
WordRev: Finding Word-Level Structures

in a Sea of Bit-Level Gates

Wenchao Li∗, Adria Gascon§, Pramod Subramanyan‡, Wei Yang Tan∗,

Ashish Tiwari†, Sharad Malik‡, Natarajan Shankar†, Sanjit A. Seshia∗

∗University of California, Berkeley {wenchaol, tanweiyang, sseshia}@eecs.berkeley.edu
†SRI International {ashish.tiwari, natarajan.shankar}@sri.com

‡Princeton University {psubrama, sharad}@princeton.edu
§Universitat Politècnica de Catalunya {agascon}@lsi.upc.edu

Abstract—Systems are increasingly being constructed from off-
the-shelf components acquired through a globally distributed
and untrusted supply chain. Often only post-synthesis gate-level
netlists or actual silicons are available for security inspection.
This makes reasoning about hardware trojans particularly chal-
lenging given the enormous scale of the problem. Currently, there
is no mature methodology that can provide visibility into a bit-
level design in terms of high-level components to allow more
comprehensive analysis. In this paper, we present a systemic way
of automatically deriving word-level structures from the gate-
level netlist of a digital circuit. Our framework also provides the
possibility for a user to specify sequences of word-level operations
and it can extract the collection of gates corresponding to those
operations. We demonstrate the effectiveness of our approach
on a system-on-a-chip (SoC) design consisting of approximately
400,000 IBM 12SOI cells and several open-source designs.

I. INTRODUCTION

Systems are increasingly being constructed from off-the-shelf

components acquired through a globally distributed supply

chain. There is a rising concern over the trustworthiness of

these components, especially when used in mission-critical

applications, as a disruptive threat known as Hardware Trojan

begins to surface. Hardware Trojan is a malicious modifica-

tion of the circuity of an integrated circuit (IC) that aims

to compromise the integrity, security and reliability of the

IC. A hardware trojan can provide a foothold for software

based attacks, where the attacks are orchestrated by colluding

sofware [6]. It can also act as a portal for leaking sensitive

information [9], or simply subvert the operation of the system

under special conditions (e.g. special instruction sequences

that trigger the trojan) [7].

The context we address is that of an attacker having mali-

ciously altered the design before or during fabrication. With

only a few lines of modification in Hardware Description

Languages (HDLs), one can introduce malicious behavior that

can undermine the correct operation of the entire system. Such

design-time injections are also especially difficult to detect due

to possible obfuscation [13] and small physical footprints [15].

Since they may be activated under very specific conditions,

they are unlikely to be triggered and detected in simulation

or functional tests. Even if suspicion is raised during the

This work was done when the second author was visiting SRI International.

operation or inspection of a system, currently there is no way

to zoom into a particular portion (say the ALU unit) of a

system by simply looking at the overall gate-level netlist. Most

high-level structures such as word declaration, modularization,

function separation are lost once the design has undergone

logic synthesis, thus making it extremely difficult to perform

targeted function search in the flattened netlist. In this paper,

we present a systematic way of automatically deriving word-

level structures from the gate-level netlist of a digital circuit. A

word is simply a bounded array of bits. A word-level structure

then is an operation defined on words. For example, the snippet

of Verilog code below describes an 8-bit addition operation.

wire [7:0] a, b, c;

assign c = a + b;

Our framework also allows the user to specify sequences of

word-level operations and it can extract the collection of gates

(as well as the appropriate side conditions, for reasons that

will become obvious in Section VI) corresponding to those

operations.

Algorithmic reverse engineering of a unstructured netlist is

particularly challenging due to optimizations performed by

RTL synthesis tools. First, hierarchy and module information

is lost when the netlist is flattened. Second, logic synthesis

techniques such as multi-level logic minimization, technology

mapping and retiming further destroy high-level structures in

the netlist, and can result in overlapping functional blocks and

gate sharing. Both of these make it difficult to apply a direct

divide-and-conquer approach.

Starting with a flattened netlist, our approach uncovers the flow

of information at the word-level via a combination of three

steps. First, it tries to figure out how wires in the netlist may

constitute words. Having identified some candidate words, it

will then try to propagate them across the netlist to infer as

many other words as possible. Lastly, it looks for word-level

computation that may take place between these inferred words.

Reverse engineering this flow of information brings significant

advantages. Instead of looking at individual gates and wires,

users can now navigate the netlist at a higher level, by

following the flow of words. The word-level computation

structure extraction process also enables localizing the set of



gates for a target function, thus allowing more comprehensive

analysis to be performed on a much smaller netlist. Finally, it

provides a gateway for automatic inference techniques to be

performed directly on a graph formed by the flow of words.

To summarize, we make the following contributions:

• We present a systemtic framework that can extract word-

level structures from the bit-level netlist of a design. The

extraction process uses a portfolio of algorithms that identi-

fies words, propagates words and reasons about operations

between words.

• We study the problem of checking if a logical block in

a netlist implements a specific function and formulate it

as solving a Quantified Boolean Formula (QBF). This

formulation addresses the challenge of having extensive

gate sharing in an optimized flattened netlist.

• We demonstrate the effectiveness of our reverse engineering

framework on a complete SoC design with approximately

400,000 IBM 12SOI cells and several open-source designs.

The rest of the paper is organized as follows. We begin with a

brief survey on related work. Section III presents our solution

overview. We describe our word identification algorithm in

detail in Section IV, followed by word propagation in Sec-

tion V, and then by word operation reasoning in Section VI.

Section VII reports experimental results. Lastly, we conclude

in Section VIII with a discussion on future work.

II. RELATED WORK

In this section, we review related work that aims to derive

high-level functions of a design from its gate-level netlist.

Hansen et al. [5] present a study of reverse engineering the

well-known ISCAS-85 combinational circuits. They present

several strategies, mostly manual, to reverse engineer circuit

functionality from a gate-level schematic. Some of these

include looking for common library components, repeated

structures, computing truth tables of small blocks, and identi-

fying bus structures and control signals. Our work takes this

direction further, by providing automatic ways to lift the netlist

to the word level and identify logical block that corresponds

to word operations. We also demonstrate the effectiveness of

our approach on netlists that are several orders of magnitude

larger than the ones they considered.

Subramanyan et al. [14] and Li et al. [8] are two recent

contributions following a similar direction. In [14], the authors

propose a variety of techniques to identify high-level compo-

nents such as register files, counters, adders and subtracters.

Our work complements well with their solution. In fact, words

generated by their bitslice aggregation algorithm are used as

candidate words in our word propagation technique to infer

more words. Our framework also provides additional features,

such as the capability of navigating the netlist at the word level

and that of handling gate sharing in module identification.

In [8], the authors formalize the problem of reverse engi-

neering the high-level description of a netlist and present a

method for matching an unknown sub-circuit against a library

of abstract components. Our technique is different because

we analyze an unstructured netlist as opposed to sub-circuit

matching. In addition, their technique assumes the availability

of tools to produce candidate sub-circuit. Hence, its usefulness

is somewhat contingent upon having good quality (e.g. well

functionally separated) sub-circuits. The framework proposed

in this paper takes a different angle. We first lift the netlist to

a high-level by extracting its word-level information flow, and

then reason about operation between words by also taking into

account the effect of gate sharing. This helps to functionally

isolate logic blocks and complements the work in [8] by

generating candidate blocks.

Torrance and James [16] describe the practice of reverse

engineering semiconductor-based products. Their approach

includes product tear-downs (stripping packaging and disas-

sembling the unit), “system-level analysis” (identifying com-

ponents on a board and performing functional analysis through

probing), process analysis, and circuit extraction (deriving a

schematic from a stripped IC). Our work is complementary

to this effort. Once a gate-level schematic is derived, our

techniques can be applied to to find word-level structures.

Finally, our technique is complementary to other recent work

on malicious trojan circuit detection (e.g., [6], [13]). We do

not seek to find trojans directly, instead focusing on providing

visibility in terms of high-level structures to an unstructured

netlist. In the case of encountering suspicious behavior of the

circuit, our tool can be used to narrow down to a small set of

gates that may be responsible for this behavior, e.g. finding the

adder if an “ADD” instruction fails unexpectedly. Additionally,

our technique enables scalable analysis to be performed to a

high-level abstraction of the netlist.

III. SOLUTION OVERVIEW

We approach the problem in three stages. The first stage

identifies candidate words. We employ two techniques for

solving this problem, one based on bitslice aggregation [14]

and the other based on a notion called shapehashing. The first

technique uses functional matching while the second one uses

structural information to group “equivalent” wires into words.

We discuss these techniques in detail in Section IV. Starting

with the candidate words and other known words (such as

ones at the primary input and output), the second stage infers

more words by iteratively propagating them across gates in

the netlist. The final stage performs computation structure

extraction for word-level operations, such as addition and

rotation. Figure 1 illustrates the overall tool flow.

The word-level program is essentially a combinational circuit

with word-level signals and operators. Currently, we support

(conditional) assignment, indexing into a sub-word, concate-

nation, addition, subtraction, Boolean operation, rotation and

shifting. For example, the Verilog program below describes a

sequence of operation that first conjuncts two 8-bit words and

then rotates the lower 4 bits by 2 bits to the left to form a



Fig. 1: Overview of the Word-Level Structure Extraction Flow.

new 4-bit word.

wire [7:0] a, b;

assign c = a & b;

assign d = {c[1:0],c[3:2]};

IV. WORD IDENTIFICATION

The goal of word identification is to find wires that can be

grouped together into meaningful words. A word is a bounded

array of bits. We denote wi as the ith bit of word w, and

denote w[i,j] as the subword of w from the ith bit to the jth

bit inclusively for j > i. In this section, we describe both the

structural and functional matching techniques we use to find

candidate words given the netlist.

1) Shape Hashing: The idea of shape hashing is to assign

each wire in the netlist a shape, and then create a hash function

for all the shapes such that we can easily identify equivalent

wires if they have the same shape. The shape of a wire w
is defined as the directed graph formed by the set of gates

backward reachable1 from w. A k-bounded shape is simply a

shape where all the gates in the graph are backward reachable

from the root w within k steps, and at least one of them is

reachable at exactly k steps. When the directed graph is cyclic,

we unroll the loops by duplicating gates along the loops until

the gates are not backward reachable from w in k steps. In

our experiments, we used all values of k ∈ {2, 3, 4}2.

To compute a hash key from each shape efficiently, we perform

a depth-first-search traversal of the DAG (i.e. shape) backward

1In general, one can use both forward and backward reachable gates to
assess structural similarity. In our case, the set of backward reachable gates
also describes a Boolean function with a single output at w.

2As k increases further, even wires originally declared as parts of the same
word become structurally dissimilar in an optimized netlist.

starting from w to produce a serialization of the DAG using

gate and wire types. Multiple children gates in the traversal

are tie-broken lexicographically. However, we do not check for

graph isomorphism, especially one that is induced by having

gates with commutative ports, for efficiency reasons.

We further refine the equivalence classes by taking into ac-

count the relative location of the wires. We define the distance

between two wires as the smallest number of gates between

them in the netlist. With this distance measure, we form

equivalence subclasses for wires that have the same shape.

In each subclass, the wires are located to one another by at

most d distance, where d is the cardinality of the original

equivalent class. The collection of wires in each subclass then

forms a candidate word. Wires of the same word are ordered

arbitrarily.

2) Bitslice Aggregation [14]: In addition to finding struc-

turally similar wires, we also employ the functional matching

approach described in [14] for identifying functionally equiv-

alent wires. The function of a wire w in the netlist can be

characterized by a feasible cut of w. This is defined as a

set of wires in the transitive fan-in cone of w such that an

arbitrary assignment of truth values to each wire in the set

completely determines the value of w [3]. A cut is said to

be k-feasible if it has no more than k inputs. As in [14], we

enumerate the set of 6-feasible cuts for each node. Each cut

then forms a bitslice rooted at w, which is a Booolean function

with a single output and no more than 6 inputs.3 Once all the

bitslices are identified, they can be grouped into equivalence

classes using permutation-independent Boolean matching. For

example, a bitslice matching the function y = ab + c and a

bitslice matching the function y = bc+a are grouped into the

same class.

Now that we have found all the duplicated bitslices across

the netlist that compute a particular function, we can look for

aggregates of them that are connected in specific patterns. Fol-

lowing the approach described in [14], we group all matching

bitslices that (1) have a common select signal; (2) the output

of one bitslice feeds to the input of another (e.g. carry chain in

a ripple carry adder). Since aggregated bitslices are essentially

circuits that operate on sets of nodes simultaneously. We group

the inputs or outputs of aggregated bitslices together to form

candidate words. Note that in the case of a carry chain, the

words are ordered in the carry direction.

V. WORD PROPAGATION

An important piece of the overall word structure extraction

process is an algorithm for propagating words. Intuitively, we

want to see if arbitrary values of a word can propagate across

a set of gates to reach a new set of wires. To do this efficiently,

we use symbolic evaluation [2], which allows the evaluation

of a set of values simultaneously in a single run.

3The number 6 is chosen for efficiency reasons, as the number of cuts for
k > 6 is significantly higher. Also, most common bitslices have less than six
inputs, e.g., a full adder bitslice has 3 inputs [14].



Similar to Roth’s D-calculus [12], we redefine the functions

of the logic gates in the netlist to operate over the expanded

domain {0, 1, D,D,X}, where D represents a symbolic value

in {0, 1}, D is the negation of D, and X represents an

unknown/undetermined value. Figure 2 shows two examples

of symbolic evaluation for basic Boolean gates.

Fig. 2: D-calculus Examples for Boolean “AND” and “NOT”

Our solution for word propagation uses a “guess-and-check”

approach. Starting from some known or candidate word, we

first try to find a set of wires that are located one level of

gates away from this word. For simplicity of discussion, we

search forward for such a set of wires, using a procedure

called FindForwardWordPairs. This set of wires constitutes

a target word, i.e. the word to propagate to. Next, we construct

a netlist slice for symbolic evaluation using SetupSymbolicE-

valuation. Finally, we check if symbolic values of the source

word can indeed be propagated to the target word, by using

the procedure TryPropagate.

FindForwardWordPairs, i.e., the “guessing” stage of the

algorithm, consists of finding promising target words. Figure 3

shows two structural heuristics we use to find target words

forward and backward. The idea is to group gates according

to their function types and group wires according to the ports

they connect to. For instance, consider the source word w
as shown in Figure 3a, which is 3-bit wide, and assume that

“Gate1” and “Gate2” have the same function type, we guess

two target words u and v, each of 2-bit wide. We then check

if the subword w[0,1] can propagate to u and v respectively.

(a) Forward Search (b) Backward Search

Fig. 3: Structural Heuristics for Finding Target Words from

Source Word w. Gates of different function types are colored

differently.

SetupSymbolicEvaluation is the first step of the “checking”

part of our algorithm. In general, if we just evaluate the gates

between the source word and the target word, by assigning

X to the other inputs of these gates, we would not be able to

propagate to the target word. The key insight here, which leads

to effective word propagation, as we will show in Section VII,

is that if the target word is indeed a word, then often times

there exist a few nearby (in the fan-in cone of these gates)

wires which behave as control signals. This means that for

some specific concrete assignments to these control signals,

the target word will take the values of the source word (or their

negation). This pattern is quite common in digital circuits, such

as in the case of a multiplexer, or a conditional assignment

in an “if-then-else” statement. In fact, even if the condition

involvess many signals and Boolean operators, the synthesis

tool will likely create a wire in the netlist that is the evaluation

result of this condition. We elaborate on how we make use of

this insight in Figure 4.

Fig. 4: To check if word w = [w0, w1] propagates to word

u = [u0, u1], we find potential control signals such as a and

include them as inputs in the netlist slice on which symbolic

evaluation is performed.

We consider wires and gates in the fan-ins of “Gate1” and

“Gate2”, up to some small depth k. Any wire that lies in the

intersection of these fan-ins is treated as control, e.g. wire a.

We construct a netlist slice including the gates between the

source word and the target word, as well as the gates in the

aforementioned fan-ins. The fan-in gates are aggregated in a

backward traversal manner up to depth k or when a sequential

logic cell such as a flip-flop is reached. This ensures that the

overall netlist slice forms a combinational circuit. This is the

netlist that we will symbolically evaluate, and is set up in the

following way.

• Source word: each bit is assigned the symbolic value D.

• Control wires: If the number of control wires is greater

than 3, we enumerate all combinations of size 3 for the set

of wires. In each combination, we further try all possible

concrete assignments to the wires involved. The election

of the constant value 3 is related to the insight mentioned

above that the synthesis tool will likely add wires capturing

the evaluation of complicated conditions.

• Other inputs: each wire is assigned the unknown value X .

TryPropagate is the second piece of the “checking” stage

of the algorithm. For each set of concrete assignments to

condition wires, the netlist slice is symbolically evaluated

afresh. Because the netlist slice is a combinational circuit,

symbolic evaluation can be done efficiently by evaluating each

gate in the slice in a topological order. If every bit of the target

word is evaluated to D or D for any concrete assignment to

the control wires, then the target word is considered as a true

word. In this case, the propagation process iterates and tries

to use this new word to infer more words.

The overall algorithm is summarized in Algorithm 1. For



simplicity, we show the only parts for forward propagation.

The algorithm iterates over the set of source words W . At

each iteration, a word w is removed from the source pool.

FindForwardWordPairs then uses the structural heuristics

described in Figure 3a to find promising pairs of words to

test for propagation. For each pair of source word u and

target word v, if no propagation has been attempted so

far from u to v, the pair is added to H and we proceed

to checking if u can propagate to v. This is achieved by

SetupSymbolicEval which first sets up the netlist slice C′

and control wires cw for symbolic evaluation as described

in Figure 4, and TryPropagate which then evaluates C′. If

propagation succeeds, this means we have verified u and v
are words and we add them to the set of inferred words W ′.

Since v may be further propagated forward, we add it to the set

of source words W . The algorithm terminates when we have

tried all words that can be inferred from, i.e. W is depleted.

Algorithm 1 Symbolic Evaluation for Propagating Words

Forward

1: Input: the set of candidate/source words W , netlist C.

2: Output: the set of inferred words W ′.

3: Initialize: set H to ∅.

4: while W 6= ∅ do

5: w = pop(W)

6: P = FindForwardWordPairs(w)

7: for (u, v) ∈ P do

8: if (u, v) /∈ H then

9: Add (u, v) to H.

10: (C′,cw) = SetupSymbolicEval(C,u,v)

11: if TryPropagate(C′,cw,u,v) succeeds then

12: Add u, v to W ′.

13: if v /∈ W then

14: Add v to W .

15: end if

16: end if

17: end if

18: end for

19: end while

To assist users with visualizing the data flow and to enable

a higher level of inference, we also create a directed graph

where each node in the graph represents an unique word and

there is an edge from node u to node v if the word u can

propagate to word v. We will explain this in detail with a case

study in Section VII.

VI. REASONING WORD OPERATION

Now that we have all the words that can be inferred by prop-

agation, we are interested in finding computation structures

that operate on these words. The main idea is to cut out the

portion of the netlist that lies between words, and then check

if this structure implements a particular word operation. We

currently support only operations that are combinational logic.

However, these still include many that are commonly found in

circuit designs, such as addition, subtraction, Boolean opera-

tion (e.g. NOT, AND, OR, XOR) and shifting/rotation. Note

that the user can extend this set with other word operations

by providing reference models for those operations.

To extract the netlist between words, we first arrange the

words in topological order between sequential boundaries. For

example, given three words wa, wb, wc of the same width such

that wa and wb are followed by wc in the topological order,

and we are interested in checking if wc = wa +wb modulo a

carry-in, we can form a netlist slice by using the gates between

wa and wc and those between wb and wc.

Due to optimizations performed by the synthesis tools, gates

are often shared among different functions to minimize area

or delay. For example, instead of having a separate set of

gates implementing each opcode function, a single set of gates

between the inputs and outputs of an ALU unit will suffice

for all operations, each having overlapping logical block with

another. In fact, gate-sharing can be a result of design choice

and customization. The ripple-carry adder-subtractor design

demonstrates this phenomenon where a single signal value can

convert the adder to a subtractor.

The consequence of these is that the word operation may be

embedded in the netlist slice which has side input signals.

Depending on the assignment to these side inputs, the netlist

may or may not behave according to a certain operation, e.g.

addition or subtraction.

Our solution is to model the problem into a Quantified

Boolean Formula (QBF) and make use of state-of-the-art QBF

solvers to solve it. QBF is the canonical complete problem

for PSPACE. It extends propositional formulas by including

the universal quantifier ∀ and existential quantifier ∃. The

particular instance of QBF we have formulated here involve a

single alternation of ∀ and ∃, which is also known as 2QBF.

Figure 5 illustrates the miter construction for creating the

2QBF formula.

Fig. 5: Miter Construction and QBF Formulation

The reference circuit for the word operation we are interested

in checking has inputs X . However, the extracted netlist

slice also contains side inputs Y in addition to X . We can

describe the miter circuit (as typically done for SAT-based

combinational equivalence checking [4] in the verification

literature) with a single Boolean formula φ such that φ is

true if and only if the two circuits are equivalent. The intuition

behind the existential quantification over Y is that if the netlist



TABLE I: Benchmark Netlist Information

Design Gates Nets Latches Description

router 896 984 182 CMP Router
open8 1807 1812 237 Open8 CPU

Cpu8080 2258 2368 243 8080 CPU
MIPS16 6986 11110 4380 MIPS-like core
oc8051 8093 10210 2748 8051 µcontroller

RISC FPU 14291 15740 3097 RISC FPU
BigSoC 375090 231736 34318 SoC

implements the function of the reference circuit, then there

must exist a way to configure the side inputs for it to do so.

For the previous example of checking if wc = wa + wb, we

now have inputs as wa and wb and outputs as wc. The formula

φ desribes the comparison of the netlist with the disjunction of

two circuits, one implements the addition with carry-in equal

to 1, and the other with carry-in equal to 0.4

An important assumption that we make here is that the

ordering of the bits in the input and output words are known,

with respect to those of the reference circuit. Li et al. [8]

suggest a way to resolve correspondence between signals

through behavioral mining from simulation traces. We plan

to investigate this further in future work.

VII. EXPERIMENTS

We have developed an inference tool using Python and C++

that implements the algorithms described in this paper. The

tool takes as input a synthesized netlist, analyzes it and pro-

duces as output the set of word-level structures in the netlist, as

well as the connectivity between them in the form of a directed

graph. The tool uses DepQBF [10] as the backend solver for

solving QBFs. Table I summarizes the netlist information of

the designs that are used in this paper. The generic name

BigSoC is used for confidentiality reasons. All the designs

were synthesized with an IBM/ARM cell library for a 45nm

SOI process using the Synopsys Design Compiler with its

default optimization setting.

The CMP router is a simplified version of the chip-

multiprocessor router proposed in [11]. BigSoC is a system-

on-a-chip design which consists of 7 subsystems: a 32-bit

ARM-compatible RSIC processor, a Singular Value Decom-

position module, a SPI interface, a UART interface, an I2C

interface, a VGA controller and a memory controller. The sub-

systems are further interconnected through an AXI4S switch.

The rest of the benchmarks are available on OpenCores [1].

A. WordRev

Table II summarizes the results of applying WordRev to the

netlist designs. Columns 2 and 3 record the number of input

and output words used respectively. Column 4 record the

number of candidate words identified using the algorithms

in Section IV. Column 5 is the number of words produced

4We consider two possible reference circuits that the netlist can be matched
to because the carry-in bit is not a primary input to the miter circuit.

TABLE II: WordRev Statistics

Design Input Output Cand. Prop. Runtime (min)

router 2 2 0 54 1.3
Open8 2 2 22 98 80.0

cpu8080 1 2 6 174 114.2
MIPS16 0 1 2 4 1.0
oc8051 6 7 12 113 329.9

RISC FPU 1 2 128 142 154.6
BigSoC 1 4 16 865 311.2

by word propagation. Column 6 is the runtime for word

propagation in minutes. In all experiments, we limited the

search to only words between 4 and 32 bits wide.

Input and output words were assumed to be known, since these

are at the I/O of the design. Candidate words were selected

from the word identification step described in Section IV. For

BigSoC, we only selected 16 32-bit words identified by using

the algorithm in Section IV-2. This is because a lot of words

were identified as candidate words, which caused the tool

to timeout as a result of trying to propagate each of them.

Additionally, we consider words that can be propagated to

be more valuable than just identified words, since propagation

indicates that these arrays of bits are more likely to be operated

together at the RTL level.

B. CMP Router

In this section, we use the CMP router to evaluate the

effectiveness of WordRev in detail. Particularly, we focus on

the following analysis.

• Usefulness of the flow of word-level information presented

as a directed graph.

• Effect of the netlist being synthesized from different cell

libraries.

• Effect of the netlist being synthesized from the same cell

library but with different optimization settings.

For convenience, we called the router netlist used in the previ-

ous section the “TR Router”, the resulting netlist synthesized

from a different cell library the “TS Router”, and the optimized

netlist the “Optimized TR Router”.

Fig. 6: CMP Router Comprising Four High-Level Modules

The overview of the CMP router design is illustrated in

Figure 6. It is a composition of four high-level modules. The

input controller comprises a set of FIFOs buffering incoming



flits and interacting with the arbiter. A flit is a flow control

unit. A data packet is composed of multiple flits. In this

implementation, a flit has 12 bits, with the lower two fits as

a header (used for channel reservation) and the remaining 10
bits as address (6 bits) and data (4 bits). Each input controller

contains a circular FIFO buffer of 4 flits deep. When the arbiter

grants access to a particular output port, it sends a signal to the

input controller to release the flits from the buffers, and at the

same time, it sends the allocation information to the encoder

which in turn configures the crossbar to route the flits to the

appropriate output port.

Word Graph: Figure 7 shows the word-level graph produced

by our tool. We have highlighted regions of the graph that

correspond to high-level modules of the router as desribed

previously. The nodes in yellow are the known words that

we start with at the primary input and output of the router.

The number in each node denotes the numbering of the word

(e.g. “w11”) followed by the width of the word (e.g. 12 for

“w11”). If a node is contained in another node, it indicates

that the inner word is a subword of the outer word.

The top half of the word graph is in fact isomorphic to the

bottom half, each corresponding to a port of the router. The

input controller FIFO is the subgraph that has two special

nodes, marked as “Writing into FIFO” and “Reading from

FIFO”. From the first node, which is the write pointer of the

FIFO, it splits to four other words. Each of these words is then

latched (as indicated by the red arrow). The latched output has

three possible out-going paths: one going back to the itself

(typical for state holding elements), one goes to the write

pointer of the FIFO (multiplexed to determine whether it will

get overwritten), and the last one goes to the read pointer of

the FIFO (another multiplexing for determining which flit will

be read). The crossbar on the right is easier to recognize – it

consists of two 12-bit words that interweave to two other 12-bit

words downstream. While the module identification described

here was performed manually, comparing to Figure 6, the word

graph in Figure 7 essentially reduces the router netlist with

approximately 1100 cells to a single graph (which can fit

on a page) that captures most aspects of the data-flow and

architectural features of the router. This allows to a human

analyst to look for patterns at a higher level of abstraction.

Moreover, the word graph provides a structure for further

automation, such as module identification, which we plan to

explore in future work.

Different Cell Libraries: “TS Router” had about 4% less gates

than “TR Router”, but had the same number of latches.5 Ap-

plying the same word propagation algorithm to “TS Router”,

52 (instead of 54) words were found. Comparing the words

inferred in the two netlists directly was difficult since the wires

were named differently. However, upon close examination

of the word graphs, we verified that the topology of the

5The “TS” and “TR” cell libraries differ only in the layout implementation,
where one is speed optimized and the other is size optimized. Their logical
functions are the same.

“TS Router” word graph is almost identifical to that of “TR

Router”. The only differences were at the read and write

pointers of the FIFOs. In addition, the widths of the words

were also the same, showing the splitting of I/O words into

words of 10 bits wide. This shows that our heuristic for finding

target words to propagate is robust to small change in the cell

library used in logic synthesis.

Different Synthesis Parameters: “Optimized TR Router” con-

tained about 25% less gates than “TR Router”.6 In addition, it

used 176 instead of 182 latches. In this case, WordRev found

50 words, 4 less than the number of words found in “TR

Router”. We analyzed the word graph generated for “Opti-

mized TR Router” and found interesting discrepancies. While

the topology of the graph remained largely the same, which

means the key features were again visible, the words being

propagated were only 4 bits wide. In fact, they correspond to

the 4 data bits in each flit. In “TR Router”, both the 6-bit wide

address field and the 4-bit wide data field were propagated

together. This shows that while our algorithm can extract

the word-level dataflow of a netlist, its performance can be

influenced by the optimization setting during logic synthesis.

C. OC8051 Microcontroller

In this section, we focus on reporting results that demonstrate

the effectiveness of using the QBF formulation to identify

structures and conditions in reasoning various word operations.

TABLE III: QBF Statistics for Different Operations

Operation Num of Vars Num of Clauses Runtime (s)

Addition 4525 11974 60
Subtraction 4438 11744 50
Rotate-right 4332 11416 30
Rotate-left 4332 11416 30

Not 4333 11415 64
And 4337 11428 34
Or 4337 11428 51

The OC8051 microcontroller is widely used in many em-

bedded system products. It contains an 8-bit CPU optimized

for control applications. Using word identification techniques

described in Section IV and the structure extraction process

described in Section VI, we extracted a netlist slice that was

part of the ALU unit of the microcontroller. This netlist slice

contained 435 12SOI gates. In addition to the two 8-bit input

words, the netlist slice had 87 other side inputs. We formulated

a QBF problem for each of the word-level operation (each

word is 8-bit wide and each operation corresponds to a

specific ALU opcode) shown in Table III, and verified that the

single netlist slice could implement that operation by making

appropriate assignments to the side inputs.

VIII. CONCLUSION

This paper describes a systematic way to reverse engineer

word-level structures from an unstructured netlist. Our solution

6“Optimized TR Router” was the result of using the additional Synop-
sys “compile ultra” command, which does extra optimizations for high-
performance (i.e., high clock frequency) designs.



Fig. 7: Word Graph for the Same CMP Router Design

uses a portfolio of algorithms such as bitslice aggregation,

shapehashing, symbolic evaluation and QBF solving for iden-

tifying and inferring these word structures. In addition, this

work offers new possibilities in reverse engineering the high-

level functions of a circuit. The word-level map of the circuit

essentially lifts the netlist to a higher level of abstraction,

where subgraph matching methods can be directly applied to

find interesting circuit structures, such as FIFOs and crossbars.

Hence, our approach allows the user to focus on the func-

tionality of concrete parts of the circuit and make (possibly

automated) inferences with the aim of identifying parts of the

circuit that can be then extracted and independently formally

verified. A natural extension of this work is to allow the user

to define custom word operations that are implemented with

sequential logic. We are currently investigating this extension.

REFERENCES

[1] Opencores. http://opencores.org/.

[2] R. Bryant. Symbolic simulation-techniques and applications. In Design

Automation Conference, 1990. Proceedings., 27th ACM/IEEE, pages 517
–521, Jun 1990.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam.
Reducing structural bias in technology mapping. In Computer-Aided

Design, 2005. ICCAD-2005. IEEE/ACM International Conference on,
pages 519 – 526, Nov 2005.

[4] E. Goldberg, M. Prasad, and R. Brayton. Using sat for combinational
equivalence checking. In Proceedings of the conference on Design,

automation and test in Europe, DATE ’01, pages 114–121, Piscataway,
NJ, USA, 2001. IEEE Press.

[5] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the ISCAS-85

benchmarks: A case study in reverse engineering. IEEE Design & Test

of Computers, 16(3):72–80, 1999.
[6] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith.

Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically. In Security and Privacy (SP), 2010

IEEE Symposium on, pages 159 –172, May 2010.
[7] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware trojan design

and implementation. In Hardware-Oriented Security and Trust, 2009.

HOST ’09. IEEE International Workshop on, pages 50 –57, july 2009.
[8] W. Li, Z. Wasson, and S. A. Seshia. Reverse engineering circuits using

behavioral pattern mining. In Proceedings of the IEEE Conference on

Hardware-Oriented Security and Trust (HOST), Jun 2012.
[9] L. Lin, M. Kasper, T. Gneysu, C. Paar, and W. Burleson. Trojan side-

channels: Lightweight hardware trojans through side-channel engineer-
ing. In Cryptographic Hardware and Embedded Systems - CHES 2009,

11th International Workshop, Lausanne, Switzerland, September 6-9,

2009, Proceedings, volume 5747 of Lecture Notes in Computer Science,
pages 382–395. Springer, 2009.

[10] F. Lonsing and A. Biere. Depqbf: A dependency-aware qbf solver. JSAT,
7(2-3):71–76, 2010.

[11] L.-S. Peh. Flow control and micro-architectural mechanisms for extend-

ing the performance of interconnection networks. PhD thesis, 2001.
[12] J. P. Roth. Computer Logic, Testing and Verification. W. H. Freeman &

Co., New York, NY, USA, 1980.
[13] C. Sturton, M. Hicks, D. Wagner, and S. King. Defeating uci: Building

stealthy and malicious hardware. In Security and Privacy (SP), IEEE

Symposium on, pages 64 –77, May 2011.
[14] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,

and S. Malik. Reverse engineering digital circuits using functional
analysis. In Design Automation and Test in Europe (DATE), Mar 2013.

[15] M. Tehranipour and F. Koushanfar. A survey of trojan taxonomy and
detection. IEEE Design & Test of Computers, 27:10 – 25, 2010 2010.

[16] R. Torrance and D. James. The state-of-the-art in IC reverse engineer-
ing. In 11th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES), volume 5747 of Lecture Notes in Computer

Science, pages 363–381, 2009.


