that employing a Feed-forward Neu-
ral Network (FNN) for detecting the target speaker activityis
a promising approach to combine the advantage of different
TAD features (used as network inputs). In this contribution,
we exploit a larger context window for TAD and compare
the performance of FNNs and Recurrent Neural Networks
(RNNs) with an explicit focus on small network topologies
as desirable for embedded acoustic signal processing systems.
More specifically, the investigations include a comparisonbe-
tween three different types of RNNs, namely plain RNNs,
Long Short-Term Memories, and Gated Recurrent Units. The
results indicate that all versions of RNNs outperform FNNs
for the task of TAD.

Index Terms— voice activity detection, target activity de-
tection, recurrent neural networks, binaural listening devices

1. INTRODUCTION

Knowledge on the activity of a predefined target source is
essential for many applications in speech signal processing.
This knowledge can be exploited, e.g., in the context of auto-
matic speech recognition, where the speech recognizer should
only be active during target source activity [1]. Another appli-
cation is the supervised estimation of Relative Transfer Func-
tions (RTFs). Since interfering sources have an impact on this
estimation, a reliable detection of target activity becomes cru-
cial. The relative transfer functions can be used, e.g., forsig-
nal enhancement in the context of binaural listening devices
like hearing aids [2]. Beyond this, RTFs can be extended to

scatterer-related transfer functions for applications inthe field
of robot audition, e.g., [3]. Relative impulse responses can in
a subsequent step be used, e.g., for Linearly Constraint Min-
imum Variance (LCMV) beamforming [4]. In this context,
Target Activity Detection (TAD) is performed on embedded
acoustic devices, where the need for computationally-efficient
networks is most demanding. In order to achieve a com-
parable performance both on small network sizes and small
amounts of training data, the selection of feature vectors is in-
dispensable. Classical approaches for Voice Activity Detec-
tion (VAD) are typically single-channel methods exploiting
distinctive properties of speech signals like stationarity, har-
monic structure and spectral envelopes in order to differenti-
ate between speech and background noise [5, 6]. These VAD
methods, however, cannot be used to differentiate between a
target speaker and interfering speech sources as the proposed
TAD does. In this case, multichannel methods are beneficial,
which can be based, e.g., on localization methods like the
Steered Response Power (SRP) method [7, 8]. In a similar
way, the cross-correlation function between two microphones
can be exploited for TAD by looking for peaks at the time lag
corresponding to the (known) target source position [9, 10],
and the Magnitude Squared Coherence (MSC) allows for dif-
ferentiating between a dominant coherent point source and
incoherent background noise [11]. Moreover, it is possibleto
exploit conventional beamforming methods for TAD by es-
timating the Signal-to-Interference-plus-Noise Ratio (SINR)
based on one beamformer and one nullformer steered to the
known target source Direction Of Arrival (DOA), yielding a
target signal power estimate and a noise (and interference)
power estimate, respectively [12, 13]. Alternatively, monitor-
ing the look direction of an adaptive nullsteering beamformer
can provide information on target source activity [14]. A final
group of TAD methods are probabilistic methods, which were
also investigated in the recent past [15, 16]. Artificial neural
networks were recently proposed for single-channel VAD [6,
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Fig. 1: Sketch of the microphone positions.

17, 18, 19], but also for combining several features extracted
by using information on the target source DOA [20], outper-
forming the single-channel methods. In this paper, the latter
method will be extended to exploit a longer temporal context
for TAD by using Recurrent Neural Networks (RNNs).

The remainder of this paper is organized as follows: In
Sec. 2, our TAD method is presented with focus on feature
extraction, the process of sequence learning, and the different
network topologies. In Sec. 3, the implementation setup is de-
scribed and experimental evaluations are performed, leading
to concluding remarks in Sec. 4.

2. RNN-BASED TARGET ACTIVITY DETECTION

In this section, we provide details about the feature extraction
(Sec. 2.1), sequence learning (Sec. 2.2), and the used network
topologies (Sec. 2.3). For the clarity of presentation, we re-
strict our theoretical descriptions to network topologieswith
one hidden layer.

2.1. Feature extraction

For each blockt, different features are calculated and stacked
to a feature vectorxt (similar to [20, 21]), which will be the
input vector of the neural networks. We consider a micro-
phone configuration as illustrated in Fig. 1, where two pairs
of microphones are placed on either side of a head (or more
generally, at some distance on a scatterer), in order to both
exploit the maximum aperture and allow for unilateral pro-
cessing on the side of the target source.

The first feature is an SINR estimate obtained in a simi-
lar way as in [12, 13, 22] by steering a filter-and-sum beam-
former and a nullformer (based on signalsv1(k) andv3(k) in
Fig. 1) in the known target source DOAφtar in order to ob-
tain estimates for target source powerσ̂2

s (t) and noise-plus-
interference power̂σ2

n(t), respectively, yielding

fSNR(t) =
σ̂2

s (t)

σ̂2
n(t)

. (1)

The second feature is based onr13(∆k, t), which is the cross-
correlation function betweenv1(k) and v3(k) for block t.
Based on a known or estimated target source DOAφtar(t),
a time lag∆ktar(t) can be determined, where the main peak

of the target source is expected. This leads to the feature

fcorr(t) =
r13(∆ktar(t), t)

max
∆k 6=∆ktar(t)

r13(∆k, t)
, (2)

which should exhibit a high value during target source activ-
ity. In [14], a method for TAD was proposed, where an adap-
tive differential nullformer [23] minimizes its output power
by adaptively steering a null into a directionφdiff (t). This
beamformer uses the two microphones on the side of the head
which is closer to the target source (i.e., either microphones 1
and 2, or microphones 3 and 4). Ifφdiff (t) is equal toφtar(t),
this would give an indication for target activity and, hence,

fdiff (t) = [cos (φdiff (t)) , sin (φdiff (t))]
T (3)

forms a third component for the feature vector. Finally, the
vectors

fσ2(t) =
[

σ2
v1
(t), σ2

v3
(t)

]T
(4)

fφ(t) = [cos (φtar(t)) , sin (φtar(t))]
T (5)

containing the powers of the microphone signalsv1(k) and
v3(k), and the sine and cosine of the known target source
DOA φtar(t) are appended, which yields the feature vector

xt =
[

fSNR(t), fcorr(t),fdiff (t)
T
,fσ2(t)

T
,fφ(t)

T
]T
. (6)

2.2. Sequence learning

Once the feature vectorxt is obtained, the classification task
of TAD is performed, differentiating between activity and
inactivity of the target speaker. On the one hand, in a tra-
ditional approach, a Feed-forward Neural Network (FNN)
serves as a memoryless classifier, where each feature vector
xt is mapped to the corresponding output vectoryt, i.e., the
classification resultyt is only based on the instantaneous
observationxt [24]. The hidden state vectorht consists of
the outputs of every neuron in the hidden layer and is related
to the output vectoryt by thesoftmax-function [25].

On the other hand, the various versions of RNNs exploit
the temporal dependencies between subsequent feature vec-
tors. Each classification result is then dependent on previous
hidden state vectors, as well as on the current input vector
of the network. While FNNs can be trained on instantaneous
feature vectors, RNNs must be trained using sequences of fea-
ture vectors (‘sequence learning’). Fig. 2 shows the principle
of sequence learning in an unrolled, or unfolded representa-
tion of the network over time. The input sequencext, starting
with x0 up toxM−1, whereM is the sequence length, form-
ing the context window of the network. The hidden state vec-
tor ht represents an RNN layer of a given time stept, ht+1

denotes the same layer on the next time step, and the hori-
zontal arrow implies the recurrent connection between them.
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Fig. 2: Schematic of sequence learning.

The corresponding output sequenceyt, i.e.,y0 to yM−1, de-
livers the predictions of the network for the associated class
labels. In the sequence classification task of TAD, we con-
sider the mapping of the input vectors to only the last output
vectoryM−1. By assuming knowledge of the desired output,
supervised learning of the neural networks is performed. The
Backpropagation (BP) algorithm serves as a learning algo-
rithm for FNNs and Backpropagation Through Time (BPTT)
is used for training RNNs [25].

2.3. Network types

For exploiting the temporal dependencies among the feature
vectors according to (6) for the TAD task, we consider three
types of neural networks with memory, namely plain RNNs
[25], Long Short-Term Memories (LSTMs) [26], and Gated
Recurrent Units (GRUs) [27], and compare them to the mem-
oryless FNNs [24]. The hidden state of the feed-forward layer
is calculated as

ht = f(Wxhxt + b), (7)

with the weight matrixWxh, the bias vectorb, and the non-
linear activation functionf . (7) is also referred to as gate,
if it is employing a sigmoid function [26]. In the following,
for both FNNs and RNNs the functionf is chosen to be the
hyperbolic tangent functiontanh [24]. As opposed to mem-
oryless FNNs, the group of RNNs considers the temporal de-
pendencies of subsequent feature vectorsxt by introducing
recurrent connections to the previous time steps. The hidden
state vector of a plain RNN is calculated as

ht = f(Wxhxt +Whhht−1 + b), (8)

with the previous hidden state vectorht−1 weighted by the
matrixWhh. The inability of plain RNNs to model long-time
dependencies initially motivated the use of LSTMs, proposed
by [26], who introduced a memory unit, called cell state. This
cell state is accessed by gate units, limiting the effect of van-
ishing gradients [28]. GRUs were introduced to reduce the
complexity of LSTMs while maintaining a similar expressive
power, by dropping the memory unit and operating with gate
units directly on the hidden state vectorht. For a detailed de-
scription of the hidden state vectorht of an LSTM see [26],
and for an GRU consider [27].
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Fig. 3: Histogram of input data SINRs of the training set in
linear scale. Dashed line is indicating the threshold of 10 dB.

3. EXPERIMENTS

We evaluated the proposed method in scenarios with up to five
simultaneously active speech sources in reverberant environ-
ments for detecting time intervals, where the SINR exceeds
a threshold of 10 dB, which is deemed relevant for practical
applications [29].

3.1. Implementation and scenarios

For training the different network models and parameter sets,
a software framework was implemented in Python, largely
based on the library ‘Lasagne’ [30], which uses Compute Uni-
fied Device Architecture (CUDA) [31], performing the train-
ing using Stochastic Gradient Descent (SGD) [32], an Aver-
aged Cross-Entropy (ACE) cost function, and asoftmax out-
put layer [25]. For regularization, dropout [33] is employed
for FNNs and synaptic noise [34] for RNNs. To keep the
search space for the network parameters low, the number of
hidden layers is varied fromL = 1 to L = 6, and the number
of neurons per layer is chosen betweenN = 1 to N = 32 in
powers of two, which leads to a total of36 different config-
urations. A batch of training data comprises128 sequences,
with each sequence consisting of20 feature vectors. The fea-
ture vectorxt is computed from the observed signals every
millisecond according to (6). The dataset consists of record-
ings of a desired target speaker, up to4 simultaneously active
interferers, and babble noise in the background. The levelsof
targets and interferers are chosen to be equal and by varying
the number of interferers different SINRs are obtained from
the recordings, with a background noise level at -10 dB rel-
ative to a speech source. The target and interferer positions
are static, and varied in an angular range between -135◦ and
+135◦. The speech sources were recorded at a distance of 1 m
in a living room-like environment at a sampling frequency of
fs = 16KHz. The scenarios are split into a set of29 acous-
tic scenes of length 20 s (resulting in a total of551, 000 la-
beled feature vectors) for training and validation, and9 acous-
tic scenes of length 10 s (resulting in a total of89, 919 la-
beled feature vectors) for testing purposes. The ground truth
for the target activity was defined by calculating the instanta-
neous SINR (with knowledge of the individual target source
and interferer components) and applying a threshold of 10 dB,



Performance Complexity

Network type ACC AUC MCC N L P / P RRT RTT

FNN (nos) 0.801 0.906 0.539 32 6 5634 / 712 1.785 1.188

FNN (smo) 0.870 0.950 0.662 32 2 1410 / 712 1 1

FNN (seq) 0.889 0.950 0.700 32 6 10498 / 2308 1.0955 1.074

RNN 0.905 0.961 0.721 16 2 994 / 1545 14.021 9.221

LSTM 0.917 0.961 0.732 32 1 5474 / 7403 36.638 22.609

GRU 0.904 0.960 0.710 32 4 22850 / 5408 26.969 11.897

Table 1: Classification performance in terms of ACCuracy (ACC), Area Under the Curve (AUC) and Matthew’s Correlation
Coefficient (MCC), and complexity of the compared neural networks.N denotes the number of neurons per layer,L the number
of layers,P the total number of parameters,P the average number of parameters over all 36 tested configurations per network
type, RRT denotes the relative training time of the full training set, and RTT the relative testing time of the full test set.

denoted as ‘10 dB-dataset’. This leads to binary output val-
ues, which are used for supervised learning. Fig. 3 shows the
SINR distribution of the training data. The inequality in class
labels is afterwards balanced by upsampling the minor class
until equality in the number of class labels is reached. The
threshold of 10 dB is chosen as a typical value for real-world
requirements, as, e.g., Least Mean Squares (LMS)-type algo-
rithms need a sufficiently high SINR for convergence [29].

3.2. Results

Six different network types are compared by their perfor-
mance as well as their complexity in Tab. 1. For each
network type, the configuration (defined by the number of
neurons per layerN and the number of layersL) has been
chosen in terms of Matthew’s Correlation Coefficient (MCC)
[35] on the validation set of the 10 dB-dataset. While MCC
and Area Under Curve (AUC) [35] of a receiver operator
characteristics deliver a viable measure when applied to un-
balanced data, the Accuracy (ACC) measure [35], although
commonly used, produces results of limited value. The ratio
P/P indicates the relative complexity of the chosen network
compared to all other considered configurations. ‘FNN (nos)’
and ‘FNN (smo)’ are examples for instantaneous learning,
where a single feature vector is classified by an FNN, ex-
hibiting the lowest number of parameters on average. ‘FNN
(smo)’ uses a recursively averaged feature vectorxt, given by
xt = (1−a)xt+axt−1, with a = 0.7, whereas ‘FNN (nos)’
uses the original feature vector (a = 0). ‘FNN (seq)’, ‘RNN’,
‘LSTM’ and ‘GRU’ are examples of sequence learning ap-
proaches. ‘FNN (seq)’ employs an FNN on a concatenation
of a sequence of feature vectorsx0 to xM−1, which are in-
troducing roughlyM times more weights in the first layer
than ‘FNN (nos)’, whereM is the sequence length chosen to
M = 20. In addition, the last three setups represent the group
of RNNs. By additional recurrent connections, the plain
RNN, denoted as ‘RNN’, is only about twice as complex as

an ‘FNN (nos)’ on average, although performing sequence
learning. By introducing gate units to control the information
flow inside a neuron, ‘LSTM’ and ‘GRU’ are the most de-
manding setups regarding the number of parameters. Tab. 1
indicates that by recursively averaging, a significant perfor-
mance gain of ‘FNN (smo)’ over ‘FNN (nos)’ is observable,
confirming the benefit of incorporating averaged feature vec-
tors into the classification. While ‘FNN (seq)’ outperforms
the other FNNs due to its larger number of inputs and, accord-
ingly the larger number of parameters, all RNNs outperform
all considered feed-forward networks. Especially, the plain
RNN requires roughly10 times less parameters compared to
‘FNN (seq)’, but delivers a better performance at the expense
of an increased testing time. The recurrent nature of the
group of RNNs indicate that they have learned the temporal
evolution of the feature vectors through their feed-back con-
nections. LSTMs and GRUs are not able to benefit from their
long-term memory, which may be due to the nonstationarity
of speech signals. While the three recurrent network types
perform similarly well for TAD, the plain RNN shows the
lowest number of parameters, which renders it the model of
choice, especially for embedded applications demanding for
low complexity.

4. CONCLUSION

In this paper, a set of TAD features is used at the input of a
neural network detecting the activity of a desired speaker.As
main innovation with respect to previous work, we propose
to employ recursive layers in the neural network performing
efficient TAD for embedded acoustic devices. In the experi-
mental part using a multitude of challenging acoustic scenar-
ios and comparing six different network types, we illustrate
that RNNs outperform FNNs, pointing at the plain RNN as
the structure of choice, due to the lowest number of trainable
parameters involved. Future work will include additional fea-
tures to further improve the characterization of the scenarios.
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