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Abstract—Dependency of the transport sector on fossil fuels is 
encouraging a significant amount of research in to improving 
fuel efficiency in vehicles. Three primary techniques are 
identified for vehicle fuel efficiency improvement: 1) vehicle 
technology improvements such as drivetrain improvements, 2)
traffic infrastructure improvements such as traffic flow 
management and route selection, and 3) driver behavior changes 
such as acceleration and deceleration profiles. Out of the 3 
techniques, driver behavior changing has the least 
implementation cost and is able to provide immediate results. 
Thus, this paper presents a fuel efficient driving behavior 
identification and feedback architecture that is specific to fleet 
vehicles. The presented method utilizes historical data from fleet 
drivers on specific routes and generates fuel optimal velocity
profiles that do not affect travel time. The identified velocity
profile is the prompted to the driver via a low-cost plug-and-play 
style un-obstructive display. The display uses an intuitive and 
easily understandable visualization to prompt drivers on fuel 
efficient velocity. The presented architecture was tested on the 
Idaho National Laboratory (INL) bus fleet in real-world driving 
conditions and was shown to be able to increase the fuel economy 
by 9% and 20% in two different driving scenarios.

Keywords—Eco-driving; visualization; fuel efficiency; driver 
feedback; passive driver assistance

I. INTRODUCTION

With increasing fossil fuel prices and the climate change 
concerns related to carbon emissions and other pollutants, 
reducing fossil fuel usage is gaining increasing attention. 
Research has shown that the transportation sector is the largest 
consumer of fossil fuels in many countries. For example nearly 
71% of the petroleum consumed in the United States (U.S.) is 
consumed by the transportation sector [1], [2]. Furthermore, it 
has also been shown that the transportation sector is the largest 
contributor to carbon emissions throughout the world. In the 
EU, transportation is attributed to more than a fourth of carbon 
emissions [3]. Similarly, in the U.S. the transportation sector is 
the largest carbon emitter contributing to over a third of all 
carbon emissions, of which over 40% are from passenger cars 
[4]. Furthermore, in the U.S. the carbon emissions by the 
transportation sector has increased in recent years [4].

Therefore, increasing vehicle fuel efficiency has become a 
major research area with significant impacts on fossil fuel 
usage and the global carbon footprint [5], [6], [7]. Three major 
techniques are identified in the literature for improving vehicle 

fuel economy, which are: 1) vehicle technology improvements, 
2) traffic infrastructure improvements, and 3) driver behavior 
changes [8]. 

Vehicle technology improvements entail improving the 
physical design of the vehicle such as engine, gearbox, and 
aerodynamics [7], [9], [10]. Alternative fuel designs and 
improvements fall under this category as well. While, these 
improvements have the highest potential for long term impacts, 
they have long implementation times, high implementation 
cost, and will not affect the vehicles currently on the road [5], 
[11].

Traffic infrastructure improvements are concerned with 
managing traffic flow such that vehicle idle times and travel 
times are reduced. These methods further include alternate 
route selection with an emphasis on fuel economy [8]. While, 
traffic infrastructure improvements yield immediate results and 
affects all road vehicles, they are costly to implement and 
logistically difficult. 

Driver behavior changes related to fuel economy entail an 
overall less aggressive driving style, with smooth acceleration 
and deceleration profiles [3], [12], [13], [14]. Such driving 
techniques are known as “eco-driving” and can be loosely 
defined as a driving decision making process that positively 
influences the vehicle fuel efficiency [3]. Thus, driver behavior 
changes do not require any mechanical changes or 
infrastructure changes, which makes it easy to implement with 
comparatively very low cost [5], [12], [15]. Furthermore, they 
can be implemented in already existing vehicles, leading to fast 
implementation and turn-around times [5], [12]. Previous 
studies report fuel efficiency improvements ranging in 5-15% 
through driver behavior changes alone [3], [13]. Thus, this 
paper is concerned with changing driver behavior to achieve 
improved fuel economy.

Two primary methods of influencing driver behavior for 
improved fuel economy has been investigated in the past: 1) 
driver education, 2) driver feedback. Driver education entails 
training drivers on fuel efficient driving styles [12], [15]. While 
this method has been shown to be effective [1], [15], it has 
been shown that over time, some drivers tend to depart from 
fuel efficient behavior [15], [16]. Furthermore, training a fleet 
of drivers is time consuming and costly. Driver feedback
entails real-time or non-real-time feedback about the fuel 
economy and how to change behavior for increased fuel 



economy. Real-time continuous feedback devices are known as 
passive driving assistance tools and have been shown to the 
extremely effective [17], [18].

The primary concern of real-time feedback devices is safety 
[5]. While audio [18], [19], visual and haptic [20] feedback for 
fuel efficient driving has been investigated in the past, it can be 
argued that visual feedback is the optimal. Visual feedback that 
are non-distracting and easily ignored ensures safe operation
[20]. For example audible cues may be distracting in hazardous
situations where quick decisions need to be made. 
Furthermore, early research has suggested that drivers may 
have up to 50% spare attention capacity in regular driving 
conditions [21]. Recent research have further suggested that 
glancing behavior at an in-vehicle information system suggests 
that it may not lead to visual distraction, and might not increase 
mental workload [22].

This paper presents a fuel optimal driver behavior 
identification and feedback architecture for fleet vehicles 
driving in preset highway routes. Fleet vehicles present a 
unique situation where different drivers drive similar vehicles 
over a preset route where the driving times are governed by 
strict guidelines [6]. Furthermore, highway driving conditions 
are more consistent and have less aggressive acceleration and 
deceleration points. The presented architecture uses a modified 
version of the data driven driver behavior identification 
methodology presented in [6], and utilizes the low cost, easy to 
understand prompting framework along with the visualization 
previously presented in [5]. The presented architecture was 
tested on a real-world driving scenario with 3 drivers on a 12
kilometer route in Idaho. The experimental results show 9% 
and 20% increase in the average fuel economy with the 
presented framework implemented. 

This paper is organized as follows; section II details the 
data driven driver behavior identification and extraction
methodology, and the driver behavior feedback framework is 
detailed section III. Section IV provides the implementation 
details while section V presents experimental results. Finally, 
section VI presents final conclusions and future research 
directions.

II. FUEL EFFICIENT DRIVER BEHAVIOR IDENTIFICATION

This section describes the driver behavior identification 
methodology for fleet vehicles that is used in this paper. The 
driver behavior identification methodology is a slightly 
modified version of the method that was presented in [6]. 

As mentioned, fleet vehicles present a unique situation
where similar vehicles are being driven on the same route 
multiple times by different drivers. Thus, the basic idea behind 
the driver behavior identification methodology is to utilize 
driving data from multiple drivers to derive an overall fuel 
optimal behavior for a specific route. The final extracted 
behavior will be a combination of driving behavior of multiple 
drivers, driving similar vehciles, multiple times on the same 
route. Furthermore, the presented method is for highway 
driving situations, and it is assumed that the vehicle will be in 
the same transmission gear position throughout the run. This 

was found to be a safe assumption by analyzing the data for the 
specific route chosen for the experiment.

In order to combine multiple data from multiple drivers, 
first data is gathered from multiple runs on the same route in 
similar vehicles. The data is collected from the vehicle on-
board diagnostics system, can be represented as:

),...}(),(),({)( tftptvtd  (1)

where, )(td is the data point collected at time t. )(tv , )(tp , 

and )(tf are the velocity, the position, and the fuel rate of the 

vehicle and at time t respectively. Other features such as 
transmission gear position, engine rpm, and gas pedal position 
are also collected, but will not be used for generating the driver 
behavior profile. 

The state of the vehicle at time t, )(tx is extracted from 

the collected data and can be expressed as:

)](),([)( tptvtx  (2)

where )(tv , and )(tp are the velocity, and the position of the 

vehicle and at time t respectively. Thus, for an entire run the 
state of the dataset can be expressed as: }...0),({ TttxX  , 

where T is the total data collection time. 

However, in order to synchronize multiple runs according a 
specific route, the temporal data must be converted in to spatial 
domain. Thus, using )(tp , the state of the vehicle at position 

p, )( px can be expressed as:

]),([)( ppvpx  (3)

where, )( pv is the velocity of the vehicle at position p.

Thus the converted spatial dataset can be expressed as 
}...0),({ LppxX P  , where L is the length of the route.

Once the data is converted in to the spatial domain, 
segments can be identified. These segments are defined in 

terms of a starting position Sp and an end positon Ep . Thus a 

segment can be expressed as ),( ES ppS . To combine data 

from multiple datasets, identical segments will be used, 

meaning the state of the vehicle in each dataset at Sp and Ep
must be identical. Thus given two datasets in the spatial 
domain

1PX and 
2PX , a segment that can be merged

),( ESM ppS can be identified by:
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where, , 
11 )( PXpx  and 

22 )( PXpx  . The set of points that 

satisfy these conditions are called switch points (see Fig. 1(a)).

Thus, the definition of ),( ESM ppS ensures that segments 

from different datasets, can be interchanged without affecting 
the physical feasibility of the final solution [6]. The two 

datasets 1PX and 2PX can be from two different drivers 

driving similar vehicles on the same route or the same driver 
driving the same vehicle on the same route at two different 
times.

Using the recorded fuel rate )(tf , the fuel rate for a given 

position )( pf , can be extracted. The amount of fuel 

consumed by the vehicle for a given segment ),( ES ppS can 

then be calculated as:
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where, ),( ES ppF is the amount of fuel consumed between 

positions Sp and Ep .

The amount of fuel used at each segment can then be used 
to merge 2 given runs to generate a single velocity profile that 
is more fuel efficient than the initial runs. The merged velocity 

profile ),( ESM ppV for two datasets 1PX and 2PX at a 

segment that can be merged ),( ESM ppS can be expressed as:
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where, }...),({),( ESiESi ppppvppV  for a given run i. 

Note that for the starting segment ),0(0 ipS and for ending 

segment ),( LpS jL there may not be any segment that meets 

the requirements in (4), in these special cases equation (6) is 
used even though the merging criteria is not met. Thus, the 

final merged velocity profile MV̂ can be expressed as:

),(),(),0(ˆ
10 LpVppVpVV CLiiMiM   (5)

where, 0V and LV are the start and end segment velocity 

profiles respectively, and )1...(1  Ci where, C is the 

number of switch points for the two datasets given. The 
process of merging two datasets with two switch points is 
detailed in Fig. 1.

However, given multiple datasets, finding the most optimal 
fuel efficient velocity profile is not trivial since switch points 
are different in different datasets. Furthermore, while 
minimizing the fuel efficiency, the time to destination should 
be kept within an acceptable level, as well as maintaining the 
velocity of the vehicle within certain legal and safe bounds. 
Thus, the problem of combining multiple datasets to generate a 
single velocity profile with the optimal fuel efficiency is a 
bounded multi-criteria optimization problem. While there are 
many different methods of finding the optimal defined by these 
parameters, in this paper, a simple evolutionary algorithm was 
used.

(a)

(b)

(c)

Fig. 1 The process of extracting the fuel efficient driving behavior from two 
datasets. (a) identifying segments that can be merged, (b) calculation of the 

cumulative fuel usage for each segment, (c) identifying the most fuel efficient 
velocity profile



The final fuel efficient driver behavior extracted from the 
process mentioned above is a set of velocities of the vehicle for 
a given position of the route. This set of velocities is only 
optimal to the specific route and type of vehicle. The velocity 
profile can be improved as more data becomes available for 
that route.

III. DRIVER BEHAVIOR PROMPTING

The extracted fuel efficient driving behavior is recorded in 
terms of a set of velocities for a given positions in the route. 
This information should be prompted to the driver real-time in 
an unobtrusive manner. 

For prompting the fuel efficient velocity, the framework 
presented in [5] was used. In this framework, real-time data is 
gathered from the vehicle along with location information and 
utilized to provide accurate and timely feedback to the driver 

The vehicle related data such as velocity, engine rpm, and 
transmission gear is collected via the on-board diagnostics 
systems available in modern vehicles [5]. These systems 
collect accurate, high frequency data from sensors throughout 
the vehicle for diagnostics purposes and can be readily
collected via industry standard interfaces. 

The road position data can be collected via accurate GPS 
devices. Such devices are becoming increasingly available as 
the technology progresses. However, to increase the accuracy 
of the positioning, a combination of prior knowledge about the 
route and the real-time vehicle speed is used to augment the 
latitude and longitude information from the GPS device [5]. 
This type of dead-reckoning can be used to maintain accurate 
position information even during loss of GPS data. Thus, 
combining data from the vehicle and the GPS device a data 
point of the vehicle at time t, )(td can be created (see 

equation (1)).

Once the data is collected, as before, the temporal data is 
converted to the spatial domain and the real-time state of the 

vehicle )( pxr at a given position p is generated:

]),([)( ppvpx rr  (6)

where, )( pvr is the real-time velocity of the vehicle at 

position p.

Using the merged optimal fuel profile generated in the 

previous section, MV̂ , the optimal velocity for the current 

position p, )(ˆ pv can be found. However, since merged data is 

discrete, optimal velocity for the current position might not be 
available. In such cases, linear interpolation of the optimal 

velocities between the two closest available positons MV̂ will 

be used as the optimal velocity.

Once )( pvr and )(ˆ pv is calculated, 

)(ˆ)()( pvpvpv r  is also calculated. The driver is then 

presented with this information using a visual display.

The visual display setup and the visualization that is used in 
this paper is the visualization that was found to be least 
obstructive, most intuitive, and most understandable in [5]. The 
visualization used is shown in Fig. 2. The speedometer dial in 
the visualization is a near exact match to the actual 
speedometer in the vehicle. Furthermore, the current velocity 
of the vehicle is clearly displayed. Thus, drivers who are 
accustomed to looking at the speedometer frequently can
utilize the provide visualization to get velocity information of 
the vehicle. The current actual velocity of the vehicle is 
augmented with a colored segment that shows the difference in 
the current velocity of the vehicle and the fuel efficient velocity 
for the current position )(ˆ pv . Furthermore, the background 

color changes from green to red representing whether the 
current velocity is lower than optimal or higher than optimal, 
respectively. The intensity of the color represents the 

magnitude of the difference )( pv . 

IV. IMPLEMENTATION

This section details the hardware implementation of the 
presented fuel optimal driver behavior identification and 
feedback architecture. The presented architecture was 

Fig. 2 Visualization of the fuel efficient velocity on the speedometer



implemented on the Idaho National Laboratory (INL) bus fleet 
using low-cost Commercial Off-The-Shelf (COTS) hardware. 

The INL bus fleet consists of over 90 buses of several 
models that travel in several preset routes throughout the south-
eastern region of Idaho [23]. For the implementation of the 
presented framework, the MCI D-series model D4505 buses 
were selected [24].

The hardware implementation of the data collection and 
visualization was similar to the previously presented setup in 
[5]. Since the optimal velocity calculation can be performed 
offline, the amount of processing that need to be performed 
real-time is minimal. Thus a small, low power computing 
device is sufficient for the real-time calculations. A low cost, 
self-powered USB enabled tablet device running Windows 
operating system was therefore utilized as the on-board data 
processing computer.

Data collection for fuel efficient driver behavior 
identification and real-time behavior prompting was performed
through the industry standard system called CANbus, utilized 
by the MCI D4505 buses. For diagnostic purposes, a 6 pin 
Deustch connection is present in the cabin of the bus. Using a 
commercially available interface device called the NexiqTM

USB link [25], a USB equipped computer can be interfaced 
with the CANbus via the Deustch connector. Thus, the raw 
data being passed through the CANbus can be read by the 
computer. However, the raw data is encoded in using the J1939 
protocol [26], which is decoded in the computer to access the 
actual data stream [5].

For obtaining the position data, a low cost, USB enabled,
COTS device from US Global Sat Inc. was used [27]. As, with 
the raw data from the bus, a separate data parser was used to 
decode the data stream from the GPS device and obtain the 
actual latitude and longitude data. Because of the low 
resolution of the GPS device and the high probability of errors, 
a combination of dead-reckoning using the velocity of the bus 
from the Nexiq device and prior knowledge about the route 
was used in conjunction with the GPS data for accurate 
positioning.

In order to present the driver with the visualization 
described in Section III, a 7 inch High-Definition display (

7201280 resolution) display was utilized. The display was 
self-powered and mountable, so that it can be placed anywhere 
in the drivers’ periphery that is least obstructive while being 
easy to glance at. The high resolution and high brightness 
(450cd/m2) of the device maximized the legibility of the 
visualization. The small form factor and portable nature of the 
device ensured that the device could be easily positioned 
within the bus cabin (See Fig. 3).

V. EXPERIMENTAL RESULTS

In order to test the presented architecture, a 12 km portion 
of the US20 West highway in eastern Idaho was selected. This 
portion of the highway was selected because: 1) ease of access 
to buses from town, 2) consistent traffic conditions, 3) access 
to turning points for buses, 4) varying elevation profile and 5) 
one of the most used routes of the buses. Fig. 4(a) shows the 
selected portion of the route and Fig. 4(b) shows the elevation 
profile. Starting point (point A in Fig. 4) was set at lat. 43° 33' 
10.9794"N, long. 112° 32' 48.8394"W and finishing point 
(point B in Fig. 4) was set at lat. 43° 33' 2.9874"N, long. 112° 
23' 56.3634"W. Two sets of data were collected for the 
selected portion of the route: 1) Eastbound: travelling from 
point A to point B, 2) Westbound: travelling from point B to 
point A.

Fig. 3 Presented visualization placed in the bus cabin, in the driver’s periphery

(a)

(b)

Fig. 4 Selected 12 km route (a) top view (b) elevation profile



TABLE I
AVERAGED FUEL EFFICIENCY FOR EACH RUN

Unprompted Prompted
Average 
(mpg)

SD 
(mpg)

Average 
(mpg)

SD 
(mpg)

Eastbound 9.25 0.49 11.12 0.46
Westbound 6.72 0.35 7.34 0.28

The data was collected using a single bus and three 
different drivers. First, data was collected to extract the optimal 
fuel efficient driving behavior. Thus, each driver was first 
asked to drive the route in a manner which they judged to be 
the most economical, while keeping the bus within 5mph of the 
speed limit (65mph). Each driver was given 3 runs in each 
direction. In order to keep the data uniform and relevant, 
weather conditions were monitored during the data collection 
and due to unfavorable weather, 2 runs were removed from the 
Eastbound direction. To keep the datasets uniform, the 
Westbound runs corresponding to the removed runs were also 
removed. Thus, 7 runs in each direction was used to extract the 
fuel efficient driver behavior. Fig. 5(a) and 5(b) depict the 
extracted velocity profiles for Eastbound and Westbound
directions respectively. 

Once the fuel efficient driver behavior was extracted, the 
presented visualization framework was setup in the bus and the 
same drivers were asked to drive the routes while the prompter
is running. The drivers were specifically asked to keep 
attention on the road as usual and only pay attention to the 
prompter if they feel the necessity, and the conditions allow it. 
Due to time and resource constraints only 5 runs in each 
direction were performed with the prompter running (2 drivers 
performing 2 runs and the other driver performing only 1 run, 
in each direction). 

Fig. 6(a) and 6(b) show the average and standard deviation 
bands of the fuel efficiency of each run along with the 
extracted optimal fuel efficiency for Eastbound and Westbound
runs respectively. The final fuel efficiencies are given in Table
I. From the initial experimental results it can be observed that 
with the presented architecture operating, the average fuel 
economy has been increased and has a lower variability, in 
both cases. However, the lower standard deviation in the 
prompted case can be attributed to the smaller sample size.

For the Westbound run travelling slightly uphill, the 
average fuel economy was increased by 9% while for the slight 
downhill Eastbound direction the increase was 20%. In both 

(a)

(b)

Fig. 5 Extracted optimal fuel efficient velocity profile 
(a) Eastbound (b) Westbound

(a)

(b)

Fig. 6 Average fuel efficiency curves 
(a) Eastbound (b) Westbound



cases the difference in fuel economy with and without the 
presented architecture was statistically significant with a 95% 
confidence interval.

For a pessimistic estimation of fuel economy, the best fuel 
economy achieved without the prompting and the worst fuel 
economy with the prompting were compared. For the 
Eastbound direction, these numbers were nearly identical with 
the unprompted showing 0.4% better fuel economy. The same 
numbers for the Westbound direction showed an increase of 
5% fuel economy with prompting. Thus even with the most 
pessimistic comparison, the fuel economy with the presented 
architecture was at least as good as without it.

VI. CONCLUSIONS

The need to reduce fossil fuel usage has been exemplified 
in recent years with increasing oil prices and the need to reduce 
the carbon footprint. Transportation sector has been shown to 
be the highest consumer of fossil fuel throughout the world and 
also has the most potential of improving. One of the least 
expensive and easy to deploy methods of achieving better fuel 
economy in vehicles is passive driver assistance devices.

Thus, this paper presented an architecture for fleet vehicles 
for identifying and extracting fuel efficient behavior of drivers 
and presenting drivers with a continuous feedback on the most 
fuel efficient velocity through an un-obstructive, easy to 
understand visualization. The presented architecture was 
implemented using low-cost COTS devices on a MCI D-series 
bus, and tested in real-world driving conditions. 

The experimental results showed 9% and 20% 
improvements on average fuel consumption using the 
presented architecture on two different tests. The differences 
achieved were shown to be statistically significant in both 
cases when compared to the presented architecture not being 
used.

Future works entails further experimentation with longer 
runs and larger number of drivers to obtain more generalized 
results. By implementing the system for a longer period of time 
it will be possible to identify driver acceptance of the system 
and longer term effects. Furthermore, driver distraction and 
glace frequencies with and without the system should be 
measured to identify safety risks involved. 
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