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Abstract—The depth map captured by Kinect usually contain
missing depth data. In this paper, we propose a novel method
to recover the missing depth data with the guidance of depth
information of each neighborhood pixel. In the proposed
framework, a self-taught mechanism and a cooperative profit
random forest (CPRF) algorithm are combined to predict the
missing depth data based on the existing depth data and the
corresponding RGB image. The proposed method can overcome
the defects of the traditional methods which is prone to
producing artifact or blur on the edge of objects. The
experimental results on the Berkeley 3-D Object Dataset
(B3DO) and the Middlebury benchmark dataset show that the
proposed method outperforms the existing method for the
recovery of the missing depth data. In particular, it has a good
effect on maintaining the geometry of objects.

Index Terms—depth map, neighborhood pixel, cooperative
profit random forests, missing depth data

I. INTRODUCTION

Microsoft Kinect sensor is very popular in the domain of

smart human-computer interaction due to less interference

under the illumination change and the complex background

situation [1–3]. Moreover, it can capture both the depth map

and the corresponding RGB map for a wide range of scenes.

The captured depth map and the corresponding RGB map

can be used to extract the characteristics of human actions or

hand motion, which are crucial elements for

human-computer interaction [4]. However, it is generally

known that the captured depth map usually comes with

missing depth data at the boundary of objects or the surface

of infrared absorption. A typical example is given in Fig. 1.

Therefore, filling hole (missing depth data) becomes an

essential preprocessing step.

Most of existing methods on the recovery depth map

mainly use some filtering methods. Such as the median filter,

the joint bilateral filter and the guided filter. However, these

methods are prone to producing artifact or blur on the large

area of missing depth data. In order to achieve good visual

effects, the captured RGB map is used to predict missing

depth data. We can learn a lot of useful information from the
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Fig. 1. (a) and (b) are the RGB image and the corresponding depth map,
which are captured by Microsoft Kinect. (c) is the restore result by using the
proposed method.

RGB images, such as texture information, the geometry of

objects and spatial information. Therefore, the

texture-assisted and image inpainting techniques are

developed to recover missing depth values. Unfortunately,

these approaches cannot obtain satisfactory results for the

region of depth discontinuity. Recently, there are some

methods based on the combination of the traditional methods

and the machine learning methods. However, most of these

methods have great limitations in the predicted scenes.

To deal with the current Kinect depth recovery issues in a

unified framework, we propose a novel method to recover the

missing depth data with the guidance of depth information of

each neighborhood pixel. In this framework, a cooperative

profit random forest (CPRF) algorithm is used to predict the

missing depth data based on the existing depth data and the

corresponding color map. In particular, a self-taught learning

mechanism combines the CPRF to predict the missing depth

data. The CPRF can explore the interdependency relation

between attributes (pixels) for a learning task (depth

information) [5]. Therefore, the proposed algorithm works

well for restoring the edge structure of the object and

considering the spatial structure of the objects in the scene at

the same time. The experimental results on the Berkeley 3-D

Object Dataset (B3DO) and the Middlebury dataset show

that the proposed method outperforms the existing method

for the recovery of the missing depth data.

The rest of the paper is organized as follows. Section 2

reviews the progress of the recovery depth map in recent years.
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Section 3 describes the proposed method framework in detail.

In Section 4, the experiment results and the corresponding

result analysis are presented. Section 5 concludes this work.

II. RELATED WORK

Most existing mainstream methods for recovering Kinect

depth maps mainly are use the filtering methods. The

simplest method hole filling is to apply median filter [6] to

the depth and RGB image (RGB-D). However, using the

median filter method often brings several blurs onto object

edges. To overcome this limitation, the joint bilateral

filter [7] is employed to fill holes in the RGB-D. However,

when the holes are too large, this operation is easy to

produce the artifact. In addition, the guided filter [8] is used

to maintain sharp edges and avoid artifacts for restoring the

depth map from Kinect. However, these filter-based methods

do not adequately consider the large dark holes in the Kinect

depth maps and are prone to producing blur on the object

edge. Therefore, the texture-assisted scheme [9] and image

inpainting techniques [10] are applied and developed to

restore the missing depth values. But these approaches

cannot obtain satisfactory results for the regions of depth

discontinuities.

In recent years, some novel methods are proposed based

on the benefit of the strong correlation between the depth

maps and the associated RGB images. These novel methods

tend to combine the traditional depth recovery methods and

the machine learning methods. For example, a graph

Laplacian based framework is proposed [11] to recover the

missing depth information (i.e., holes). In addition, an

effective method combines an existing auto-regressive

model [12] and a new filter method. Moreover, a self-taught

regression method is proposed to restore the missing depth

data [13]. In particular, the original random forests

regression algorithm [14] is employed to predict depth data.

This method is not only based on the strong correlation

between the depth maps and the associated RGB images but

also combines an initial rough estimation of the depth. The

Make 3D [15] technology is used to obtain the rough depth

estimation. However, this method has its limitations. It is

only valid for the objects of tables and chairs in the indoor

scene. In addition, the node split method of the original

random forests regression algorithm often pays less attention

to the intrinsic structure of the attribute (pixel) variables and

tends to ignore attributes (pixels) with strong discriminate

ability as a group yet weak as individuals [5].

In this paper, we propose a simple and efficient framework

for the depth map recovery. In particular, to achieve

high-quality depth recovery, we use the cooperative profit

random forests (CPRF) classification algorithm to predict the

missing depth information [5]. The construction of CPRF is

based on the cooperative game, which uses the Banzhaf

power index to expand tree nodes. The split criterion of

Banzhaf power index in CPRF can explore the dependency

relation of attributes (pixels) for learning objective.

Moreover, we combine neighborhood information of the

gray-scale intensity of RGB image and the depth map

captured by Kinect to train CPRF. In particular, we specify

that the pixels with the largest number of the valid

neighborhood are predicted first and then predicted depth

information is added to the training set for the next round of

prediction.

III. PROPOSED METHOD

This section describes the cooperative profit random

forests (CPRF) formulation of the Kinect depth recovery,

which takes the benefit of the strong correlation between the

Kinect depth maps and the corresponding RGB images. We

define the symbol Dk and Ic to represent the Kinect depth

map and the corresponding RGB map respectively. Then, the

pixel value of the missing depth information is 0 in Dk.

Inspired by the work of Yang et al. [13], it can be as the

following equation.

D̂k = {Dk(i, j)|Dk(i, j) = 0}.

We train the CPRF based on the neighborhood

information of Ic and Dk. In particular, CPRF predicts the

missing depth data in a multi-round, and the pixels with the

largest number of the valid neighborhood are predicted first.

Then the predicted depth values are added to the training set

for the next round prediction. Repeat this way until all

missing depth data is filled. The flow graph of our

framework is shown in Fig. 2.

Fig. 2. The proposed framework.

A. Cooperative profit random forests (CPRF)

The cooperative profit random forests algorithm (CPRF) is

a classification tool [5]. CPRF is an ensemble algorithm,

which combines several Profit decision trees (PDTs). The

final prediction results of CPRF are based on the majority

votes among the PDTs. In particular, each PDTs employs the

Banzhaf power index as the node split criterion to evaluate

the best split point and the corresponding feature at each tree

node. As described in the work [5], the split criterion of

58



Algorithm 1. Profit Decision Tree (PDT)

1: Initialize: Given the training dataset

D = {(x1, y1), . . . , (xn, yn)} ∈ Rn×(p+1),

and the feature variables fj = (x1,j , . . . , xn,j)
T ,

j = (1, . . . , p), T = ∅, ε = 0, let Broot := D;
2: TreeBlock(root, Broot)

Algorithm 1.1 TreeBlock (fj , Bfj )

1: Add fj to T , j ∈ (1, . . . , p)
While
2: Symbol εi,j denotes the split threshold of the feature

fj , εi,j = (xi,j + xi,j+1)/2, i = 1, . . . , n,
j ∈ (1, . . . , p− 1);

3: For the split threshold εi,j of each feature fj
(j = 1, . . . , p) do;

4: Calculate: γ(NL) =
p∑

j=1
η(fj), fj ∈ Bleft(fj)

,

γ(NR) =
p∑

j=1
η(fj), fj ∈ Bright(fj)

,

where Bleft(fj)
= {(f1, . . . , fp) ∈ Bfj : xi,j ≤ εi,j},

Bright(fj)
= {(f1, . . . , fp) ∈ Bfj : xi,j > εi,j} and

η(fj) is the Banzhaf power index (gains) of each feature
fj (j = 1, . . . , n);

5: Split(f̂j , ˆεi,j)← argmax(γ(NL) + γ(NR)), set
B

left(f̂j)
= {(f1, . . . , fp) ∈ B

f̂j
: xi,j ≤ ε̂i,j} and

B
right(f̂j)

= {(f1, . . . , fp) ∈ B
f̂j

: xi,j > ε̂i,j};

6: TreeBlock(left(f̂j ), Bleft(f̂j)
)

7: TreeBlock(right(f̂j ), Bright(f̂j)
)

Until reaching the user-set limit, i.e., a minimal number of
samples of a node.
8: fj to be the leaves(T )

Banzhaf power index can be learned the internal

relationships between features variables, i.e., a group of

feature variables. It has a strong discrimination ability in

term of the target class, and can learned in each PDTs. The

construction of PDT is described in Algorithm 1. Moreover,

the calculation of the Banzhaf power index for each feature

can refer to the work [5] in details.

For the depth recovery problem, the majority of the

methods view it as a regression problem [16, 17]. However,

we think that it is more appropriate to regard it as a

classification problem since the pixel values of the Kinect

depth map are positive integers and the pixel values of the

local large area are the same in the Kinect depth map, such

as the background pixels and the pixels of a component of

the object, as shown in Fig. 3. Therefore, we take the

8-neighborhood of the valid depth information and

8-neighborhood of corresponding gray intensity of the

corresponding RGB image to form a training dataset. Then,

we only need to learn and predict a small number of

categories. Furthermore, the experimental results verify the

effectiveness of the proposed method.

B. The depth recovery method

Microsoft Kinect can supply an RGB image and its

aligned depth map simultaneously. In a 3D scene, different

objects are made up of different pixel values, and the

neighboring pixels of the same object often share the same

or similar properties. Inspired by this observation and the

Fig. 3. The image on the right shows some pixel values of the red frame
area on the left depth map.

work of Yang et al. [13], we use neighborhood information

of the depth image and the corresponding RGB image to

predict the missing depth values. In particular, the

8-neighborhood of each pixel is used. Ni,j denotes the

8-neighborhood of the pixel (x, y) at image location (i, j),
as follows

Ni,j = {(x, y)|i− 1 ≤ x ≤ i+ 1, j − 1 ≤ y ≤ j + 1}.

Then the training dataset can be obtained, i.e. for the depth

map, the valid depth value itself as the training label, the 8-
neighborhood of the valid depth value and the corresponding

RGB image′s pixel value as the data features of the training

set.

Ttrain = {N∗
i,j |Dk(i, j) �∈ D̂k, |N

∗
i,j | = 8}.

For the test dataset, the 8-neighborhood of the non-valid
(missing) depth value and the corresponding values of the

RGB image as dataset features. Then the Cooperative Profit

Random Forests algorithm (CPRF) is employed to predict

the non-valid (missing) depth value. To ensure the accuracy

of prediction, we first predict these missing pixels where the

valid neighborhood pixels values are equal to or greater than

4. After restoring the pixels of the missing depth values, the
training set Ttrain is updated by adding the estimated depth

values. The CPRF is re-trained on the updated training

dataset, and the re-trained CPRF model is used for the next

round prediction. Repeating this procedure until all missing

depth of the depth image are restored. The proposed method

is similar to the self-taught learning method. Self-taught

learning is a popular learning method in machine learning,

which has been used in depth-in-painting [13], classification

applications [18, 19] and image retrieval [20]. In our work,

the proposed depth image recovery method is called

self-taught classification algorithm (STC).

The complete depth recovery method is described in

Algorithm 2.

IV. EXPERIMENTS AND DISCUSSION

In this section, to verify the effectiveness of the self-taught

classification depth recovery algorithm, we implement the

contrast experiment based on the Berkeley 3-D Object

Dataset (B3DO) and the Middlebury benchmark dataset.
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Fig. 4. Restored depth image on B3DO dataset. (a) RGB image. (b) Incomplete depth image. (c) Restored depth image provided by B3DO dataset. (d)
Restored depth image by self-taught regression algorithm [13]. (e) Our method.

Algorithm 2: The self-taught classification algorithm (STC)
for the Kinect depth recovery

Initialize: RGB image Ic and Depth image Dk are captured by
Kinect respectively.

For: Ic and Dk

1: Collection training dataset: the 8-neighborhood of valid
depth value of Dk and the corresponding RGB images
pixel value of Ic as dataset features to form training
dataset Ttrain;

2: Collection test dataset: the 8-neighborhood of non-valid
(missing) depth value and the corresponding RGB images
pixel value as dataset features to form test dataset Ttest;

3: Training Cooperative Profit Random Forests method
(CPRF) based on Ttrain;

4: Based on Ttest , using a trained CPRF mode to predict
the missing depth value that has the largest number of valid
neighboring pixel;

5: Return Dk;
6: Update Ttrain according to the result of step 4;
7: Repeat step 3, 4, 5, 6;
Until Ttest = ∅.

A. The Berkeley 3-D Object Dataset (B3DO)

The B3DO dataset consists of RGB images and the

corresponding depth images of missing depth information,

which are mainly office scenes. In addition, the B3DO

dataset provides the restored depth image by applying

average filter methods or using a global descriptor, which

will be used to compare our method. Furthermore, an

existing self-taught depth regression recovery method [13] is

also used to compare with our depth recovery method. The

existing self-taught depth recovery method is similar to our

method, but the major difference is that the self-taught depth

recovery method fuses a rough scene depth estimation

obtained by Make 3D [15] and uses the original random

regression forests to predict missing depth information.

The experimental results are shown in Fig. 4. From the

results, we can observe that the restored depth image

provided by B3DO dataset that tends to produce blur at the

edge of an object; the self-taught regression algorithm [13]

performs better than the restored depth image from B3DO

dataset. However, compared with our method, it is easy to

see that our method is more accurate than the self-taught

regression algorithm [13] in term of detail restoration of

objects. The details of the recovered objects are shown in

Fig. 5.

Results analysis The B3DO dataset provides the restored

depth image by applying an average filter method or using

global descriptors. Some filter methods or global descriptor

are prone to bringing blur to the edges of objects in the task

of depth image inpainting, which has been proved by

previous works [6–8]. The self-taught regression

algorithm [13] and our algorithm are all combined the

neighborhood information of the gray-scale intensity of the
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Fig. 6. Restored depth results on the case of Art from the Middlebury dataset. (a) RGB image. (b) Degraded depth map. (c) Restored depth image by
self-taught regression method [13]. (d) Restored depth image by the proposed method. (e) Ground truth.

Fig. 5. Details of image depth recovery. The first row on the right of each
image is the result of our algorithms depth recovery, the second row is the
result of self-taught regression algorithm [13].

RGB image and the corresponding depth map captured by

Kinect to predict missing depth values, and learn in a

self-taught way. The difference is that our method employs

the cooperative profit random forests (CPRF) to predict the

depth value. CPRF uses the split criterion of the Banzhaf

power index that can be learned and considered the internal

relationships between feature variables, i.e., a group of

feature variables with strong discrimination ability in term of

the target class. In fact, the RGB image and its aligned depth

map captured by Kinect representing the same scene, have

strong correlations. CPRF can explore this strong correlation

and obtain more accurate prediction results.

For the self-taught regression algorithm [13] employs the

original random regression forests algorithm that uses the

least square error to split the tree node. This split method

tends to choose a single feature with a strong discrimination,

which pays less attention to the intrinsic structure of the

attribute variables and fails to find attributes with a good

discriminate ability as a group. Moreover, the self-taught

regression algorithm [13] first employs the Make 3D method

to obtain a rough depth prediction image. The depth values

of the obtained rough depth image are usually inaccurate,

because the training data of Make 3D consists of the indoor

scenes that do not include the office scenes. The inaccurate

depth values bring a negative impact on the prediction of

random regression forests. This inevitably leads to inaccurate

predictions. In particular, the application scenarios of the

self-taught regression algorithm [13] also have limitations,

because it is totally dependent on the acquisition of the

rough depth.

B. The Middlebury dataset

To further verify the effectiveness of the proposed method,

we compared the performance of our algorithm and the

method of Yang et al. [13] on the Middlebury benchmark

dataset [21] with synthesized holes. Moreover, we used the

Root Mean Square Error (RMSE) quantitative measure to

quantify the performance of the algorithm.

Root Mean Square Error:

√
1

N

∑
x∈P

(d(x)− d̂(x))2

where d(x) and d̂(x) are the ground truth depth and restored
depth at the pixel x; P is the whole set of pixels in an depth

map, and N is the number of the pixels in P .

TABLE I
QUANTITATIVE RECOVERY RESULTS WITH KINECT-LIKE DEGRADATIONS.

Dataset Yang et al. [13] Ours
Art 4.04 3.85

The experimental results are shown in Fig. 6, and the

quantitative results in terms of Root Mean Square Error

(RMSE) are shown in Table I. From the Table I, we can see
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that our method gets the lowest RMSE in the case of Art.

Fig. 6 and Table I further demonstrate the validity of the

proposed method.

V. CONCLUSION

In this paper, we propose a new method to restore the

missing depth data obtained by Kinect. The cooperative

profit random forests (CPRF) is trained by using the

neighborhood information of the RGB image and the

corresponding depth map, and then the trained CPRF is used

to predict the missing depth value. The proposed depth

recovery method uses a similar to self-taught learning to

keep learning and predicting. Moreover, CPRF exploring the

strong correlation of features (pixels) from the RGB image

and the corresponding depth image can obtain satisfactory

results. The experimental results show the effectiveness of

the proposed method that can well restore the missing depth

values.
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