
Provably Secure Obfuscation of Diverse
Watermarks for Sequential Circuits

Farinaz Koushanfar
Electrical and Computer Engineering

William Marsh Rice University
Houston, TX

Email: farinaz@rice.edu

Yousra Alkabani
Computer Science

William Marsh Rice University
Houston, TX

Email: yousra@rice.edu

Abstract—This paper presents a provably secure method for
embedding multiple watermarks in sequential designs. A number
of different watermarks signed with the IP owner’s secret key
from a public key cryptography system are generated. The
owner’s watermarks are then dissembled into the states and
transitions of the original sequential design. Hiding the multiple
watermarks in the states and transitions is shown to be an
instance of obfuscating a multi-point function with a generalized
output. We draw on the theoretical cryptographic results of
provable obfuscation of this function family to build a secure
sequential multi-watermark system by construction. An iterative
synthesis method for integrating the collection of watermarks
to the original design is introduced. Analysis of watermark
properties and the attack resiliency of the new multiple water-
marking construction is presented. Experimental evaluations on
benchmark circuits demonstrate practicality and low overhead
of the new provably secure multiple watermarks construction
method.

I. INTRODUCTION

Watermarking of hardware intellectual property (IP) is the
process of embedding information into a digital design in
a way that is difficult to tamper, forge, or remove. The
embedded information is used for secure identification of the
design’s authenticity and as a proof of ownership. Secure
watermarks can be used in court cases as an IP ownership
proof. Furthermore, the addition of watermarks would deter
unauthorized usage of the IP, thus automatically decreasing
the rate of IP piracy.

Design houses commonly source third-party IP cores to
manage the increasing design complexity and time-to-market
pressure. IP design and reuse is particularly important for
small and medium sized design houses and system-on-a-chip
designers. Typically a design house is specialized in a subset
of IPs, e.g., communications, security, buses, or memory, and
the company’s revenue is based on the IP value. A major issue
in this business model is illegal usage, theft, or piracy of the
design IPs. As an example, imagine the following scenario: a
design house A collects the royalty to allow company B the
rights of using its intellectual property (denoted by IPA) for
the design D1B . Company B, with access to the core IPA,
would also reuse the core in its design D2B without paying the
proper royalties. Such violations are hard to track in the final
products because of the clandestine nature of the integrated
circuits. In a long run, illegal IP usage not only would result

in extinction of smaller design companies, but also it would
taint a healthy and productive design and reuse business model.

Since design watermarking is an effective and efficient
method for protecting the rights of IP owners, a number of
interesting and efficient watermarking methods were proposed
in the literature [1], [2], [3], [4], [5], [6], [7], [8]. Watermarking
can be done at the different steps during synthesis and layout
processes. It has been demonstrated that embedding several
watermarks instead of one, not only makes the method more
secure against removal attacks, but also creates additional
means for ownership proof, once a subset of watermarks is
revealed [5]. One particularly interesting class of watermarks
are those that embed the designer (author) signature in the
sequential structure of the design [2], [3], [4]. In this way, not
only the hard IP, but also a firm IP (netlist or HDL code) can
be protected.

The sequential watermarks are usually inserted by manip-
ulating the states and transitions of the finite state machine,
representing the functional specification of the design. Even
though the previous research have suggested a number of
methods for hiding the watermarks inside the state and transi-
tions of finite state machine, the earlier published results in this
domain only suggested heuristic approaches to the problem
without a strong proof of security.

This paper introduces the first secure method with cryp-
tographic proof for embedding multiple watermarks in the
sequential designs. The contributions are:

• We Create the first provably secure method for sequential
circuit watermark embedding. The new distributed water-
marking method inserts multiple tamper-resilient disjoint
watermarks in the design.

• We introduce a watermark construction and embedding
method where watermarking corresponds to concealing
a multi-point function with a generalized output. Our
method is secure as the family of point functions has been
demonstrated to be efficiently and provably obfuscatable.

• A number of attacks and security of the method against
them are discussed. We also outline a number of measures
that can be taken for further design protection.

• An algorithm is devised for automatic integration of the
watermarks into the sequential design during synthesis.

• Experimental results for watermarking sequential bench-

42978-1-4244-7812-5/10/$26.00 c©2010 IEEE

marks demonstrate negligible power, area, and timing
overheads and efficiency of the new methods.

The related work and background are discussed in Sections
II-III. The provably secure watermark embedding algorithm
is devised in Section IV. Attack resiliency is discussed in
Section V. We show the experimental results in Section VI
and conclude in Section VII.

II. RELATED WORK

Watermarking is an efficient mean for protecting the own-
ership of the design IP. Watermarking at different levels of
abstraction is useful and necessary, in particular for cases
where more than one party is considered and the IP in-
fringement tracking is more difficult. Therefore, a number of
methods for watermarking digital designs were proposed at
different levels of design abstraction. For example, during the
physical design, the watermark can be embedded as a set of
constraints on the topology, position, orientation, and relative
placement. As another example, watermark can be inserted
as constraints within the synthesis optimizations including
register assignment and scheduling. The authors in [1] provide
an excellent summary of watermarking at different levels of
abstraction.

We focus on sequential circuit watermarking at the behav-
ioral level. This watermarking mechanism inserts additional
states and transitions in the finite state machine of the de-
sign [4], [2], [3]. While the earlier work has demonstrated
watermarking mechanisms by state and transition addition, no
cryptographic guarantees were provided. We show a provably
secure watermarking method, by posing the watermarking
problem as an instance of point function obfuscation. While
constructing our watermark, we ensure that the efficient ob-
fuscation properties are satisfied. Another new aspect of the
current paper is addition of multiple disjoint watermarks that
has not been done for sequential designs earlier but provide a
stronger protection [9]. Note that family of sequential circuit
watermarks can also be used for protecting FPGA IPs [10].

An important problem in computer security is if a program
can be obfuscated, i.e., if the code can be made unintelli-
gible while preserving its functionality. A number of adhoc
techniques for program obfuscation were proposed in the past
several decades. About a decade ago, the first theoretical study
of obfuscation was initiated by Barak et al. [11]. Not only
did they attempt at formally defining the problem, but also
they demonstrated a “generic” obfuscator for all programs
does not exist. In 2004, Lynn et al. demonstrated the first
positive theoretical results for obfuscation of specific function
families [12]. Since then, a few other researchers have pursued
obfuscation of specific function families and their generaliza-
tions [13], [14]. In earlier work, we demonstrated the first set
of applications of obfuscation by hiding states in the finite state
machine for hardware IP protection, activation, and disabling
[15], [16], [17]. However, to the best of our knowledge this
paper is the first to use the theoretical obfuscation results for
hardware IP protection.

III. BACKGROUND

To be self-contained, we provide the necessary background
of terms and definitions used in the remainder of the paper.

Finite state machine (FSM). FSM is a discrete dynamical
model that maps input vector sequences into output vector
sequences. FSM model is widely used in automata theory,
formal verification, high level design, and in cryptography.
FSM can be used to model any regular sequential function
and is expressed in different formats, e.g., Verilog HDL or
VHDL. We use the state transition graph (STG) to represent
the states and transitions and output functions of the FSM.
On the STG, the nodes correspond to the states and the edges
define the input/output conditions for a state-to-state transition.

Hardware IP format. Typically, a hardware IP is classified as
hard, firm, or soft based on the degree of freedom the user
has in modifying it. Hard IP, is commonly in form of a routed
layout and cannot be changed by the user. In contrast, soft
IP can be transformed in many ways. For example, a soft IP
can be synthesized, floorplanned, mapped, and laid out. A firm
IP is a middle level between the two formats. For example,
a netlist that is not mapped to the specific technology is a
firm IP. The focus of this paper is on firm IP protection. The
assumption is that the STG is kept by the IP rights owner and
is not transfered to other entities who have the firm IP [15].

IV. PROVABLY SECURE WATERMARKING

Sequential watermarking methods commonly add the IP
owner’s signature by creating additional transitions (edges)
to the design’s STG. The new edges may be either incident
to the original states, or they may be incident to some
added states. The watermark is inserted by assigning transition
inputs to a sequence of one or more added transitions that
are not traversed during the normal design operations. The
inputs corresponding to added transitions are only known
to the watermark designer (or the IP rights owner). If the
IP owner embeds the watermark such that it corresponds to
her signature, then only the designer can supply the inputs
that would take the sequential circuit through the watermark
transitions. Therefore, she could provide a proof of ownership.

FSM
I O

W

Abstract

representation

State

minimization

Library

selection
State encoding

Logic

optimization

Netlist

generation

Netlist
OI

Hardware Compiler

Fig. 1. Block diagram of the synthesis flow (hardware compilation).

Let us take a look back into the hardware design and
watermark embedding flow steps demonstrated in Figure 1.
In essence, as shown on the figure, this design flow is a
hardware compiler. The input program (circuit) to the compiler
is the high level sequential design specification (modeled

2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 43

by the FSM) plus the owner’s watermark (denoted by W).
The output program (circuit) is a compilation of high level
design specifications to low level logic components (netlist).
Both circuits have the same input/output mapping, but their
internal structures are different. The goal of watermarking
is to hide information in high level circuit, such that the
hidden information cannot be retrieved or removed during the
circuit’s regular functional behavior. The covered watermark
can only be retrieved by entities who have the exact knowledge
of the hidden secret placement in the high level functional
specification. There should be a negligible probability that
others would be able to find or forge this hidden watermark.

In effect, we want the above hardware compiler to act as
an obfuscator over the hidden watermark. An obfuscation is
informally defined as an efficient probabilistic compiler O that
transforms a source program (circuit) F into a new program
O(F) (also a circuit) such that:

1) O(F) has approximately the same observable in-
put/output behavior as F ;

2) For an input vector, the speed of computing the corre-
sponding output by O(F) compared with F is at most
polynomially different (slower or faster);

3) O(F) is substantially “less intelligible” than F ;

While we will not delve into formal definitions in this pa-
per, we emphasize the following two key metrics that are
essential for a formal definition. In the first condition, the
term approximate functionality has to be clarified. In formal
definitions given in [11], this approximate functionality is
determined such that the input/output relationships of F and
O(F) are the same with an extremely high probability. The
term less intelligible (less readable) in the last condition, has
been subject of much debate. Some researchers have opted
to use the “virtual blackbox model”, where no information
about the internals of F can be obtained by studying O(F)
other than the input/output behavior of the system [11], [12].
Others have introduced more realistic definitions, where some
information could be leaked from the obfuscator [14].

Theoretical research in cryptography has demonstrated that
although a generic program obfuscator does not exist, there
are specific classes of functions that can be efficiently ob-
fuscated (i.e., satisfying above definitions). One such family
of functions are “point functions” [12]. A point function
fα,β : {0, 1}k → {0, 1}s(k), with a generalized output can
be defined as:

fα,β(x) =

{
β if x = α

⊥ otherwise.
(1)

In a point function, there is a very large state-space of
possibilities. However, only one point in this very large state-
space is able to generate the required output string. The output
is called generalized since its value is more than one bit.
A prime example of a point function that is widely used in
security applications is a password. A password is considered
to be secure, since the probability of guessing the right one
is extremely low. This is indeed an obfuscation, where the
users have access to the program and can supply their input

and check the output, but have an extremely low chance of
figuring out the hidden information.

Theorem. For random oracles R : {0, 1}∗ → {0, 1}2k, if we
define a point function (fα,β) where the value is 1 only for
one point, then O is an obfuscator according to the definition
outlined earlier in this section [12].

Lemma. Adding a watermark by a set of sequential edge
transitions to the STG such that a set of specific vertices would
be visited by traversing on the edges, forms a point function
with a generalized output and is thus obfuscatable.

Proof. Assume that the modified STG with the watermark
edge sequence is not a point function. Now, there should be
another set of transitions that would traverse the same states
in response to an input. However, such edges do not exist by
our graph construction. Therefore, the embedded watermark
forms a point function on the graph and is obfuscatable.

In other words, if one designs the state-space of possibilities
for watermark transitions to be extremely low, then the water-
mark cannot be guessed. Our watermarking method of choice
is similar to the earlier sequential watermark embedding mech-
anisms in that the watermark transitions the design through a
series of hidden states until they reach a final hidden state. The
major novelty is the obfuscation guarantee by point function
properties outlined in this section, and secure construction
methods that would be presented in the next two subsections.

A sensitive issue is information leakage by the FF content.
That is, how much information about the watermark can be
collected by having access to the scan chains reading the
FF values? Would this information help a potential adversary
in guessing the transitions required for reaching the water-
marked states? In our construction method, we ensure that the
transitions inputs are independent of the FF values, and the
watermark sequences are not shared with the other states, so
this leakage would not be a problem.

Another key issue that we address in this paper is multiple
watermarking. If only one watermark is inserted, the first
time a proof of ownership is provided, the watermark will
be publicly known and the method would be more vulnerable
to forging attacks. To overcome this limitation, and to dis-
tribute the watermark across the design, we embed multiple
watermarks in the design [9], [5]. There are two questions: (i)
Would the results for obfuscating a point function carry on to
this case? (ii) Would revealing one transition path signature
leak information about the other signatures in the design?

To address multiple watermarking, let us discuss a multi-
point function with a generalized output defined as follows:

f(α1,β1),...,(αt,βt)(x) =

{
βi if x = αi

⊥ otherwise.
(2)

Lemma. Adding multiple transitions to the hidden states on
STG forms a multi-point function with a generalized output.

The proof can be derived similarly to the single point
function case. Fortunately, the multi-point function family has
also been demonstrated to be obfuscatable under the random
oracle model [12]. The analogy here is a system where instead

44 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

of one password, there are multiple passwords that can be used
for traversing the different transitions and states in state-space.

A. Watermark and signature creation

The watermark is a special state that is only reached by
the original design when a designer constructed signature is
applied to the circuit as a sequence of primary inputs. In this
subsection we discuss our watermark construction method.
The steps for creating the signatures are as follows.

1) The design owner selects m signature messages; m is
the number of watermarks.

2) A public/private key pair of a public key crypto-system
is selected by the designer.

3) The m messages are signed by designer’s private key.
4) A standard hash function is used for obtaining a fixed

length digest message.
5) New edges are created on the STG and the message

digest is assigned as traversing input to new edges.

Note that the state encoding is an independent stage that
is done after adding the transitions. This implies that there
is no dependence between the new edges and the contents
of the FFs. Thus, knowing an encoding does not reveal any
information about the edges.

m(1)
g gg

m(2) m(3)

g

Fig. 2. The watermark STG with signature m1 integrated as primary input
sequence.

Assume we have n sets of input transitions (signatures)
mi = (mi(1), mi(2), mi(3)), where 1 ≤ i ≤ n that are
divided into three segments each. We generate a watermark
STG as shown in Figure 2 as follows.

• For each signature mi, create a unique path that goes
from a starting node to a final node. In our example, this
path is g1, g2, g3, gfi for mi. These paths are marked with
solid lines on Figure 2.

• At any intermediate state (in our case g2 and g3), if the
expected part of the signature is not input, a transition is
taken back to g1. These transitions are shown as dashed
lines in Figure 2.

• Once a final state is reached (gfi, the STG stays in this
final state until reset. A final state is only reached when
an input corresponding to a signature is applied to the
circuit. The sequence of states traversed and the final state
reached using a signature represent the watermark.

B. Watermark embedding

Once the watermark STG is constructed, it will be merged
with the original STG. The watermark STG can be imple-
mented in don’t care states of the original FSM and encoding
of these states can be used to check the watermark [3].
However, in this work we opt to use iterative synthesis to

Fig. 3. The integration of (a) the watermark FSM, (b) the design FSM, into
(c) the integrated FSM.

merge the two STGs. In this way there is no need to extract
the STG from designs available in other formats.

In our implementation, the watermark STG and the original
one initially synthesized separately. Then, the resulting FSMs
are merged together. Figure 3(a) and (b) show the watermark
FSM and the original FSM after synthesis respectively. The
FFs representing the state elements of the watermark FSM
and the original FSM are shown as SW and S, respectively.
The combinational parts to compute the next state and the
output for the watermark FSM are represented by δW and λW

respectively, while their counterparts in the original design are
shown as δ and λ.

Figure 3(c) shows how the two FSMs are combined to
generate the integrated FSM of the watermarked design. The
integrated FSM is constructed by merging the state elements
S+SW and merging the combinational logic parts δ+δW and
λ+λW . However, two combinational logic circuits are added
shown as Mix and DeMix. The Mix circuit takes the output
from δW representing the next state of the watermark FSM and
permutes the order of the state elements such that the state
elements used by the watermark FSM and the original FSM
are different. Each state in the watermark FSM corresponds
to one permutation except g1 that is associated by multiple
permutations that are a function of the next state of the original
design. The DeMix circuit reorders the output from the state
elements to maintain the correct operation of the combina-
tional part. The whole integrated FSM is resynthesized and
optimized to interweave the logic.

C. Watermark verification

The designer can use her knowledge of the watermark FSM
and the original design to compute the expected set of states
to be traversed when applying each signature. In fact, the
designer does not need to compute the whole STG. It is
sufficient to check the subset of flipflops corresponding to the
watermark FSM. This subset will change every time a part
of the signature is applied because a new state is reached.
The watermark FSM is much smaller than the design FSM

2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 45

and is easy to compute if the STG is known without being
obfuscated in the design. Note that even if one watermark
is revealed, it would not uncover any information about the
other watermarks. This is because the paths corresponding to
different signature do not intersect by our STG construction.

Fig. 4. Verification sequence for signature m = (m(1), m(2), ..., m(n)).

Figure 4 shows the verification sequence for a signature
m = (m(1), m(2), ..., m(n)) that is divided into n segments.
To verify the ownership, the prover has to predict the values
of enc0 to encn and show that after applying the signature
encn is reached.

V. WATERMARK PROPERTIES AND ATTACK RESILIENCY

A watermark must satisfy a set of following properties to
ensure security and resiliency against attacks:

• Unobtrusiveness: The watermark should be invisible to
the functional circuit. Its presences should not interfere
with the regular operation of the design.

• Robustness: The embedded watermark should be ex-
tremely difficult (almost impossible) to remove. It should
not be distinguishable and removable from the knowledge
available to entities who do not have the knowledge
of where in the design it is embedded. In particular,
the watermark should be robust to: (1) the common
transformations and optimizations performed on an IP
and during the design flow after the watermark embed-
ding step; (2) collision of watermarks, such that multiple
individuals who create a signature for their designs each
have a unique set of characteristics and can be specifically
identified; (3) forgery of the signature, such that nobody
else but the original designer can use the watermark to
prove its ownership.

• Unambiguity: Retrieving the watermark must be conclu-
sive in proving the ownership.

• Universality: The same watermarking method must be
applicable to all common sequential circuits.

In our attack model, every time performing an adversarial
task is as hard as redesigning the IP the attack is considered
to be invalid. After all, if the adversary has the resources to
build the design, they would not need to illegally use the IP.
We demonstrate that the watermark properties listed above are
satisfied by our watermarking construction algorithm:

• Unobtrusiveness: The watermark would not cause an
interference since the transitions taken by the watermark
on the STG are clearly separated from the ones taken
during the normal IP’s operational states and transitions.

• Robustness: The three listed robustness conditions are
present in our method: (1) watermark is present in the

netlist, so all optimizations and transformations after
this stage would contain the watermark; (2) the degree
of freedom and the length of edge weights and the
randomness of weight values because of hashing and
cryptographic signing ensure that the watermarks of
different designers would not collide; (3) forgery of the
signatures is also nulled since the watermark sequence
is long and random and therefore, brute-force attacks
for learning all the states and transitions of the STG
(including the watermark that is a multi-point function)
is computationally infeasible. The probability of a forger
finding states and transitions according to a new signature
is extremely low and can be further lowered by increasing
the size of the STG inputs and its state-space.

• Unambiguity: The probability of finding the multi-point
function is low by our watermark construction method.
Therefore, the probability of finding a valid watermarking
sequence which also corresponds to the cryptographic
signature of the owner is almost negligible. The retrieval
of a watermark that corresponds to the designer’s signa-
ture is a strong proof of ownership.

• Universality: The FSM based watermarking can be used
for all common sequential designs.

Note that the information leakage by FF scanning would
not help an attacker as was mentioned in Section IV ac-
cording to the best possible obfuscation model [14]. The
information hiding in the state transitions would still be secure,
even though the state encoding can be scanned. In multiple
watermarking, the different watermarks do not share states
or transitions. Therefore, a revealed watermark would not
uncover information about other hidden signatures.

VI. EXPERIMENTAL RESULTS

In this section we study the overhead of our watermarking
method. We evaluate the overhead on standard MCNC’91
benchmarks. For the MCNC’91 benchmarks we use Matlab
to generate the watermark FSM in KISS format and use ABC
for the iterative synthesis process.

TABLE I
THE SYNTHESIZED BENCHMARKS WITHOUT ANY WATEMARKING.

circuit PI PO reg area delay power
s641 35 23 19 539 97.6 1560.6
s713 35 23 19 591 100 1670.7

s1423 17 5 74 1164 92.4 4882.7
s5378 35 49 164 4212 32.2 12459.4
s9234 36 39 211 7971 75.8 19385.5

s15850 14 87 597 13659 116 40002.7
s13207 31 121 669 11241 85.6 37843.6
s38584 12 278 1452 32910 94.2 112706.8
s35932 35 320 1728 28269 299.4 122048.4

Table I shows the circuits used for evaluation. The first
column shows the circuit name (cicuit). Number of primary
inputs and outputs (PI and PO) are shown in the second and
third columns. The fourth column presents the number of FFs
(reg). The original area in the number of literals, delay of
the critical paths in ns and power in mW are shown in the

46 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

TABLE II
OVERHEAD OF ADDING 4, 8, AND 16 WATERMARK SIGNATURES.

4 watermarks 8 watermarks 16 watermarks
circuit %area %delay %power %area %delay %power %area %delay %power

s641 236.2 4.1 265.7 568.8 2 650.4 1,352.50 0.4 1,530.50
s713 216.6 4 250.6 517.9 2 607.5 1,233.50 0.4 1,429.60

s1423 178 5.4 142.9 381 5.8 302.4 859 4.3 658.1
s5378 30.4 12.4 33.6 72.7 6.2 81.5 173.1 1.2 191.7
s9234 18.3 0.5 26.5 40.2 3.4 53.6 89.5 4 124.4

s15850 14.6 2.4 16.2 37.2 2.2 40.4 86.8 2.6 91
s13207 14.4 0 13.8 39.1 0 36.9 71.5 0 64.1
s38584 7.2 0 6.8 16.9 0 15.7 39.5 0 35.1
s35932 4.5 1.3 3.4 10.8 0.7 8.3 25.8 0.1 19.6

last three columns. Table II shows the percentage overhead in
area, delay of critical path, and power introduced by adding
four watermarks (columns 2-4), eight watermarks (columns
5-7), and sixteen watermarks (columns 8-10).

We guarantee that each design watermark is cryptographi-
cally secure by ensuring that the sum of the number of primary
inputs and registers is at least 64. This number can be easily
extended to larger sizes (e.g., 128). The level of security
achieved by this number is similar to a cryptographic system
with a key size of the same number of bits.

To achieve this security guarantee, for the first two bench-
marks one needs to add at least 10 extra FFs. On smaller
designs, our method incurs a higher overhead compared with
the earlier sequential watermarks [4], [3], [2]. It can be seen
that the overhead of our watermarking decreases as the size of
the original design increases. On average the area and power
overheads of the benchmarks are about 80%, 190%, and 450%
in case of 4, 8, and 16 watermarks respectively. The impact
on the critical path does not exceed an average of 3.5% in all
cases. If we exclude the very small benchmarks, the area and
power overheads would drop to an average of 15%, 37%, and
85% for the different number of watermarks. Also, the delay
does not exceed an average of 2.8%. Note that the finite state
machine (control part of the circuitry) typically represents less
than 1% of the overall design, so even doubling this part does
not significantly add to the design overhead [15].

VII. CONCLUSION

This paper presented a new provably secure sequential
watermarking method. A set of cryptographically strong sig-
natures was generated by the IP owner and embedded within
the design’s states and transitions. We showed that hiding the
signatures in sequential design structure is an instance of a
multi-point function with a generalized output. The theoretical
results of obfuscating the family of point functions were used
for making a secure watermarking method by construction.
The hardware synthesis and optimization steps which gener-
ates the circuit netlist from high level specification implement
the obfuscating transformations. We discussed automating
multiple watermarks integration by iterative synthesis. Security
and attack resiliency of the new method were discussed.
Practicality and efficiency of the method were demonstrated
by evaluations on sequential benchmark circuits.

REFERENCES

[1] G. Qu and M. Potkonjak, Intellectual Property Protection in VLSI
Design. Kluwer Academic Publisher, 2003.

[2] A. Oliveira, “Techniques for the creation of digital watermarks in
sequential circuit designs,” IEEE Trans. CAD of Integrated Circuits and
Systems, vol. 20, no. 9, pp. 1101–1117, 2001.

[3] L. Yuan and G. Qu, “Information hiding in finite state machine,” in
Information Hiding Workshop, 2004, pp. 340–354.

[4] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE Journal of Solid-State Circuits (JSSC),
vol. 35, no. 3, pp. 434–440, 2000.

[5] D. Kirovski and M. Potkonjak, “Local watermarks: Methodology and
application to behavioral synthesis,” IEEE Trans. CAD of Integrated
Circuits and Systems, vol. 22, no. 9, pp. 1277–1284, 2003.

[6] F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral synthesis
techniques for intellectual property protection,” ACM Trans. Design
Automation of Electronic Systems (TODAES), vol. 10, no. 3, pp. 523–
545, 2005.

[7] G. Qu and M. Potkonjak, “Analysis of watermarking techniques for
graph coloring problem,” in International Conference on Computer-
Aided Design (ICCAD), 1998, pp. 190–193.

[8] D. Kirovski, Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual
property protection by watermarking combinational logic synthesis solu-
tions,” in International Conference on Computer-Aided Design (ICCAD),
1998, pp. 194–198.

[9] I. Brown, C. Perkins, and J. Crowcroft, “Watercasting: Distributed
watermarking of multicast media,” in Workshop on Networked Group
Communication (NGC), 1999, pp. 286–300.

[10] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Signature hiding
techniques for fpga intellectual property protection,” in International
Conference on Computer-Aided Design (ICCAD), 1998, pp. 186–189.

[11] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO), 2001, pp. 1–18.

[12] B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques
for obfuscation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2004, pp.
20–39.

[13] S. Hohenberger, G. Rothblum, A. Shelat, and V. Vaikuntanathan, “Se-
curely obfuscating re-encryption,” in Theory of Cryptography Confer-
ence (TCC), 2007, pp. 233–252.

[14] S. Goldwasser and G. Rothblum, “On best-possible obfuscation,” in
Theory of Cryptography Conference (TCC), 2007, pp. 194–213.

[15] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellec-
tual property protection and security,” in USENIX Security Symposium,
2007, pp. 1–16.

[16] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICs for piracy prevention and digital right management,” in International
Conference on Computer-Aided Design, 2007, pp. 674–677.

[17] Y. Alkabani and F. Koushanfar, “N-variant IC design: methodology and
applications,” in Design Automation Conference (DAC), 2008, pp. 546–
551.

2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 47

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

