
1

Connecting the Dots: Privacy Leakage via
Write-Access Patterns to the Main Memory

Tara Merin John†, Syed Kamran Haider†, Hamza Omar, and Marten van Dijk

Abstract—Data-dependent access patterns of an application to an untrusted storage system are notorious for leaking sensitive
information about the user’s data. Previous research has shown how an adversary capable of monitoring both read and write requests
issued to the memory can correlate them with the application to learn its sensitive data. However, information leakage through only the
write access patterns is less obvious and not well studied in the current literature. In this work, we demonstrate an actual attack on
power-side-channel resistant Montgomery’s ladder based modular exponentiation algorithm commonly used in public key cryptography.
We infer the complete 512-bit secret exponent in ∼ 3.5 minutes by virtue of just the write access patterns of the algorithm to the main
memory. In order to learn the victim algorithm’s write access patterns under realistic settings, we exploit a compromised DMA device to
take frequent snapshots of the application’s address space, and then run a simple differential analysis on these snapshots to find the
write access sequence. The attack has been shown on an Intel Core(TM) i7-4790 3.60GHz processor based system. We further
discuss a possible attack on McEliece public-key cryptosystem that also exploits the write-access patterns to learn the secret key.

Index Terms—Secure Processors, Privacy leakage, Write-access Patterns, Montgomery Ladder Exponentiation.

F

1 INTRODUCTION

Users’ data privacy is becoming a major concern in computation
outsourcing in the current cloud computing world. Numerous
secure processor architectures (e.g., XOM [1], [2], TPM+TXT [3],
Aegis [4], Intel-SGX [5] etc.) have been proposed for preserving
data confidentiality and integrity during a remote secure computa-
tion. The user sends his encrypted data to a secure processor where
it is decrypted and computed upon in a tamper-proof environment,
and finally the encrypted results of the computation are sent back
to the user.

While the secure processors provide sufficient levels of se-
curity against direct attacks, most of these architectures are still
vulnerable to side-channel attacks. For instance, XOM and Aegis
architectures are vulnerable to control flow leakage via address
bus snooping [6], [7], [8]. Similarly, Intel-SGX, being a strong
candidate in secure architectures, is vulnerable to side-channel
attacks via a compromised OS [9].

Zhuang et al. [10] showed that although the data in the main
memory of the system can be encrypted, the access patterns to
the memory could still leak privacy. An adversary who is able to
monitor both read and write accesses made by an application can
relate this pattern to infer secret information of the application.
For example, Islam et al. [11] demonstrated that by observing
accesses to an encrypted email repository, an adversary can infer
as much as 80% of the search queries. This, however, is a very
strong adversarial model which, in most cases, requires direct
physical access to the memory address bus. In cloud computing,
for example, this requires the cloud service itself to be untrusted.

• T. M. John, S. K. Haider, H. Omar, and M. van Dijk are with the
Department of Electrical and Computer Engineering, University of Con-
necticut, Storrs, CT, 06279. E-mail: {tara.john, syed.haider, hamza.omar,
marten.van dijk}@uconn.edu

• † T. M. John and S. K. Haider contributed equally to this work.
• This work is an extension of an abstract submission, accepted as a poster

in HOST 2017, which received “the best poster award”.

The challenging requirements posed by the above mentioned
strong adversarial model leads one to think that applications are
vulnerable to privacy leakage via memory access patterns only if
such a strong adversary exists, i.e., one capable of monitoring both
read and write accesses.

In this paper, we counter this notion by demonstrating privacy
leakage under a significantly weaker adversarial model. In partic-
ular, we show that an adversary capable of monitoring only the
write access patterns of an application can still learn a significant
amount of its sensitive information. Hence, in the model of
computation outsourcing to a secure processor discussed earlier,
even if the cloud service itself is trusted, a remote adversary is still
able to steal private information if the underlying hardware does
not protect against leakage from write access patterns.

We present a real attack on the famous Montgomery’s ladder
technique [12] commonly used in public key cryptography for
modular exponentiation. Exponentiation algorithms, in general,
are vulnerable to various timing and power side-channel at-
tacks [13], [14], [15]. Montgomery’s ladder performs redundant
computations as a countermeasure against power side-channel
attacks (e.g., simple power analysis [16]). However, by monitoring
the order of write accesses made by this algorithm, one can still
infer the secret exponent bits.

In our weaker adversarial model, since we cannot directly
monitor the memory address bus, we learn the pattern of write
accesses by taking frequent memory snapshots. For this purpose,
we exploit a compromised Direct Memory Access device (DMA1)
attached to the victim computer system to read the application’s
address space in the system memory [17], [18], [19]. Clearly,
any two memory snapshots only differ in the locations where
the data has been modified in the latter snapshot. In other words,
comparing the memory snapshots not only reveals the fact that
write accesses (if any) have been made to the memory, but it also

1. DMA grants full access of the main memory to certain peripheral buses,
e.g. FireWire, Thunderbolt etc.

ar
X

iv
:1

70
2.

03
96

5v
2

 [
cs

.C
R

]
 1

7
Ju

n
20

17

2

Algorithm 1 RSA - Left-to-Right Binary Algorithm

Inputs: g, k = (kt−1, · · · , k0)2 Output: y = gk

Start:
1: R0 ← 1; R1 ← g
2: for j = t− 1 downto 0 do
3: R0 ← (R0)2

4: if kj = 1 then R0 ← R0R1 end if
5: end for

return R0

reveals the exact locations of the accesses which leads to a precise
access pattern of memory writes.

Our experimental setup uses a PCI Express to USB 3.0 adapter
attached to the victim system, alongside an open source appli-
cation called PCILeech [20], as the compromised DMA device.
We implement the Montgomery’s ladder for exponentiation of a
128 byte message with a 64 byte (512 bits) secret exponent [21].
Through our attack methodology, we are able to infer all 512 secret
bits of the exponent in just 3 minutes and 34 seconds on average.

Although our experimental setup utilizes a wired connection
to a USB 3.0 port on the victim system for DMA, Stewin et al.
demonstrated that DMA attacks can also be launched remotely
by injecting malware to the dedicated hardware devices, such
as graphic processors and network interface cards, attached to
the host platform [22]. Therefore, our attack methodology allows
even remote adversaries to exploit the coarse grained side-channel
information obtained by memory snapshots to infer the secret
data. Hence, this effort opens up new research avenues to explore
efficient countermeasures to prevent privacy leakage under remote
secure computation.

2 BACKGROUND

2.1 Exponentiation Algorithms
Exponentiation algorithms have central importance in cryptog-
raphy, and are considered to be the back-bone of nearly all
the public-key cryptosystems. Although numerous exponentiation
algorithms have been devised, algorithms for constrained devices
are scarcely restricted to the square-and-multiply algorithms. RSA
algorithm, used in e.g. Diffie-Hellman key agreement, is a com-
monly used exponentiation algorithm which performs computation
of the form y = gk mod n, where the attacker’s goal is to find
the secret key k. The commonly used square-and-multiply imple-
mentation of this algorithm is shown in Algorithm 1. For a given
input g and a secret key k, Algorithm 1 performs multiplication
and squaring operations on two local variables R0 and R1 for
each bit of k starting from the most significant bit down to the
least significant bit.

Notice that the conditional statement on line 4 of Algorithm 1
executes based on the value of secret bit kj . Such conditional
branches result in two different power and timing spectra of the
system for kj = 0 and kj = 1, hence leaking the secret key k over
the timing/power side-channels. Similar attacks [21] have leaked
508 out of 512 bits of an RSA key by using branch prediction
analysis (BPA). Thus, the attack-prone nature of RSA algorithm
(Algorithm 1) poses a need for an alternate secure algorithm.

2.2 Montgomery’s Power Ladder Algorithm
Montgomery Power Ladder [12] shown in Algorithm 2 performs
exponentiation without leaking any information over power side-

Algorithm 2 Montgomery Power Ladder Algorithm

Inputs: g, k = (kt−1, · · · , k0)2 Output: y = gk

Start:
1: R0 ← 1; R1 ← g
2: for j = t− 1 downto 0 do
3: if kj = 0 then R1 ← R0R1; R0 ← (R0)2

4: else R0 ← R0R1; R1 ← (R1)2

5: end if
6: end for

return R0

Attacker System

PCI to USB Adapter
(DMA)

Victim System

1
Victim Application

Running
(Modifying Data)

2

Memory
Snapshot
Request

3
Accessing Memory

via DMA

4
Exponent
Inference

Fig. 1. Our adversarial model: The attacker system takes snapshots of
the victim’s DRAM via the PCI adapter to infer the secret key.

channel. Regardless of the value of bit kj , it performs the same
number of operations in the same order, hence producing the same
power footprint for kj = 0 and kj = 1. Notice, however, that the
specific order in which R0 and R1 are updated in time depends
upon the value of kj . E.g., for kj = 0, R1 is written first and then
R0 is updated; whereas for kj = 1 the updates are done in the
reverse order. This sequence of write access to R0 and R1 reveals
to the adversary the exact bit values of k. In this paper, we exploit
this vulnerability in a real implementation of Montgomery ladder
to learn the secret key k.

3 THE PROPOSED ATTACK

3.1 Adversarial Model
Consider a computer system that is continuously computing ex-
ponentiations of the form y = gki for the given inputs gi using
the same secret exponent k according to Algorithm 2. We call
this system the victim system. All the data stored in the main
memory of this system is encrypted. Let there be a compromised
DMA device (e.g., a PCI-to-USB adapter) connected to the victim
system through which an attacker system can read the whole
main memory of the victim as shown in Fig. 1. The attacker
system, however, is limited in its ability to successively read
the victim’s memory by the data transfer rate of the underlying
DMA interface. The adversary’s goal is to find the key k by
learning the application’s write pattern through frequent snapshots
of the victim system’s memory. The victim system used in our
attack comes with a write-through cache configuration enabled
by default. As a result, any write operations performed by the
application are immediately propagated through the memory hi-
erarchy down to the untrusted DRAM. Furthermore, we assume
that the victim application receives all the inputs gi in a batch and
continuously produces the corresponding cipher texts such that
the physical memory region allocated to the application during
successive encryptions remains the same. In other words, the
application is not relocated to a different physical address space

3

Algorithm 3 Victim App’s Address Space Identification
Inputs: M : Set of memory blocks to scan.
Output: S: Set of application’s memory block(s).
Start:

1: S = ∅ . Initially empty set.
2: for m ∈M do . Scan each block.
3: s1 = TAKESNAPSHOT(m)
4: s2 = TAKESNAPSHOT(m)
5: if COMPAREMATCH(s1, s2) then
6: S = S ∪m
7: end if
8: end for
9: return S

by the OS throughout the attack. Such use cases can be found in
the applications that require computing signatures of large files.

3.2 Attack Outline

Given the above mentioned setting, we proceed with our attack
methodology as follows: First, a full scan of the victim’s memory
is performed to identify the physical address space allocated
to the victim’s application. Since the adversary requires victim
application’s memory snapshots at a high frequency, it is infeasible
for him to always read the full victim memory because of the data
transfer rate being the frequency limiting factor. Once the address
space is identified, the next step is to identify the two memory
regions allocated to each of the local variables R0 and R1 (cf.
Algorithm 2) within the victim application’s address space. This
allows any observed change in either of these two regions to be
linked with an update to the variables R0 and R1 respectively.
Finally, the updates in R0 and R1 memory regions are observed
via frequent snapshots for a period of one complete encryption,
and the order of these updates is linked back to Algorithm 2 to
learn the key k. We explain these steps in detail in the following
subsections.

3.3 Step 1: Application’s Address Space Identification

Since the application is supposed to be continuously updating its
data (e.g., variables R0, R1), its address space can be identified by
finding the memory regions which are continuously being updated.
Algorithm 3 shows this process at an abstract level. The whole
of the victim system’s memory space is divided into M blocks,
each of some reasonable size B (say a few megabytes). Two
subsequent snapshots of each block m ∈ M are compared with
each other through COMPAREMATCH procedure. It is a heuristic
based process which searches for a specific pattern of updates
between the two snapshots which potentially represents the ap-
plication’s footprint. For example, a sequence of two modified
consecutive 64 byte cache lines followed by a few unmodified
cache lines and then further two modified consecutive cache lines
would potentially represent the two 128 byte regions for R0

(first two cache lines) and R1 (last two cache lines). Finally,
a set S of all those memory blocks which show the specific
update sequence searched by COMPAREMATCH is returned. This
algorithm is iteratively repeated until a reasonably small set of
memory block(s) (e.g., one 4 kB page) is identified which is
expected to contain the victim application’s address space.

Algorithm 4 Pseudo code for the second phase of attack
Input: S: Application’s memory space. (from Algorithm 3);

n: # of snapshots to cover one full encryption period.
Output: k: Application’s secret key.
Start:

1: V = (s1, · · · , sn) | si = TAKESNAPSHOT(S), 1 ≤ i ≤ n
2: Th = COMPUTETHRESHOLD(V)
3: W = ∅, k = (0, · · · , 0)
4: V = REMOVEUNCHANGEDSNAPSHOTS(V)
5: for i = 1 to |V | − 1 do
6: Rxi

= CORRELATE(si, si+1, Th) . xi ∈ {0, 1}
7: W = W ∪Rxi

8: end for
9: i = 1, j = 0

10: for (Rxi
, Rxi+1

) ∈W do
11: if Rxi

= R0 and Rxi+1
= R1 then kj = 1

12: else if Rxi
= R1 and Rxi+1

= R0 then kj = 0
13: end if
14: i = i + 2; j = j + 1
15: end for
return k

0

200

400

600

800

1000

1200

1400

o

f
W

ri
te

s
Pe

rf
o

rm
ed

Byte Index within a Page

Threshold

𝑅1𝑅0

Fig. 2. A histogram of # of writes to individual bytes in the victim’s
memory page. A clear distinction is shown between the regions cor-
responding to variables R0 and R1.

3.4 Step 2: Distinguishing Local Variables R0 and R1

Once the application’s memory space is found, we need to link
two distinct regions within this address space to the variables
R0 and R1 in order to determine the key bits from the order
of their updates. For this purpose, a set V of n snapshots of
the application’s space is computed as shown in Algorithm 4.
Notice that n is large enough to cover one full encryption period.
The COMPUTETHRESHOLD procedure computes a histogram of
the updates performed inside the application’s memory over all
the snapshots of set V . Fig. 2 shows one such histogram for a
4kB page of victim’s memory. It can be seen that almost all the
updates are performed at two distinct regions spanning over only
a few cache lines within the page. These two regions correspond
to the variables R0 and R1 respectively2. The inactive region
between R0 and R1 represents a threshold which is later used
by CORRELATE procedure to determine whether a change in two
successive memory snapshots corresponds to an update in R0 or
R1 etc.

2. We can tell whether R0 or R1 comes first in the memory layout from
the declaration order of these variables in the actual implementation of the
exponentiation algorithm (cf. line 1 in Algorithm 2).

4

Memory Snapshot Change in 𝑅0 Change in 𝑅1 No Change

Start of a new
exponentiation

… … …

Time

𝑘𝑗 = 1

𝑘𝑗 = 0
Ignored

Fig. 3. Inferring the secret key via observing the sequence of snapshots
and the changes in variables R0 and R1. The pairs of snapshots which
do not show any change are ignored.

3.5 Step 3: Inferring the Secret Key

After computing the set of snapshots V and the threshold Th, we
enter the final phase of inferring the secret key (starting from step 4
in Algorithm 4). Up to this point, the sequence V contains pairs
of snapshots that represent changes in R0 and R1, and also the
pairs which represent no change, as shown in Fig. 3. The reason
why some pairs do not show any change is because our snapshot
frequency is higher than the rate at which the application updates
its data. This allows us to learn the write access pattern at a fine
granularity.

In order to learn the write access pattern, first the pairs of
unchanged snapshots from the sequence V are removed by the
procedure REMOVEUNCHANGEDSNAPSHOTS(V). The resulting
sequence V only contains pairs which always represent a change,
either in R0 or R1. Now, each pair of two successive snapshots
is correlated to an update in either R0 or R1 by CORRELATE

procedure using the threshold computed earlier.
As mentioned earlier, Montgomery ladder algorithm performs

computations upon local variables, where the order of variable
updates is based on the secret exponent bits (cf. Algorithm 2).
Therefore, judging from the order of updates made in R0 and R1,
each pair of updates (Rxi

, Rxi+1
) ∈ W is linked back to the

corresponding value of the secret key bit kj as shown in figure 3.
As the set W contains the history of all the updates to R0 and
R1 for a complete encryption, therefore all the key bits can be
inferred through the above mentioned process.

4 ATTACK DEMONSTRATION

4.1 Experimental Setup

Our experiment setup uses two computer systems, one being the
attacker and the other being the victim. In our experiments, the vic-
tim system is DELL XPS 8700, comprising of Intel Core(TM) i7-
4790 3.60GHz processor that uses Ubuntu 14.04.3 LTS operating
system with a Linux kernel 3.19.0-43-generic, and has 16GB of
main memory. The attacker machine is a 64-bit Windows 10 based
system having 8GB of main memory. A PCI adapter module,
called USB Evaluation Board [23], is connected to the victim via
the PCI-Express slot and acts as a compromised DMA device (cf.
Fig. 1). This DMA device, together with PCILeech software [20],
allows the attacker to monitor victim’s memory and/or take its
snapshots. To implement our attack, the PCILeech software has
been extended to first find the application’s address space in the
victim’s memory (cf. Algorithm 3), and then attack the identified
address space to infer the secret key (cf. Algorithm 4)). The above
mentioned attacking algorithms run while the victim application is
executing.

We have written our own C++ implementation of the Mont-
gomery ladder based exponentiation algorithm3 for large input
sizes (128 Bytes or more) that runs on the victim system. The
victim system has a BIOS version A11 which supports write-
through enabled L1 and L2 caches while disabling the L3 cache by
default. Besides caches, any data modifications in the register file
should also be propagated to the DRAM. The register file (usually
of size 64-128 Bytes) is used by the processor to temporarily hold
the operands and results during computations. Since our imple-
mentation uses multiple temporary variables and function calls
for proper execution of the algorithm, the large “active” working
set of the application cannot fit into the register file and results
in register spills. Hence, any updates made by the application
are immediately propagated – through register file and caches –
down to the main memory as each multiplication/squaring write
operation in performed. Section 4.2 explains the step by step
details about how the attack is launched.

4.2 Experimental Results

In order to take memory snapshots via PCI module and the
PCILeech software, the attacker first needs to load a kernel module
into the victim system via the PCI module itself. Notice that the
attacker does not require any extra privileges to do so. We use the
following command via PCILeech software to load the kernel into
victim’s DRAM. When the kernel is loaded, an address is spitted
out by the software, which shows where the module resides in
the victim’s memory. Loading the kernel into memory is a rapid
process and takes only a few milliseconds to complete the process.

D:\>pcileech kmdload −kmd LINUX_X64
KMD: Code inserted into the kernel
KMD: Execution received - continuing ...
KMD: Successfully loaded at 0x1b54a000
D:\>_

In the meantime, the Montgomery’s ladder exponentiation
algorithm is run on the victim machine using a 128 byte (1024
bits) message along with a secret key of 64 bytes (512 bits).

[user@victim]$./montgomery_exponentiation

With the application running and the kernel module loaded into
victim’s memory, we proceed to find the potential regions in the
DRAM which are being accessed frequently by taking multiple
snapshots. To retrieve these snapshots, we issue the pagefind
command shown below which uses the loaded kernel module’s
address to access the victim’s full memory.

We integrated the pagefind command into the PCILeech
software to iteratively find regions getting modified persistently.
pagefind narrows down the selected regions to a single page by
constantly monitoring and comparing the changes being made,
and returns the address of the page where application’s array
data structures are defined. This step corresponds to Application’s
Address Space Identification phase of the attack (cf. Algorithm 3)
and is the most time consuming phase. To read the whole memory,
comparing their respective snapshots and narrowing down to a
single page of 4KB from 16GB search space takes ∼3 minutes
and 30 seconds.

3. Available at GitHub (https://github.com/meriniamjo/RSA-Montgomery-
Ladder-Implementation)

5

D:\>pcileech pagefind −kmd 0x1b542000
Matching Pattern ...
Page Finding: Successful.
Total_Time = 210199 Milliseconds
Victim Page Address : 0xd271c000
D:\>_

As shown above, from the first phase we retrieve the address of
the page where application’s data structures are stored. Proceeding
towards our second and third step namely Distinguishing Local
Variables and Inferring the Secret Key (cf. Section 3.4, 3.5), we use
another integrated command pageattack. It first takes a predefined
number of snapshots of the application page provided by the first
step, and distinguishes the message (R1) and algorithm result (R0)
from the rest of the stale data, residing on the memory page. It then
uses the order of changes in R0 and R1 to infer the secret key.

D:\>pcileech pageattack −min 0xd271c000
Attack Successful.
Total_Time = 3596 Milliseconds
Inferred Key is:
1a 4b 28 41 e6 27 d4 7d
72 c3 40 79 be 1f 6c 35
ca 3b 58 b1 96 17 04 ed
22 b3 70 e9 6e 0f 9c a5
7a 2b 88 21 46 07 34 5d
d2 a3 a0 59 1e ff cc 15
2a 1b b8 91 f6 f7 64 cd
82 93 d0 c9 ce ef fc 85
D:\>_

This final step takes ∼3.6 seconds to complete and returns the
complete 512 bit secret key learned from only the write access
patterns. Combing the times associated with all the attack phases,
the total attack time comes out to be ∼3 minutes, 34 seconds.

5 LEAKAGE UNDER CACHING EFFECTS

In view of our proposed attack on Montgomery ladder based
exponentiation algorithm, the updates to the application data
should always be available in the DRAM of the victim system
before an attacker issues a memory snapshot request. This is only
possible if the victim system has write-through enabled cache
hierarchy or the caches are disabled altogether. Whereas, on the
other hand, modern processors typically consist of large on-chip
write-back caches where the updates to application’s data are only
visible in DRAM once the data is evicted from the last level cache
(LLC). Thus the attack proposed in Section 3, the caching effects
are not catered for, which introduces ‘noise’ to the precise write-
access sequence inferred earlier, hence making the attacker’s job
difficult. A possible workaround to deal with such caching effects
is to collect several ‘noisy’ sequences of memory snapshots and
then run correlation analysis on them to learn the precise write-
access pattern. Furthermore, if the adversary is also a user of the
same computer system, it can flush the system caches frequently
to reduce the noise in write-access sequence even further.

Another (more efficient) attack scenario under write-back
caches would be when the application has a strided memory access
pattern that causes contention over the cache sets, and hence forces
its own data to be evicted to make room for the new data in the
cache. In the following subsection, we discuss how such a strided
memory access pattern can lead to evictions to the DRAM which
could potentially leak private information.

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A[8]

…

Stride = 4

0

1

2

3

4

5

6

7

8

9

(a) Accessing an array
with a stride of 4.

A[0] A[4]

A[1] A[5]

A[2] A[6]

A[3] A[7]

Way 0

Se
t

#

0

1

2

3

Way 1A[8], A[12], …
Contended Set

(b) A 2-way set-associative cache.

Fig. 4. A strided memory access pattern causing contention on a single
cache set.

5.1 Memory Striding and Cache Set Contention
A strided memory access pattern is the one where each request
to the memory is for the same number of bytes, and the access
pointer is incremented by the same amount between each request.
An array accessed with a stride of exactly the same size as the size
of each of its elements results in accessing contiguous locations in
the memory. Such access patterns are said to have a stride value
of 1. Fig. 4a shows a non-unit striding access pattern in which the
elements 0, 4, 8, 12, · · · of an array A are accessed. This access
pattern has a stride value of 4.

Consider a simple system which has a 2-way set-associative
write-back cache with a total capacity of 8 cache lines, as shown
in Fig. 4b. The strided access pattern from Fig. 4a accesses
every 4ith element of the array A, where i = 0, 1, 2, · · · .
Assuming that each element of A is of size equal to the cache
line size, for a simple modulus based cache hash function, the
elements A[0], A[4], A[8], · · · are mapped to the same set causing
contention over set 0. Since the cache associativity is only 2,
this access sequence causes evictions from the cache when both
ways of set 0 contain valid cache lines. Similarly, elements
A[1], A[5], A[9], · · · map to set 1, and this access sequence will
cause evictions from set 1, and so on. In other words, such write-
access sequences are still propagated almost immediately to the
next level in the memory hierarchy (e.g., DRAM) even under
write-back caches, which could potentially leak information. This
is an artifact of the cache implementation combined with the
striding access pattern of the application.

It must be noted that, not all evictions result in updates to the
main memory. Typically, only dirty cache lines, caused by data
writes, evicted from the cache are propagated to the main memory.
Clean evictions from the cache are simply discarded resulting in
no change in the main memory since it already contains a clean
copy of the data.

Assume that an application generates two distinguishable strid-
ing write-access patterns that result in contention at two different
cache sets, leading to evictions from the cache. Consequently,
the resulting write-access access sequence will be revealed to
an adversary who is capable of monitoring changes in the main
memory, potentially resulting in privacy leakage.

5.2 Striding Application: Gaussian Elimination
In Section 5.1 we discussed, using a toy example, how a strided
access pattern can lead to information leakage. Now we present

6

a realistic example which has such a striding access pattern, and
later in Section 5.3 we show how such a pattern can be exploited to
learn private information. We consider the application of Gaussian
Elimination of large binary matrices carrying substantial amount
of information. Clearly, these large matrices cannot fit into the
caches, therefore there will be cache evictions as a result of
Gaussian elimination operations.

Gaussian elimination a.k.a. row reduction is a method for
solving system of linear equations by the use of matrices in the
form Ax = B. Row reduction is done by doing a series of
elementary row operations which modify the matrix until it forms
an upper triangular matrix, i.e., elements underneath the main
diagonal are zeros. Different types of elementary row operations
include swapping two rows, multiplying a row by a non-zero
number and adding a multiple of one row to another. The upper
triangular matrix formed out of these operations will be in row
echelon form. When the leading coefficient (pivot) in each row is
1, and every column containing the leading coefficient has zeros
elsewhere, the matrix is said to be in reduced row echelon form.
The Gaussian elimination algorithm consists of two processes, one
being forward elimination that converts the matrix to row echelon
form and the other is backward substitution that calculates values
of the unknowns. These processes result in solving the linear
equation.

Gauss-Jordan elimination uses a similar approach for finding
the inverse of a matrix. For a n × n square matrix S, elementary
row operations can be applied to reduce the matrix into reduced
echelon form, and furthermore, for computing the matrix inverse
if it exits. Initially, the n × n identity matrix I is augmented
to the right of S, forming a n × 2n block matrix [S|I]. Now,
upon applying the row operations, the left block can be reduced
to the identity matrix I if S is invertible. This gives S−1 which
is the right block of the final matrix. In a nutshell, we continue
performing row operations until [S|I] becomes [I|S−1].

Consider that the matrix under elimination is stored in a
column-contiguous manner in the computer system’s main mem-
ory. In other words, each column occupies a contiguous chunk of
memory equal to the column size, after which the next column
resides, and so on. When consecutive elements of a row of this
matrix are accessed during a row operation, the corresponding
memory access pattern results in a striding sequence, where the
stride length is equal to the column size. If the stride length is such
that it creates contention on particular cache sets corresponding to
particular rows, this would reveal the modified row, which in turn
could potentially leak the binary matrix itself (cf. Section 5.3).

5.3 Attacking McEliece Public-Key Cryptosystem

McEliece public key cryptosystem [24], an asymmetric encryption
algorithm, uses an error correcting code for a description of the
private key. This encryption uses a fast and efficient decoding al-
gorithm, namely a Goppa code and hides the structure of the code
by transformation of the generator matrix. This transformation
yields the public key and the structure of the Goppa code together
with the transformation parameters, which further provides the
trapdoor information. For a linear code C, generator matrix G,
random invertible matrix S and random permutation matrix P ,
the matrix G∗ = SGP is made public while P , G, and S form
the private key. A message m is encrypted along with a random
error vector using the equation c = mG∗ + e, where c refers to
the ciphertext. In the decryption process, we compute c∗ = cP−1,


1 0 1 0
1 1 0 1
0 1 0 0
1 0 1 1

 ←−+

←−−−−+

[Step 1]

→


1 0 1 0
0 1 1 1
0 1 0 0
0 0 0 1

 ←−+

[Step 2]

→


1 0 1 0
0 1 1 1
0 0 1 1
0 0 0 1

 ←−+

←−−−−+

[Step 3]

→


1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 1

 ←−+

←−−−−+

[Step 4]

Fig. 5. The Gaussian Elimination process on a 4× 4 binary matrix.

decode c∗ to m∗ by the decoding algorithm, and lastly compute
m = m∗S−1. Notice, that S is a private binary matrix whose
inverse is used to recover the message m. Any system carrying
out this encryption/decryption process could either store the matrix
inverse (for better performance) or calculate the inverse during the
run time. However, the latter could lead to the leakage of the binary
matrix via write-access patterns during the inverse computation.
In this section we will demonstrate how performing Gauss-Jordan
elimination [25] on the binary secret matrix S could lead to its
complete exposure as a consequence of cache striding and cache
set contention as shown in section 5.1.

For the ease of demonstration we consider a 4 × 4 binary
matrix. The elements stored in the main memory are column
contiguous. We assume that each element of the matrix is cache
line aligned for performance reasons. In other words, each element
is stored in a unique cache line in order to avoid false sharing
within a cache line. Considering a system with a 2-way 4-set
associative cache, each row of the matrix is mapped to one cache
set due to the cache structure (cf. Fig. 4b). The elimination process
to obtain the inverse of the binary matrix S4×4 is shown step by
step in Fig. 5. After these row operations, we obtain an identity
matrix I4×4.

In each of the above 4 steps, the corresponding pivot row is
added to another row or rows. For example, in Step [1] row 1 is
added to row 2 and row 4. Similarly, row 2 is added to row 3
in Step [2]. As a row operation is performed, the elements of the
target row are modified and result in cache line evictions, since
accessing a whole row causes contention over the corresponding
set it is mapped to, and a cache set can only store 2 elements
of a row at a time. For instance, in Step [1], row 2 and row 4
are modified causing contention and evictions from set 1 and 3
respectively. Consequently, an adversary can learn the identifier of
the row being updated during each row operation by monitoring
the address space in which any updates take place, and then
linking it back to the row number. Now, by definition of the
elimination algorithm, all column elements corresponding to rows
that undergo addition operations can be inferred as 1s, and the
remaining ones as 0s. Hence, in each of Step [1], Step [2],
Step [3] and Step [4], we infer the corresponding pivot column
to be C1 = {1, 1, 0, 1}, C2 = {0, 1, 1, 0}, C3 = {1, 1, 1, 0} and
C4 = {1, 0, 1, 1} respectively.

Notice that C2, C3, and C4 obtained in the above steps show
the respective intermediate forms of the corresponding columns of
S during the elimination process. These values, however, can be
used to recover the original column values of matrix S through

7

C2 =


0
1
1
0

 ←−+

←−−−−+

→


0
1
1
0

 = S2

C3 =


1
1
1
0

 ←−+


1
1
0
0

 ←−+

←−−−−+

→


1
0
0
1

 = S3

C4 =


1
0
1
1

←−+

←−−−−+


0
1
1
1

←−+


0
1
0
1

←−+

←−−−−+

→


0
1
0
1

= S4

Fig. 6. Back Substitution process to recover secret binary matrix S.

back substitution process, as shown in Fig. 6. In this process, each
column Ci undergoes the row operations performed (and inferred)
in each of the steps Step [i-1], Step [i-2], · · · , Step [1], precisely
in this order. For example, C2 undergoes addition of row 1 to
rows 2 and 4, while C3 performs addition of row 2 to row 3 along
with the addition of row 1 to rows 2 and 4. Upon completion
of the back substitution process, the complete secret matrix S is
recovered by the adversary.

6 DISCUSSION

6.1 Potential Threats in Database Applications
Database applications are ubiquitously being used to facilitate
simultaneous updates and queries from multiple users. Such
databases and cloud servers could store high volumes of data re-
garding an organization’s operations. Examples include databases
that record contact and credit information etc. about employees in
an organization. In such databases, the key or the record locater
of a piece of information, for instance, can be the social security
number of the employee. Leaking the SSN of an employee from
above mentioned databases can be detrimental [26]. In the follow-
ing, we discuss how write-access patterns could potentially leak
private information stored in two commonly used data structures.

6.1.1 Linked List
Linked list data structure is a collection of a group of data
elements, called nodes, which together represent a sequence.
Consider the users’ encrypted private information stored in a
singly linked list based on the increasing order of their social
security numbers (SSN). The linked list is stored in the victim
system’s disk. The adversary’s goal is to collect as many valid
SSNs (which represent identities of real humans) from this linked
list as possible.

Assume that two attackers are working in tandem and both
of them are users of the linked list database mentioned above.
Since for each search/update operation, the linked list is traversed
started from the first node up to the node being searched/updated,
all these nodes will be loaded from the disk into the DRAM in
the specific ascending order. Meanwhile, since the adversaries can
monitor the DRAM snapshots throughout this process, they learn

the exact order of each node in the linked list. Now, the adversaries
can insert/update their own information in the database while
monitoring the resulting memory write pattern. This allows them
to link their own SSNs to two particular nodes in the linked list,
separated by potentially a small number of other nodes. Crucially,
this gives the adversaries a potentially small range of valid SSNs
bounded by the two adversarial SSNs. Next time, whenever a
user’s information is updated which results in modifying a node
between two adversarial nodes, the adversaries can brute force the
small range of SSNs to find the valid SSN of the particular user.

6.1.2 Binary Search Tree (BST)
Binary search tree (BST) data structure stores data in memory
while allowing fast lookup, addition and removal of the stored
data. To perform a lookup/update operation, BST looks for a key
by traversing the tree from root to leaf while choosing left or right
child at each level based on the key to be searched.

Consider a similar scenario as in Section 6.1.1 where the data
is stored in a BST instead, and assume that the attackers know
the initial layout of the BST in the victim system’s memory. Since
traversing the tree involves only read accesses, this won’t leak
any information in our model. However, in case of write accesses
(inserting or updating a node), the position where the node is
inserted or updated will be leaked. Following a similar strategy
as Section 6.1.1, the adversary can deduce a range of SSNs by
inserting his own nodes in the BST. A larger group of individuals
acting as adversary can deduce further smaller ranges of SSNs
resulting in easier attack.

Notice that during this type of attack, the subtree correspond-
ing to the range of SSNs found by the adversary should not be
evicted from DRAM. If, for some reason, the pages corresponding
to the vulnerable subtree are swapped out to disk by the OS, the
layout of the subtree in the DRAM could be different once it is
loaded in DRAM next time. In this case, the adversary will need
to relearn the BST layout in DRAM by monitoring several updates
over a long period of time.

6.2 Future Work: Countermeasures for Our Attack
One approach to prevent privacy leakage via write-access pattern
leveraging DMA based attacks, as demonstrated in this paper,
could be to block certain DMA accesses through modifications in
the DRAM controller. However, this approach poses complexity
in terms of how to determine which accesses to allow and which
ones to block. Furthermore, it requires this ‘extended’ DRAM
controller to be included in the trusted computing base (TCB) of
the system which is undesirable.

Another strong candidate is Oblivious RAM which is a well
known technique to prevent privacy leakage via memory access
patterns. Although, current so called fully functional ORAMs,
which obfuscate both read and write patterns, offer a possible
countermeasure (at a cost of performance penalty) against the at-
tack we demonstrated. However, the extra protection (read pattern
obfuscation) offered by these approaches is an overkill for current
attack scenario and incurs redundant performance penalties.

A better alternative could be a write-only ORAM [27], [28],
[29] which only obfuscates write-access patterns and not the reads.
This technique offers far better performance than a fully functional
ORAM under such weaker adversarial models. It has been shown
that write-only ORAM has an optimal asymptotic communication
overhead of O(1) as compared to the fully functional ORAM
schemes, which are asymptotically Ω(log n) [27].

8

7 CONCLUSION

Privacy leakage via purely write-access patterns is less obvi-
ous and not extensively studied in the current literature. We
demonstrate a real attack on Montgomery’s ladder based modular
exponentiation algorithm and infer the secret exponent by just
learning the write access patterns of the algorithm to the main
memory. We adapt the traditional DMA based exploits to learn
the application’s write access pattern in a reasonable time. Our
attack takes just 3 minutes and 34 seconds to learn 512 secret bits
from a typical Linux based victim system. A possible attack on
McEliece public-key cryptosystem has also been presented. We
discuss some possible countermeasures to prevent such attacks.
Further research towards developing efficient countermeasures is
left as future work.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CNS-1413996
for MACS: A Modular Approach to Cloud Security.

REFERENCES

[1] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz, “Specifying and
verifying hardware for tamperresistant software,” in IEEE S & P, 2003.

[2] D. Lie, C. Thekkath, and M. Horowitz, “Implementing an untrusted
operating system on trusted hardware,” in SOSP, 2003.

[3] D. Grawrock, The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Intel Press, 2006.

[4] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “ AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing,” in
ICS. ACM, June 2003.

[5] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

[6] G. E. Suh, D. Clarke, B. Gassend, M. V. Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,” in
MICRO, 2003.

[7] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in MICRO, 2003.

[8] B. Gassend, G. E. Suh, D. Clarke, M. V. Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in HPCA’03.

[9] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in IEEE S&P’15.

[10] X. Zhuang, T. Zhang, and S. Pande, “Hide: an infrastructure for ef-
ficiently protecting information leakage on the address bus,” in ACM
SIGPLAN Notices. ACM, 2004.

[11] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation.” in NDSS,
vol. 20, 2012, p. 12.

[12] M. Joye and S. M. Yen, “The montgomery powering ladder,” in
CHES’02.

[13] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in CRYPTO. Springer, 1996.

[14] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, 2005.

[15] L. Goubin, “A refined power-analysis attack on elliptic curve cryptosys-
tems,” in PKC Workshop. Springer, 2003.

[16] S.-M. Yen, L.-C. Ko, S. Moon, and J. Ha, “Relative doubling attack
against montgomery ladder,” in ICISC. Springer, 2005.

[17] D. Aumaitre and C. Devine, “Subverting windows 7 x64 kernel with dma
attacks,” HITBSecConf Amsterdam, 2010.

[18] D. Maynor, “Dma: Skeleton key of computing && selected soap box
rants,” CanSecWest: http://cansecwest. com/core05/DMA. ppt, 2005.

[19] B. Böck and S. B. Austria, “Firewire-based physical security attacks on
windows 7, efs and bitlocker,” Secure Business Austria Lab’09.

[20] U. Frisk, “Pcileech: Direct memory access attack software.” [Online].
Available: https://github.com/ufrisk/pcileech

[21] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of simple branch
prediction analysis,” ser. ASIACCS ’07.

[22] P. Stewin and I. Bystrov, “Understanding dma malware,” in DIMVA.
Springer, 2012.

[23] I. BPlus Technology, “Usb3380 evaluation board.” [Online]. Available:
http://www.bplus.com.tw/Adapter/USB3380EVB.html

[24] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Coding Thv, vol. 4244, pp. 114–116, 1978.

[25] A. Bogdanov, M. C. Mertens, C. Paar, J. Pelzl, and A. Rupp, “Smith-a
parallel hardware architecture for fast gaussian elimination over gf (2),”
in Workshop on Special-purpose Hardware for Attacking Cryptographic
Systems (SHARCS 2006), Conference Records, 2006.

[26] S. Musil, “Sony hack leaked social security numbers and
celebrity data.” [Online]. Available: https://www.cnet.com/news/
sony-hack-said-to-leak-47000-social-security-numbers-celebrity-data/

[27] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward robust
hidden volumes using write-only oblivious ram,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 203–214.

[28] L. Li and A. Datta, “Write-only oblivious ram-based privacy-preserved
access of outsourced data,” International Journal of Information Security,
pp. 1–20, 2013.

[29] S. K. Haider and M. van Dijk, “Flat oram: A simplified write-only
oblivious ram construction for secure processor architectures,” arXiv
preprint arXiv:1611.01571, 2016.

Tara Merin John is a M.S. student in Electrical
& Computer Engineering at University of Con-
necticut. Her research interests include Com-
puter Architecture, Hardware Security and Em-
bedded Systems Design. She did her Bachelors
in Electronics and Communication Engineering
from University of Kerala, Kerala, India.

Syed Kamran Haider is a Ph.D. student in
Electrical & Computer Engineering at University
of Connecticut. His research interests include
Computer Architecture and Hardware Security.
Before coming to UConn, he did his Masters in
Embedded Computing Systems as a joint de-
gree from NTNU Trondheim, Norway and TU
Kaiserslautern, Germany.

Hamza Omar is a Ph.D. student in Electrical &
Computer Engineering at University of Connecti-
cut. His research interests include Computer Ar-
chitecture, Hardware Security and Approximate
Computing. Prior to joining UConn as a grad-
uate student, he did his Bachelors in Electrical
Engineering from University of Engineering &
Technology, Lahore, Pakistan.

Marten van Dijk is a Charles H. Knapp Asso-
ciate Professor of Electrical and Computer En-
gineering at the University of Connecticut. Prior
to joining UConn, he was a Research Scientist
at MIT, RSA Labs, and Phillips Research. He
has been awarded 2015 ACM/IEEE A. Richard
Newton Technical Impact award in Electronics
Design Automation. He has won several best
paper awards.

https://github.com/ufrisk/pcileech
http://www.bplus.com.tw/Adapter/USB3380EVB.html
https://www.cnet.com/news/sony-hack-said-to-leak-47000-social-security-numbers-celebrity-data/
https://www.cnet.com/news/sony-hack-said-to-leak-47000-social-security-numbers-celebrity-data/

	1 Introduction
	2 Background
	2.1 Exponentiation Algorithms
	2.2 Montgomery's Power Ladder Algorithm

	3 The Proposed Attack
	3.1 Adversarial Model
	3.2 Attack Outline
	3.3 Step 1: Application's Address Space Identification
	3.4 Step 2: Distinguishing Local Variables R0 and R1
	3.5 Step 3: Inferring the Secret Key

	4 Attack Demonstration
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Leakage under Caching Effects
	5.1 Memory Striding and Cache Set Contention
	5.2 Striding Application: Gaussian Elimination
	5.3 Attacking McEliece Public-Key Cryptosystem

	6 Discussion
	6.1 Potential Threats in Database Applications
	6.1.1 Linked List
	6.1.2 Binary Search Tree (BST)

	6.2 Future Work: Countermeasures for Our Attack

	7 Conclusion
	References
	Biographies
	Tara Merin John
	Syed Kamran Haider
	Hamza Omar
	Marten van Dijk

