
Malicious Circuitry Detection Using Fast Timing
Characterization via Test Points

Sheng Wei
Computer Science Department

University of California, Los Angeles

Los Angeles, California 90095

Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles

Los Angeles, California 90095

Abstract—We develop a region-based timing characterization
approach to detect hardware Trojans (HTs) on integrated circuits
(ICs). In order to ensure the scalability of the approach, we
partition the target IC into well-formed and non-overlapping
regions and detect hardware Trojans on all circuit locations by
examining the timing properties of the transistor paths. Based
on the circuit partition, we insert a minimal number of test
points that provide additional observation interfaces for the delay
measurements of all circuit locations. Our evaluations on ISCAS
and ITC benchmarks show that the region-based Trojan detection
via test points can detect hardware Trojans accurately with well
controlled area overhead and test time.

I. INTRODUCTION

Integrated circuit (IC) outsourcing has become a trend in
the IC industry in order for the IC companies to increase their
revenue. In the current IC design and manufacture model,
the IC is exposed to a variety of threats such as hardware
Trojans (HTs) [19][9] and unauthorized intellectual property
(IP) usage [16], due to the fact that the IC designers and the
manufacturing foundries are completely separate and different
entities. Since ICs are the fundamental building blocks of all
digital computing and communications platforms for the mod-
ern business, military, and government affairs, the potential
vulnerabilities against security attacks have become a major
concern in the IC industry.

A malicious circuitry, or hardware Trojan (HT) [19][9],
is a malicious modification on an IC, which is intentionally
conducted by untrusted designers or foundries in order to
attack the target hardware. There is a wide consensus that
HTs have huge impact on the security and integrity of the IC
systems. For example, HTs may alter the functionality of the
IC, change the original characteristics (propagation delay or
leakage power), or even leak confidential information. Similar
to the trend of software Trojans in the early days, the detection
of HTs has triggered a great deal of attention in the IC
community, due to the fact that the consequences of HTs can
be extremely severe for security-sensitive systems.

As the potential risk arising from HTs increases, many
research efforts have been put on how to detect and prevent
the embedded HTs effectively. Among them, side channel-
based monitoring schemes [8][2][11] have been considered as
effective and economic compared to the otherwise expensive
physical inspections. In the existing approaches, leakage power
is the most often monitored property for the checking against
HTs [15][23], because any unexpected malicious components
on the circuit would result in a systematic bias in the total

leakage consumption. Therefore, the leakage power-based ap-
proach can provide us with a full coverage of the circuit in
terms of identifying HTs. However, as a side effect caused by
the full coverage detection, most of the existing power tracing-
based approaches require creating and solving huge sizes of
power equations that cover essentially all gates on the target
circuit, making it difficult to scale to modern IC designs with
millions of gates on each chip. Furthermore, the existence of
process variation (PV) during the IC manufacturing process
may compromise the detection scheme, since it is difficult to
distinguish the leakage power variation caused by PV from
that caused by HTs.

Besides leakage power, circuit frequency (or delay) has also
been considered as a side channel for HT detection [8][11].
Delay-based detection methods are in general scalable, since
only a small subset of gates that are on the same path are
under consideration. On the other hand, it is challenging for
the delay-based methods to cover all the locations on the circuit
for HT detection, due to the fact that there exist paths that are
in parallel and reconverge to a single point, and it is difficult
to map the measured path delay to a specific path for the
consideration of HTs. As shown in Figure 1, there is a HT gate
H embedded on the path A. Even though we can measure the
delay between inputs I1/I2 and output O, we are unable to
determine whether the measured delay is for path A or path B.
In fact, since path B (gates 1-3-4-5-6-7) is much longer than
path A (gates 1-2-H-7), it is difficult to detect the addition of
HT gate H using delay measurements from inputs I1/I2 to
output O.

Fig. 1. Example of HT attack with no delay impact.

We develop a gate-level delay characterization approach
that covers all locations on the circuit for HT detection.
Although the lack of observability in delay caused by re-
convergences, as shown in Figure 1, can be addressed by
inserting additional test points (i.e., flip-flops) [22], we argue
that the problem of identifying all the reconvergent points is

113978-1-4799-0601-7/13/$31.00 c©2013 IEEE

NP-complete, which cannot scale to large designs. In order
to solve this issue, we employ a circuit partition method to
scale down the problem space to a limited number of non-
overlapping regions. In this way, we ensure that our timing
characterization at all circuit locations is scalable to large IC
designs. Also, based on the circuit partition, we introduce a
test point insertion scheme that separates the parallel paths
and enables their observability via delay measurements. To
summarize, our innovations and contributions include the
following:

• a region-based circuit partition approach to reduce
the overhead and ensure the scalability of the timing
characterization;

• a malicious circuitry detection approach using delay
characterization that covers all circuit locations; and

• a test points insertion scheme to break the reconver-
gences and measure the required paths for their timing
properties.

II. RELATED WORK

Tehranipoor et al. [19][20] and Karri et al. [9] presented
comprehensive surveys of hardware Trojan attacks and detec-
tion techniques. Agrawal et al. [1] proposed one of the first HT
detection techniques, which employs side channels (e.g., power
and temperature) as fingerprints to authenticate the ICs. Several
other early HT detection approaches focused on functional
test techniques, which monitor and check the outputs of the
target ICs under certain input patterns via simulations [29][4].
More recently, the side channel-based approaches have become
a trend in HT detection. For example, there are many HT
detection approaches that have been proposed using leakage
power [23][26], switching power [5][30], delay [8][11][18],
or combinations of the above to detect or diagnose hardware
Trojans on the target ICs [10][15].

III. PRELIMINARIES

A. Hardware Trojan Threat Model

HT attack is a common IC threat that has drawn a great deal
of attention in the hardware security community [21][28][18].
There are typically two types of HT attacks: (1) adding mali-
cious components into the IC, and (2) altering the properties of
the existing IC components. In this paper, we focus on the first
category, since it is more commonly used by an attacker during
the IC design and manufacture process and would induce
more severe security attacks. In particular, we assume that
attackers tend to hide and prevent the HT from exposing to
delay measurements. For example, they may size the HT ultra
small to minimize its observable delay. Furthermore, they can
hide the HT under one of the parallel paths to bypass direct
delay measurements.

B. Delay Model and Measurements

The delay of a single logic gate can be expressed as d =
gh+ p, where g and h are logical effort and electrical effort,
respectively; and p is parasitic delay. In particular, We use the

delay model in [14] that connects the gate delay to its sizing
and operating voltages:

Delay =
ktp · kfit · L2

2 · n · μ · φ2
t

· Vdd

(ln(e
(1+σ)Vdd−Vth

2·n·φt + 1))2

·γi ·Wi +Wi+1

Wi

(1)

where L is effective channel length, Vth is threshold voltage,
W is gate width, Vdd is supply voltage, n is substreshold slope,
μ is mobility, Cox is oxide capacitance, D is clock period, φt is
thermal voltage φt = kT/q, σ is drain induced barrier lowering
(DIBL) factor, subscripts i and i+ 1 represent the driver and
load gates, respectively, γ is the ratio of gate parasitic to input
capacitance, and ktp and kfit are fitting parameters.

In order to measure the delay of a transistor path, we
leverage the delay fault testing technique introduced in [13]. In
particular, we insert flip-flops into the target circuit that serve
as additional observation and control interfaces to facilitate the
delay measurements based on delay faults. In order to reduce
the cost of the embedded test points, we ensure that the flip-
flops are only activated during the test mode and deactivated
during normal IC operations.

C. Gate-Level Characterization (GLC)

Gate-level Characterization (GLC) [24][25][27][22] is the
process of identifying the process variation in the manufactured
IC. The effect of process variation can be represented as a
scaling factor towards the gate-level manifestational properties,
such as delay. Then, a system of linear equations can be ob-
tained by summing up the gate-level properties and measuring
the total delay:

d̃j = esj + erj +
∑

∀gate i=1,...,n

Kij si +H (2)

where d̃j is the delay of the path when input vector j is applied;
si is the process variation scaling factor of gate i, which
represents the deviation of the delay from its nominal design
values due to process variation; Kij is the nominal delay
for the gate at input state j; and esj and erj are systematic
and random measurement errors, respectively. Furthermore, we
add one additional variable H in each of the equations that
represents the additional delay caused by malicious circuitries.
Although it is unknown whether any HTs exist or not, we
assume there is a HT on each delay path while formulating the
equations. Our idea is that the H would capture the systematic
bias caused by HTs, if there are any, or becomes an ultra-small
value if the circuit is HT-free. Therefore, by solving the system
of linear equations and evaluate the value of H , we are able
to detect the existence of HTs.

IV. OVERALL FLOW

Figure 2 shows the overall flow of our HT detection ap-
proach. We employ three systematic steps in order to determine
whether any hardware Trojans have been embedded in the
target circuit. First, we partition the circuit into small regions,
which consist of limited number of gates under one or multiple
delay paths, to ensure scalability of our approach toward large

114 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

designs. We employ a maximum fanout free cone (MFFC)-
based method [7] for the original circuit partition. Then, we
merge the MFFCs to form the regions that are non-overlapping
and that can cover all circuit locations. After obtaining the
well-formed regions for delay measurements, we insert test
points, i.e., scan chain flip-flops, to the source or destination
gates of the paths that are not directly observable through
inputs, outputs, or existing flip-flops. Secondly, we manipulate
the input vector of the circuit and generate delay variations
for each path. With the delay measurements using the test
points, we are able to formulate a linear program for each
path concerning the path delay and the delays of individual
gates. Finally, for the detection of hardware Trojans, we insert
an additional HT variable in the linear program in order to
capture the systematic bias caused by the HT. By evaluating
the solved HT variable values from the linear program, we
determine whether any malicious circuitry exists in the target
circuit.

Fig. 2. Overall flow of the region-based Trojan detection using delay
characterization.

V. REGION-BASED DELAY CHARACTERIZATION

A. Motivation

We note that we must address the following three issues
regarding the overhead and scalability of our approach, in order
to provide a reliable and scalable HT detection solution.

• Area overhead. The area overhead caused by the
inserted test points (i.e., flip-flops) cannot be ignored,
as the area of a flip-flop is often 4 to 6 times larger than
a regular gate. It is essential to take into account of this
critical overhead toward the design and manufacture
of the ICs.

• Test Time. The test time required by the delay mea-
surements is an important metric for the cost of
the proposed approach. Since it requires input vector
control to conduct gate-level timing characterization,
the GLC of multiple paths cannot be fully parallelized.
Therefore, we must minimize the total number of

measured paths to reduce the test time while still
covering all circuit locations.

• Scalability. the search of reconvergence points in all
circuit locations is a NP-complete problem that raises
scalability concerns. The complexity grows exponen-
tially with the increase of the number of inputs,
outputs, or gates. The efficiency and scalability of
the identification procedure must be improved for the
consideration of large designs, e.g., with millions of
transistors, in the modern IC industry.

To address these issues, we further develop a circuit par-
tition scheme that partitions the large IC into smaller regions,
so that the scope of the timing characterization is reduced to
the partitioned regions to address the scalability issue. Also,
we aim to minimize the number of test points that we must
add during the course of circuit partition, while the goal is still
to cover all the circuit locations in terms of gate-level timing
characterization.

B. Problem Formulation

We define the circuit partition problem as a specialized
graph (netlist) partition problem with the goal of minimizing
the required test points while controlling the number of gates
in each region:

Circuit partition problem for timing characterization.
Given a graph G = (V,E, PI, PO) that represents the netlist
of an IC, where V is the set of vertices (gates), E is the set
of edges (wires), PI is the set of primary inputs, and PO is
the set of primary outputs, find a graph partition that consists
of k subgraphs (regions) so that (1) each region consists of
Pi(i = 1...k) paths, which ensures that the total number of
source and destination nodes of the paths that do not belong
to PI∪PO is minimized; and (2) the number of gates in each
component Ni(i = 1...k) < Th, where Th is a configurable
threshold determined by the gate-level timing characterization
approach.

After partitioning the circuit, we can conduct the recon-
vergence identification and delay characterization in the scope
of each single region. Since the size of the problem domain
is reduced by factor of k, we argue that the complexity of
the identification and characterization processes is reduced
exponentially.

C. MFFC-based circuit partition

Our intuitions in addressing the circuit partition problem
are three-fold: (1) We should find regions that contain paths
traversing from primary outputs toward the direction of pri-
mary inputs. In other words, the addition of nodes in the
region during the search process should go vertically (i.e.,
depth first). This is based on the consideration of leveraging
as many primary inputs/outputs as possible, in order to reduce
the additional test points. (2) The number of gates in each
region should be maximized as long as it can be handled by
the characterization approach (i.e., below threshold Th), which
would reduce the number of regions and thus the number
of delay measurements. (3) It is beneficial that there is no
or little overlap between different regions, in order to reduce
unnecessary measurements and characterizations.

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 115

Based on the above intuitions and thoughts, we develop
a circuit partition method using maximum fanout free cones
(MFFCs) [7]. a MFFC for a node gi is a sub-netlist where each
node gj is a transitive fan-in of gi, and all the transitive fan-
in’s of gj is included in the MFFC. In other words, a MFFC is
a self-contained region that grows maximally from PO toward
PI of the circuit G, which satisfies our intuitions (1) and (2).
Furthermore, the MFFCs have an important property that two
different MFFCs are either non-overlapping or one contains the
other, which satisfies our intuition (3) as long as we remove the
smaller MFFC from consideration in terms of circuit partition.
Our circuit partition algorithm using MFFCs is presented in
Algorithm 1. We first find the MFFC for each gate in the circuit
using known algorithms [7]. Then, we sort the found MFFC
set in the ascending order in terms of the size (i.e., number of
gates) in the MFFC. Finally, we remove the MFFCs that have
been fully covered by at least one other MFFC to eliminate
the redundancy.

Algorithm 1 MFFC-based circuit partition.

Input: Circuit Netlist (Net), Gate Set (G);
Output: A circuit partition with k regions;

1: for each gate gi in G do
2: Find the MFFC Ci for gi

1

3: end for
4: Sort the MFFC set C = {Ci|i = 1...N} for each node in

ascending order in terms of the number of gates involved.
5: for each Ci ∈ C do
6: if ∃Cj where Cj ⊃ Ci then
7: Remove Ci from C
8: end if
9: end for

10: Output C as the circuit partition.

Figure 3 shows a small example of the proposed circuit
partition method using MFFC. We partition the 6-gate circuit
into 3 regions. Each region is a maximum fanout free cone
from the bottom node. With this partition, the delay of each
path is measurable, and it only requires one test point at
location 16, since all other observation points are primary
inputs or outputs of the target circuit.

Fig. 3. Example of MFFC-based circuit partition for timing characterization.

D. Test Point Insertion

After partitioning the circuit, we insert test points in the
target circuit to facilitate the delay measurements of all circuit
locations. There are two types of locations where we must
insert test points: (1) where there are no input, output, or flip-
flops in the original design that can be used to measure the
delay, such as the location 16 in Figure 3; and (2) where the
corresponding path is not measurable due to reconvergence,
such as the two paths in Figure 1.

The Type (1) test points are highly dependent on the
partition of the circuit. We must make sure that the source
and destination gates of all the paths in the selected regions
are covered by either inserted test points or observation points
(i.e., primary input/output or existing flip-flops) in the original
design. For the Type (2) test points, we employ a depth-first
search algorithm to identify all the reconvergences within the
selected regions. Since the size of a region is significantly
smaller than that of the entire circuit, the complexity of the
reconvergence identification is greatly reduced even though it
is NP-complete.

VI. EVALUATION RESULTS

A. System Implementation and Metrics

We evaluate our delay characterization-based Trojan de-
tection method on a set of ISCAS’85, ISCAS’89, and ITC’99
benchmarks. We simulate the 45nm technology and generate
the variation of threshold voltage following the Gaussian
process variation model [3]. Also, we employ the spatial
correlation of effective channel length following the quad-tree
model [6]. For the prototype implementation, we use Synopsys
Design Compiler Version E-2010.12-SP5 to synthesize. The
target library is the FreePDK 45nm Standard cell library [12].
Finally, we use Cadence Soc Encounter Version 9.1 to place
and route our design.

We consider the following two metrics for the evaluation
of our approach: (1) the accuracy of HT detection, which is
represented by the false positives and false negatives in the
detection results; and (2) the overheads caused by the inserted
test points, which include the area overhead (i.e., the additional
area caused by the inserted flip-flops) and the cost of test (i.e.,
the test time required by measuring the delay of the selected
paths).

B. Accuracy of Hardware Trojan Detection

We evaluated the accuracy of our HT detection approach
on a set of ISCAS’85 benchmarks. For each benchmark, we
repeat the detection process 50 times and solve the value of the
HT variable H using a LP solver. Table I shows the statistics
of the HT variable (H) in each tested benchmark. For the
ease of comparison, we evaluated two cases where there is
a HT gate inserted at a random location on the circuit, and
where the circuit is HT-free. We observe from the results that
there are large gaps and little overlaps in terms of the HT
variables between the HT-free case and the HT-present case.
This enables us to draw a decision line between the H in the
two cases and use it to determine whether HTs exist or not.

116 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

TABLE I. THE DISTRIBUTION OF HARDWARE TROJAN VARIABLE (H) IN THE HT-PRESENT AND HT-FREE CASES.

Benchmark HT Status Max 75th Percentile(Q3) Median (Q2) 25th Percentile (Q1) Min

C432
no HT 0.006 0.001 0 0 0

with HT 1.017 0.788 0.388 0.198 0.055

C499
no HT 0.052 0.011 0 0 0

with HT 1.065 0.787 0.402 0.192 0.056

C880
no HT 0.004 0.002 0 0 0

with HT 1.012 0.791 0.387 0.197 0.054

C1355
no HT 0.006 0.002 0 0 0

with HT 1.015 0.802 0.387 0.197 0.055

C1908
no HT 0.004 0.001 0 0 0

with HT 1.008 0.796 0.386 0.198 0.053

C2670
no HT 0.010 0.001 0 0 0

with HT 1.014 0.790 0.386 0.198 0.056

C3540
no HT 0.002 0 0 0 0

with HT 1.046 0.683 0.458 0.263 0.050

C5315
no HT 0.016 0.001 0 0 0

with HT 1.043 0.691 0.466 0.257 0.040

C6288
no HT 0.009 0.001 0 0 0

with HT 1.047 0.684 0.463 0.256 0.044

C7552
no HT 0.004 0.001 0 0 0

with HT 1.044 0.685 0.459 0.264 0.049

C. Test Points Overhead

Our delay characterization process incurs the following
sources of overhead: (1) the area cost for the inserted test
points; and (2) the test time required by the delay measure-
ments.

We evaluate overhead (1) by identifying the number of test
points (i.e., flip-flops) that are required to measure the delay
paths and cover all the gates in the target circuit. The column
“# Test Points” in Table II shows the total number of test points
required by our approach in each benchmark. We see that the
number of test points is relatively small compared to the size
of the circuit. In particular, we evaluate the area overhead by
referring to the transistor counts, as reported in [17], which
are needed to implement the test points as well as the existing
gates in the target circuit. Figure 4 shows evaluation results
of the area overhead, which is calculated as the ratio between
the transistor count of the inserted test points and that of the
original design. The results indicate that the area overheads in
all tested benchmark circuits are below 25%.

In Table II, we show the number of characterized paths
required by our approach as the indicator of overhead (2) (i.e.,
the cost of test). Our intuition is that the number of measured
paths is an important metric to evaluate the test time of the
hardware Trojan detection approach, since it is often the case
that the measurements of multiple paths cannot be parallelized.
Therefore, the overall test time is approximately the sum of
test time on each path. The results show that our region-
based approach requires a limited number of delay paths to be
measured, compared to the huge number of paths in the circuit.
The low cost of test is obtained from the non-overlapping
circuit partition.

Fig. 4. Area overhead of the inserted test points.

VII. CONCLUSION

We have developed a region-based test point insertion
method that can be used for gate-level delay characterization
to detect the hardware Trojans. We partitioned the circuit
into small non-overlapping regions using maximum fanout
free cones. The test point insertion approach based on the
circuit partition ensured that all the components on the tar-
get circuit are characterizable in terms of gate-level delay
properties. Consequently, our HT detection method, which
uses an additional HT variable during the course of delay
characterization, is capable of covering all possible circuit
locations. We evaluated the approach on a set of ISCAS and
ITC benchmarks. The results indicated accurate HT detection
with limited area overhead and test time.

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 117

TABLE II. OVERHEAD OF TEST POINT INSERTION IN TERMS OF THE NUMBER OF TEST POINTS (I.E., AREA OVERHEAD) AND THE NUMBER OF

MEASURED PATHS (I.E., COST OF TEST)

Benchmark # Gates # Inputs # Outputs # Test Points # Measured Paths Avg # Measurements Per Path

C499 202 41 32 36 58 7.77

C880 383 60 26 25 41 11.61

C1355 546 41 32 68 58 9.41

C1908 880 33 25 82 49 19.13

C2670 1193 233 140 65 46 32.24

C3540 1669 50 22 155 125 20.10

C5315 2307 178 123 354 313 13.71

C7552 3512 207 108 296 155 26.14

S38584 19253 38 304 1328 1073 22.02

B17 32192 37 97 3047 1666 18.47

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the NSF Award CNS-
0958369, Award CNS-1059435, and Award CCF-0926127, and
in part by the Air Force Award FA8750-12-2-0014.

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan
detection using IC fingerprinting. In IEEE Symposium on Security and
Privacy (S&P), pages 296–310, 2007.

[2] Y. Alkabani and F. Koushanfar. Consistency-based characterization for
IC Trojan detection. In International Conference on Computer-Aided
Design (ICCAD), pages 123–127, 2009.

[3] A. Asenov. Random dopant induced threshold voltage lowering and
fluctuations in sub-0.1 μm MOSFET’s: A 3-D “atomistic” simulation
study. IEEE Transactions on Electron Devices, 45(12):2505–2513,
1998.

[4] M. Banga and M. Hsiao. A region based approach for the identification
of hardware Trojans. In International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 40–47, 2008.

[5] M. Banga and M. Hsiao. VITAMIN: Voltage inversion technique to
ascertain malicious insertions in ICs. In International Symposium on
Hardware-Oriented Security and Trust (HOST), pages 104–107, 2009.

[6] B. Cline, K. Chopra, D. Blaauw, and Y. Cao. Analysis and modeling of
CD variation for statistical static timing. In International Conference
on Computer-Aided Design (ICCAD), pages 60–66, 2006.

[7] J. Cong, H. Li, S. Lim, T. Shibuya, and D. Xu. Large scale circuit par-
titioning with loose/stable net removal and signal flow based clustering.
In International Conference on Computer Aided Design (ICCAD), pages
441–446, 1997.

[8] Y. Jin and Y. Makris. Hardware Trojan detection using path delay
fingerprint. In International Symposium on Hardware-Oriented Security
and Trust (HOST), pages 51–57, 2008.

[9] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. Trustworthy
hardware: Identifying and classifying hardware Trojans. IEEE Com-
puter Magazine, 43(10):39–46, 2010.

[10] F. Koushanfar and A. Mirhoseini. A unified framework for multimodal
submodular integrated circuits Trojan detection. IEEE Transactions on
Information Forensics and Security, 6(1):162–174, 2011.

[11] J. Li and J. Lach. At-speed delay characterization for IC authentication
and Trojan horse detection. In International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 8–14, 2008.

[12] http://www.eda.ncsu.edu/wiki/freepdk.

[13] M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar. Rapid FPGA
characterization using clock synthesis and signal sparsity. In Interna-
tional Test Conference (ITC), pages 1–10, 2010.

[14] D. Markovic, C. Wang, L. Alarcon, T. Liu, and J. Rabaey. Ultralow-
power design in near-threshold region. Proceedings of the IEEE,
98(2):237–252, 2010.

[15] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey. Hardware
Trojan horse detection using gate-level characterization. In Design
Automation Conference (DAC), pages 688 –693, july 2009.

[16] G. Qu and M. Potkonjak. Intellectual Property Protection in VLSI
Design Theory and Practice. Kluwer Publishing, 2003.

[17] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.
Prentice-Hall, 2003.

[18] J. Rajendran, V. Jyothi, and R. Karri. Blue team red team approach to
hardware trust assessment. In International Conference on Computer
Design (ICCD), pages 285–288, 2011.

[19] M. Tehranipoor and F. Koushanfar. A survey of hardware Trojan
taxonomy and detection. IEEE Design Test of Computers, 27(1):10–
25, 2010.

[20] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajendran,
and K. Rosenfeld. Trustworthy hardware: Trojan detection and design-
for-trust challenges. IEEE Computer Magazine, 44(7):66–74, 2011.

[21] S. Wei, J. Ahnn, and M. Potkonjak. Energy attacks and defense
techniques for wireless systems. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), pages 185–194,
2013.

[22] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak. Provably complete
hardware Trojan detection using test point insertion. In International
Conference on Computer-Aided Design (ICCAD), pages 569–576, 2012.

[23] S. Wei, S. Meguerdichian, and M. Potkonjak. Gate-level character-
ization: Foundations and hardware security applications. In Design
Automation Conference (DAC), pages 222–227, 2010.

[24] S. Wei, S. Meguerdichian, and M. Potkonjak. Malicious circuitry
detection using thermal conditioning. IEEE Transactions on Information
Forensics and Security, 6(3):1136–1145, 2011.

[25] S. Wei, A. Nahapetian, M. Nelson, F Koushanfar, and M. Potkonjak.
Gate characterization using singular value decomposition: Foundations
and applications. IEEE Transactions on Information Forensics and
Security, 7(2):765–773, 2012.

[26] S. Wei and M. Potkonjak. Scalable consistency-based hardware Trojan
detection and diagnosis. In International Conference on Network and
System Security (NSS), pages 176–183, 2011.

[27] S. Wei and M. Potkonjak. Scalable hardware Trojan diagnosis.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(6):1049–1057, 2012.

[28] S. Wei and M. Potkonjak. The undetectable and unprovable hardware
trojan horse. In Design Automation Conference (DAC), to appear, 2013.

[29] F. Wolff, C. Papachristou, S. Bhunia, and R. Chakraborty. Towards
Trojan-free trusted ICs: Problem analysis and detection scheme. In
Design, Automation and Test in Europe (DATE), pages 1362–1365,
2008.

[30] J. Zhang, H. Yu, and Q. Xu. HTOutlier: Hardware Trojan detection with
side-channel signature outlier identification. In International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 55–58, 2012.

118 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

