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Abstract—We present a method for transferring behaviour
from humans to robots via apprenticeship learning. While
previous methods have relied on an accurate model of the
demonstrator’s dynamics, in most practical settings such models
fail to capture (i) complex, non-linear dynamics of the hu-
man musculoskeletal system, and (ii) inconsistencies between
modelling assumptions and the configuration and placement of
measurement apparatus. To avoid such issues, we propose a
model-free approach to apprenticeship learning, in which off-
policy, model-free reinforcement learning techniques are used to
extract a model of the objective function optimised in human
behaviour. As a key ingredient, we derive a novel formulation
of Least Squares Policy Iteration (LSPI) and Least Squares
Temporal Difference learning (LSTD) to enable their application
in this setting. The robustness of our approach is demonstrated
in experiments where human hitting behaviour is transferred to
a non-biomorphic robotic device.

I. INTRODUCTION

A promising approach to the acquisition of skilled behaviours,

such as ball hitting, racket swinging, etc., by robots is to trans-

fer existing strategies from humans. This transfer is the subject

of numerous studies in imitation learning, whereby robots are

made to mimic human demonstrative behaviours, either by

direct matching of command and action sequences [18], [4]

or by matching specific features of the human’s behaviour

[3]. However, the application of such approaches comes into

difficulty when considering the numerous differences between

the human musculo-skeletal system and the dynamics and

actuation of robots (Fig. 1). Specifically, imitation by trajectory

matching relies on the selection of appropriate features of the

dynamic behaviour of both the human and robot plants. This

is non-trivial since it is often unclear how different features

relate to task performance over the duration of the movement,

especially for highly dynamic tasks, such as hitting [12] or

ball-throwing [8].

To avoid problems such as these, it has recently been

proposed to take an inverse optimal control approach for

transfer between heterogeneous systems [12]. The basis of

this approach is to imitate behaviour on the level of task

objectives, exploiting recent algorithmic advances in Appren-

ticeship Learning (AL) or inverse reinforcement learning [2],

[17], [19]. Specifically, such approaches extract features of the

objective function, that do not depend on the specific dynamic

properties of the demonstrator and are thereby suitable for

transfer to robotic hardware.
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Fig. 1. Human and robotic actuation systems: (left) Humans use muscle
activations (e.g., utriceps and ubiceps) while (right) robotic systems are
controlled with command signals to the motors (e.g., umotor1 and umotor2).

AL has been successfully demonstrated in several highly

dynamic control problems, such as helicopter control [9] and

car navigation [1]. Typically, these have involved learning from

data in which the dynamics of the system are well-known, for

example in the context of teleoperation of a robot. However,

AL has so far found relatively limited application learning

directly from human behaviour (e.g., in order to transfer

behaviour to anthropomorphic robots or manipulators). In

this domain, one of the major obstacles is the problem of

modelling the dynamics of the demonstrator, i.e., the human

musculo-skeletal system. Problems arise, for example, due to

the complexity of human muscle and tendon dynamics, and

the difficulty of non-invasive measurement of musculo-skeletal

properties (e.g., limb weight, length, inertia and impedance

characteristics).

To overcome these difficulties, in this paper we propose

a novel, model-free approach to AL, where the effort of

modelling human dynamics is totally avoided. Our approach is

tailored to the demands of behaviour transfer in a non-invasive

fashion. Specifically, we take a model-free Reinforcement

Learning (RL) approach whereby information about the dy-

namics is implicitly encoded in a pre-recorded data set, rather

than explicitly defined in a model. One of the key requirements

is to avoid the need for action exploration in the RL (which, in

our domain, would require execution of exploratory actions on

the demonstrator plant - i.e., stimulation of the human’s mus-

cles). This is achieved by employing off-policy RL techniques,

using modified versions of Least Squares Policy Iteration

(LSPI) [14] and Least Squares Temporal Difference learning

(LSTD) [7], [6] in finite horizon. We illustrate the practicality

of our approach in numerical simulations and in an experiment

in which behaviour is transferred from a human to a variable

impedance robotic actuator.
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II. PROBLEM DEFINITION

We address the problem of transferring human skills, i.e.,

control strategies of an expert (human) demonstrator (e) to an

apprentice (robot) learner (l) assuming that the two have a very

different embodiment in terms of their dynamics. Specifically,

we assume the expert has state e
x ∈ R

n, controls movement

with commands e
u ∈ R

m, and has dynamics

e
ẋ = e

f(ex, eu) ∈ R
n. (1)

Our goal is to transfer behaviour to a heterogeneous learner

(robot), with state l
x ∈ R

p, command signal l
u ∈ R

q and

dynamics
l
ẋ = l

f(lx, lu) ∈ R
p. (2)

Note that, in general, the state and action space of the two

systems (ex, eu and l
x, lu) may differ significantly between

human and robot. For example, for a human expert, e
u may

correspond to muscle activations, whereas for a robot learner
l
u may correspond to desired position of a servo-motor.

Crucially, we note the difficulty of obtaining a model of
e
f(·) in (1) when learning from human demonstrations since

its form is highly specific to a number of factors related to the

musculo-skeletal properties and the measurement apparatus.

For example, e
f(·) contains information about the complex

mass distribution and inertia of the demonstrator’s limb and the

elasticity of muscles and tendons. It will also depend critically

on measurement factors such as, for example, the positioning

of surface electromyography (EMG) sensors, and the way in

which muscles move under the sensors during motion. All of

these factors make it difficult to obtain an accurate model of

the dynamics for existing model-based approaches to AL.

A. Transfer via Apprenticeship Learning

Our approach follows closely the framework proposed in

[12], a schematic of which is depicted in the lower half of

Fig. 2. The key idea involves abstracting out the difference

in dynamics by performing behaviour transfer at the level

of task objectives. Specifically, we employ AL to extract a

model of the objective function from recordings of a human

demonstrating some task. From a set of K demonstration

trajectories eD =
{

(exk
0 ,

e
u
k
0), · · · , (

e
x
k
N , euk

N )
}K

k=0
we learn

a model of the human objective function in the form

eJ =

η
∑

i=1

wi
ehi(

e
x(T )) +

N
∑

i=η+1

wi

∫ T

0

eli(
e
x, eu, t) dt

or, more compactly

eJ = w
⊤eξ(ex, eu) (3)

where ehi(·),
eli(·) are a set of (known) basis func-

tions representing terminal and running costs, respectively,

i.e., eξ = (eh1, · · · ,
ehη,

∫ T

0
elη+1dt, · · · ,

∫ T

0
elNdt)⊤, w=

(w1, · · · , wN )⊤ are parameters to be estimated from data, and

we assume (by renormalisation, if necessary) that wi > 0
and ||w||1 = 1. Note that, the basis functions ehi(·),

eli(·)
may be made up of a set of bases for a generic function

 

Fig. 2. Transfer via apprenticeship learning (AL). Cost weights ŵ are learnt
by AL via expert’s (human) demonstration eD. Learner (robot) optimises
the behaviour under the transferred cost weights ŵ. Comparison of original
and model-free ALs are shown in the top half.. The original AL employs
Monte Carlo method for value estimation and model-based method for policy
optimisation, both of which need (human) dynamics model ef . On the other
hand, model-free AL collects exploratory data aD and LSTDf estimates
values and LSPIf optimises policy without any dynamics models.

approximator (e.g., Gaussian radial basis functions), or a set

of salient features of the task (e.g., energy or accuracy costs).

For the behaviour transfer, we then take these learnt weight

parameters ŵ and use them to optimise behaviour with respect

to the dynamics of the robot learner (2). Specifically, we

optimise the learner behaviour with respect to the learnt cost

lJ = ŵ
⊤lξ(lx, lu) (4)

where lξ = (lh1, · · · ,
lhη,

∫ T

0
llη+1dt, · · · ,

∫ T

0
llNdt)⊤, are

a set of equivalent basis functions for the learner, taking into

account the correspondence with eξ(ex, eu) [12].

B. Model-based Apprenticeship Learning

While several model-based methods for AL have been pro-

posed [12], [19], [2], in the literature, our framework of

choice is Multiplicative Weights AL (MWAL) [19] which

has been shown to be robust and efficient in the robotics

domain. MWAL is an iterative approach that uses estimates

of the expected value of the observed behaviour eD to find

an approximation ŵ of the expert’s weights. Specifically, the

algorithm starts by assigning an initial guess of the weights

ŵ, and calculating the vector e
v̂ of expected values of the

demonstration data eD under each of the cost bases eξi(·, ·),

ev̂i =
1

K

K
∑

k=0

{

eξi(
e
x
k, euk)

}

. (5)

It then iterates between three stages, namely, (i) forward

optimisation of a control policy under the current weight

estimate ŵ, (ii) estimation of the vector of expected values

v̂ of that policy under each of the cost bases eξi(·, ·), and (iii)



Algorithm 1 Model-based MWAL

1: Input: eD: human demonstration data
eξ: cost basis vector
e
f : human muscle dynamics model

2: Initialise weights ŵi = 1/N for all i
3: Estimate e

v̂ from eD through (5).

4: repeat

5: Optimise policy π̂ by model-based method

under ŵ with e
f and eξ

6: Estimate value vector v̂ through Monte Carlo

sampling of π̂
∗
applied to e

f

7: Update ŵ according to ŵi := ŵiβ
−α(ev̂i−v̂i)

re-normalise: ŵ := ŵ/||ŵ||1
8: until ŵ is unchanged

9: Output: ŵ

update of the estimated ŵ by reducing the difference of the

estimated costs, i.e., minimising the criterion

JMWAL = ŵ
⊤(v̂ − e

v̂), (6)

until convergence. A summary of model-based MWAL is

shown in Algorithm 1, where β = (1+
√

(2 logN)/L)−1 [19],

L is number of iterations, and α is learning rate.

Crucially, in existing implementations of this process, a

model of the expert dynamics e
f(·) enters at two of the

stages (see the top of Fig. 2). First, at stage (i) a model-based

approach is used for forward optimisation, for example model-

based RL, ILQG [12], differential DP, etc. Second, at stage

(ii) the expected values v̂ are computed through Monte Carlo

sampling. In other words, the policy found in step (i) is used

along with the expert dynamics e
f(·) in order to generate a

set of trajectories D̃. These are used in place of eD in (5) to

compute the estimated value vector v̂. Clearly, the accuracy

of these estimates, and thereby the quality of our estimated

ŵ, depends heavily on the accuracy of our model of e
f(·).

C. Model-free AL for Behaviour Transfer

An alternative to the model-based approach outlined above,

is to take a purely data-driven approach to learning. In other

words, rather than trying model the dynamics of the demon-

strator, we would like to represent those dynamics implicitly,

in terms of data recorded on a per-experiment basis. The

advantages of this are that (i) it avoids the need for complex

modelling and invasive measurements of the human musculo-

skeletal system, and (ii) it sidesteps the aforementioned issues

related to measurement apparatus (e.g., positioning of EMG

sensors). Most importantly, since we avoid bootstrapping es-

timates of π̂
∗
and v̂ on an (erroneous) model of e

f(·), we
should achieve more accurate estimates of the cost parameters

ŵ.

To realise this model-free transfer of behaviour, our pro-

posal is to exploit model-free techniques from RL. In our

setting, one of the requirements on such an approach is that

learning must be conducted off policy. The latter is necessary

since, during the estimation of ŵ, it is not possible to sample

trajectories from the human under a prescribed command

sequence (i.e., we cannot directly control the human’s muscles

according to policies planned during the forward optimisation).

We also note that, for the final transfer part (i.e., forward

optimisation of behaviour for the apprentice (robot)) we can

continue to exploit models of the robot dynamics (2), since

these are relatively easy to obtain for artificial systems.

One method for model-free AL uses stochastic gradient

descent based on the relative entropy [5], in which gradients

are estimated by importance sampling. While the probablistic

formulation of the latter is appealing, one of the difficulties

lies in its application to problems with long horizons (i.e., long

duration demonstrations), since the variance of the importance

sampling estimator increases exponentially with the trajectory

length [10]. To avoid such problems, here we propose a

method based on LSPI [14], a model-free and off-policy RL

technique, with efficient sample usage. We turn to the details

in the next section.

III. METHOD

In this section, we outline our approach to model-free AL

for behaviour transfer. In contrast to model-based MWAL,

our approach works on two data sets, namely the set of

task demonstrations, eD, and a second, auxiliary data set aD
collected during, for example, random movement (e.g., motor

babbling). The latter implicitly represents the dynamics of the

human, and can be used as a proxy for an explicit model

of e
f(·). The primary difference in the new approach is in

the policy optimisation and value estimation (see Fig. 2), as

detailed below.

A. Least Squares Policy Iteration in Finite Horizon

In its standard formulation, LSPI [14] is composed of two

steps: (i) policy evaluation and (ii) policy improvement. In

the former, the value function Qπ is linearly approximated

based on sample data {xm,um, x̄m, jm}Mm=1 where x̄m is the

integrated state (i.e., the state to which the system transitions

when command um is applied in state xm) and jm is the

instantaneous cost of making that transition. Note that, no

assumption is made about the origin of these samples, thereby

allowing on- or off-policy estimation of Qπ .

Typically, LSPI is formulated as an infinite horizon problem,

however, when learning from demonstration, we are more

commonly interested in discrete tasks with a finite time hori-

zon, such as reaching, manipulation or throwing. We must

therefore derive a formulation of LSPI applicable to such tasks.

The main difference in the finite horizon setting, is that

the policy and the value function become non-stationary

(i.e., time-dependent). This means that we need to find an

approximation of the value function Qπ
t (x,u) indexed on the

time step t. An efficient way to do this, is to use time-indexing

through the parameters: Qπ
t (x,u) ≈ Q̂π

t (x,u) = φ(x,u)⊤θt

where φ(x,u) are a stationary set of basis functions. At the

tth time step, our approximation should minimise

Jt(θt) =
1

2

M
∑

m=1

(

Qπ
t (xm,um)− φ(xm,um)⊤θt

)2
. (7)



Algorithm 2 Policy Optimisation by LSPIf

1: Input: D ≡ {xm, um, x̄m, jm}Mm=1: sample data

T : time horizon, φ(x,u): basis functions
2: Set value function V̂ π

T (x) = h(x) and

sufficient statistic A =
∑M

m=1 φmφ⊤

m

3: for t = T − 1 to 0 do

4: Approximate action value function:

Qπ
t (x,u) ≈ φ(x,u)⊤θt where θt := A

−1
b

and b :=
∑M

m=1 φm(jm + V̂ π
t+1(x̄m))

5: Optimise policy: πt(x) = argminu φ(x,u)⊤θt

6: Set value function: V̂ π
t (x) = φ(x,πt(x))

⊤θt

7: end for

8: Output: {πt(x)}
T−1
t=0

This can be achieved by solving

∇θt
Jt(θt) = −

M
∑

m=1

φm

(

Qπ
t (xm,um)− φ⊤

mθt

)

= 0 (8)

for θt, where φm=φ(xm,um).
Here, to compute (8), an estimate of Qπ

t (xm,um) is needed
at every time step. This can be obtained through bootstrapping:

we first initialise the value function at T as V̂ π
T (x)=V π

T (x)=
h(x), where h(x) is the terminal cost. We then iteratively solve

(8) from time step T−1 to 0 using the value function estimate

for the next time step as our estimate of Qπ
t (xm,um), i.e.,

Qπ
t (xm,um) ≈ jm + V̂ π

t+1(x̄m) (9)

where V̂ π
t+1(x̄m) = φ(x̄m,πt+1(x̄m))⊤θt+1. The policy is

then estimated as

πt+1(x) = argmin
u

φ(x,u)⊤θt+1 (10)

and the optimal parameters are retrieved at each time step

θt := A
−1

b, (11)

where A=
∑M

m=1φmφ⊤

m and b=
∑M

m=1φm(jm+V̂t+1(x̄m)).
We call this algorithm LSPIf (LSPI in finite horizon). A

summary is provided in Algorithm 2.

Finally, we note that for finite horizon policy evaluation,

we can use the same process, but simply omit the policy

improvement step (10) (i.e., step 5 in Algorithm 2). This is

effectively the finite horizon version of LSTD [7], [6]. In

our setting, this is important since it provides a model-free

method for estimating the value vector v̂ that is required for

minimising the MWAL objective (6).

B. Model-free MWAL for Behaviour Transfer

We are now in a position to construct a model-free version of

the MWAL algorithm. As input to the algorithm, we require

(i) task demonstrations eD, (ii) a set of auxiliary data aD
collected from the demonstrator performing random actions,

and (iii) a set of cost basis functions eξ(·).
We initialise learning as for the model-based algorithm, i.e.,

by setting an initial guess for the weights ŵ and by estimating

the value vector for the demonstration data e
v̂ through (5). The

Algorithm 3 Model-free MWAL

1: Input: eD: human demonstration data
aD: auxiliary data from human randomly

performing actions, eξ: cost basis vector

2: Initialise cost weights ŵi = 1/N for all i
3: Estimate e

v̂ from eD through (5).

4: repeat

5: Optimise policy π̂ with LSPIf applied to aD
with costs {jm}Mm=1 predicted by ŵ, eξ

6: Estimate value vector v̂ by LSTD with eξ under π̂
∗

7: Update ŵ according to ŵi := ŵiβ
−α(ev̂i−v̂i)

re-normalise: ŵ := ŵ/||ŵ||1
8: until ŵ is unchanged

9: Output: ŵ

algorithm then iterates between the same three steps, i.e. (i)

estimating the optimal policy π̂ under the current estimate of

the weights ŵ, (ii) estimating the value vector v̂ under π̂ and

(iii) updating ŵ according to the difference between v̂ and
e
v̂.

The two main differences are, first, rather than using a

model-based optimisation scheme in step (i), we use model-

free, off-policy LSPIf. This uses the auxiliary data set aD
augmented with a set of cost predictions {jm}Mm=1 from the

current estimate of the cost function (i.e., weights ŵ).

Second, in step (ii), we avoid using Monte Carlo sampling

of trajectories from the policy π̂ under the dynamics e
f to

estimate the value vector v̂. Instead, we use finite horizon

LSTD (LSTDf) to evaluate the learnt policy under each of

the cost bases eξ(·). A comparison of the two approaches

is illustrated in Fig. 2, and a summary of the model-free

algorithm is provided in Algorithm 3 (where α and β are

defined in the same way as for the model-based approach).

C. Selection of Basis Functions

The approach outlined so far makes no structural assumptions

on the expert’s dynamics e
f(·). However, for its successful

application, a design decision must be made on the basis

functions φ(·) used to approximate the action-value function

Qπ . In general, this will depend on numerous factors, such

as the data dimensionality, density and smoothness, as well as

any prior knowledge about its form. In this section, we briefly

explore how this choice affects the accuracy and computational

cost of learning the cost function.

1) Setup: As a simple test example, we apply model-free

MWAL to the finite-horizon, linear quadratic regulator (LQR)

problem, and compare learning performance for different

choices of basis function φ(·). The LQR problem is a standard

optimal control problem, in which the dynamics are linear

ẋ = Ax+ bu (12)

and the cost quadratic. In our instantiation of the problem, the

dynamics represent a 1-D point mass m where x = (q, q̇)⊤

is the state (position and velocity), u is the force (controlled



Model-Based Model-Free
Correct Incorrect Polynomial Graph Laplacian

Size of aD - - 6 300 600 900

‖v̂ − v
∗‖ 0 338.87 0

45.27
±62.69

19.61
±28.35

18.84
±22.43

‖ŵ −w
∗‖

4.33
×10−4 53.02

4.33
×10−4

10.29
±12.89

4.47
±6.22

3.62
±3.86

TABLE I
ERROR IN ESTIMATED FEATURE VALUE VECTOR v̂ (AVERAGED OVER

ITERATIONS OF MWAL) AND FINAL WEIGHT ESTIMATE ŵ FOR DIFFERENT

CHOICES OF φ(·). SHOWN ARE (MEAN ± S.D.)×10−3 OVER 50 TRIALS.

at 50Hz), b = (0, 1/m)⊤ and A1,1 = 0, A2,2 = 0, A2,1 = 0,
A1,2=1. The cost is

J = w1x(T )
⊤
x(T ) + w2

∫ T

0

u2 dt = w
⊤ξ(x, u), (13)

where T =0.04 s and w=(w1, w2)
⊤=(0.8, 0.2)⊤.

As demonstrations eD, K = 7 trajectories are collected

from initial positions q(t = 0) ∈ {−3,−2, . . . , 3} under the

optimal policy with respect to (13). We then compare learning

with (i) a polynomial basis φ(x, u)=(q2, q̇2, u2, qq̇, qu, q̇u)⊤,
and (ii) a graph Laplacian basis [16], with L = 125 ran-

domly generated reference sample sets. An auxiliary data set
aD = {xm, um, x̄m}Mm=1 containing M =6 points is given

for the polynomial basis, and three different sets of size

M=300, 600 and 900 are given for graph Laplacian basis. To

ground our comparison, we also apply model-based MWAL

(using ILQG [15] for the forward optimisation) to the same

demonstration data (i) with an exact model of the dynamics

(i.e., given (12)), and (ii) with incorrectly modelled dynamics.

The latter, incorrect model takes the same parametric form as

(12), but the vector b is multiplied by 0.8 (i.e., the mass is

increased).

2) Evaluation: We evaluate the effect that the choice of

basis function has on (i) accuracy of the final weight estimate

(measured as the l2-norm between the expert weights w and

the estimated ŵ) and (ii) accuracy of the estimated feature

value vector v̂ used in learning. This gives an indication of

the quality of the learning signal ||ev̂ − v̂||. Since the best

possible learning signal would arise from using the expected

feature value vector v∗ of the true optimal policy1 π∗, we can

assess the quality of the model-free learning signal by looking

at ||v̂ − v
∗||2. These values are presented in Table I.

3) Estimation Accuracy: As can be seen, the error of ILQG

with correct model is zero since, in the problem (12)-(13),

ILQG finds the exact solution. Second, since the polynomial

basis can exactly represent the true optimal value function

(which is quadratic for the LQR problem), it also achieves zero

error with just M = 6 samples. Finally, the graph Laplacian

basis does a little worse than the polynomial basis on this

problem, but still far outperforms the model-based method

with the incorrect dynamics model. This is to be expected

since it is a non-parametric technique, and as such does not

have as strong a bias as the polynomial basis. However, for

1These quantities are computed by numerical solution of the Riccati
equations to find π∗, and then use of Monte Carlo to estimate v

∗

problems where the shape of the value function is not known

a priori, it remains a competitive choice.

4) Sample and Computational Complexity: From Table I, it

can be seen that the graph Laplacian requires more data than

the polynomial basis, with the trend of increasing accuracy

as the sample size M increases. In general, the model-free

approach requires more data than the model-based approaches

(namely, the auxiliary data aD), and this comes with some

associated increase in computational cost. In practice, however,

this may be a small price to pay in order to avoid the difficulty

of modelling the expert’s dynamics.

IV. EXPERIMENTS

In this section, we test the performance of our approach for

model-free behaviour transfer across heterogeneous systems.

We first investigate the problem in simulation to compare

its performance against model-based approaches subject to

modelling errors. We then look at its robustness when learning

from real human data, given measurements that are inconsis-

tent with the model, (e.g., due to poor sensor placement), and

illustrate the effects on the learner robot behaviour.

A. Simulation Study

The goal of this investigation is to compare the performance of

our model-free approach against that of model-based methods

in the face of modelling errors. As a case study for this, we

investigate the problem of transferring a hitting task, in which

a ball is hit by wrist action of a human, to a non-biomorphic,

variable impedance robot.

To simulate human demonstration of this task, ILQG is used

to plan a set of optimal trajectories under the dynamics of

a human wrist model. The latter consists of a single joint

system actuated by two antagonistic muscles, with Kelvin-

Voight muscle dynamics [13] (Fig. 3(b)). The torque on the

joint depends on muscle tensions T ∈ R
2, according to

τ(q, q̇,u) = −A
⊤
T(q, q̇,u), (14)

where A = (0.025,−0.025)⊤ m represent moment arms, with

a quadratic dependence on the muscle activations u ∈ R
2

T(q, q̇,u) = K(u)
(

lr(u)− l(q)
)

−B(u)l̇(q̇), (15)

where l(q) = lm −Aq ∈ R
2 are muscle lengths, lm ∈ R

2 is

the muscle length at q = 0,

K(u) = diag(k0 + gku), B(u) = diag(b0 + gbu) (16)

are diagonal muscle stiffness and damping matrices (∈ R
2×2),

respectively, and lr(u) = l0 + gru ∈ R
2 is the muscle rest

length. The coefficients gk, gb, gr, and offsets k0, b0 and l0

are provided by the muscle model [13].

The task is to hit a target as hard as possible. For this, we

model the expert’s cost function as

J = w1|q(T )− q∗|ǫ − w2q̇(T ) + w3

∫ T

0

|Zq̈|ǫ dt (17)



where q∗=30◦ is the target position in joint space and Z is a

scaling factor, and |x|ǫ denotes the ǫ-absolute value
2 of x. The

three terms of (17) respectively correspond to (i) minimising

the distance to the centre of the target3 (ball), (ii) maximising

the angular velocity at impact (T =0.5 s), and (iii) minimising

effort during movement4 Our goal is to estimate the weights

w=(w1, w2, w3)
⊤ that determine the trade-off between these

objectives.

As training data eD, K=5 trajectories from initial positions

{−20,−10, 0, 10, 20}◦ are sampled from the expert’s policy

(optimised with respect to (17)), and 600 random points in

state-action space are used as the auxiliary data aD. As the

form of the value function in this problem is unknown, the

graph Laplacian model is used as a generic basis function.

We compare model-free MWAL (MF-MWAL) to model-

based MWAL (MB-MWAL, ref. Sec. II-B) given (i) an exact

model of the demonstrator’s dynamics (14)-(16) and (ii) a

dynamics model containing modelling errors. For the latter,

we use a model in which the muscle damping is overesti-

mated, i.e., B′(u) = 1.5B(u). Note that, since in real world

modelling of human muscle dynamics, the dependency of the

damping factor on muscular activation is poorly understood,

such discrepancy could be realistic.

Estimates ŵ of the objective function parameters were

obtained with the different approaches over 50 trials where,

for the model-free approach, aD and the graph Laplacian

reference samples were randomly generated in each run. We

evaluate performance in terms of the error in the learnt weights

(L2 norm between w and ŵ) and the value of JMWAL (see

(6)) achieved. We also used the learnt weights to plan optimal

trajectories (i) under the true human dynamics (14)-(16) and

(ii) under the heterogeneous dynamics of a robotic VIA,

namely that of the MACCEPA joint [11]. In the former, good

performance is indicated by the ability of the learnt objective

function to predict the original behaviour of the demonstrator.

In the latter, we test how well behaviour is transferred in

terms of matching the characteristic features. The results are

summarised in Fig. 3.

Looking at the learning curves (Fig. 3(c)), we see rapid

convergence5 with the best final accuracy (see Fig. 3(a)),

achieved by MB-MWAL using the correct model. As expected,

MB-MWAL with the erroneous model performed poorly, con-

verging to an erroneous prediction of the weights. In contrast,

2Note that, the ǫ-absolute value is used in the place of absolute or squared
cost terms to avoid difficulties with outliers. It is defined as

|x|ǫ =

{

ax4 + bx2, if|x| < ǫ,

|x|+ c, otherwise,

where a, b and c are uniquely determined as a = −1/(8ǫ3), b = 3/(4ǫ)
and c = −3ǫ/8 under the condition that the first and second derivatives
(∂|x|ǫ/∂x and ∂2|x|ǫ/∂x2) exist.

3Note that, the ball is modelled as having finite diameter (see shaded region
in Fig. 3(d) and (e)), so that even if q∗ is not exactly achieved, hitting is
deemed successful if the system enters this region.

4Since
∫ T

0
|τ |ǫ dt =

∫ T

0
|Iq̈|ǫ dt, the third term corresponds to the torque-

constraint during movement, scaled by Z/I .
5∆E(ŵ) denote the error change in the final iteration.

Exact Model-Based Model
Transfer Correct Incorrect -Free

Error in Weights 0.002 0.452 0.033± 0.021

Cost
Human −0.343 −0.343 0.367 −0.322± 0.028
MACCEPA −0.030 −0.030 0.286 −0.030± 0.000

(a) Error in final weights and cost accumulation under expert’s true cost.
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(e) MACCEPA Simulator.

Fig. 3. Simulation study. Shown are: (a) Error in final weights and cost
accumulation under true (expert) weights for different simulators (mean ± s.d.
over 50 trials), (b) Forward dynamics model of the human wrist used for MB-
MWAL, (c) Learning curves: JMWAL (top) and error in weights (bottom)
over iterations of MWAL. Optimal trajectories with respect to the learnt
cost functions under (d) the simulated human dynamics, and (e) MACCEPA
dynamics. Features to note in (d) and (e) are (i) the hitting error (top row),
(ii) the impact velocity (bar chart in second row) and (iii) the integrated effort
(represented by the area of the shaded circles, bottom row).

the model-free approach achieved similar accuracy as that of

MB-MWAL with the correct model on average (note that the

variance arises from the variation in aD across trials).

In terms of behavioural predictions, MF-MWAL and MB-

MWAL with the exact model accurately predict the demon-

strator behaviour (see Fig. 3(d)), since the trade-off between

accuracy, effort and impact velocity preferred by the demon-

strator is captured well in the estimated weights ŵ. In contrast,

when the erroneous dynamics model is used, a different trade-

off is learnt, in which accuracy concerns are compromised (ref.

Fig. 3(d), ‘hitting error’) in favour of achieving higher velocity

at T (ref. Fig. 3(d), middle panel) at similar effort (represented

as the area of the circles in Fig. 3(d), bottom panel). These



EMG Signals w1 w2 w3

(u1, u2) 0.49± 0.03 0.01± 0.02 0.50± 0.03
(u2, u3) 0.49± 0.04 0.01± 0.02 0.50± 0.04
(u1, u3) 0.49± 0.03 0.01± 0.01 0.51± 0.04

(u1, u2, u3) 0.49± 0.02 0.01± 0.02 0.50± 0.03
(u1) 0.59± 0.20 0.15± 0.27 0.26± 0.12
(u2) 0.58± 0.25 0.23± 0.30 0.20± 0.12
(u3) 0.51± 0.01 0.02± 0.02 0.47± 0.04

TABLE II
COST WEIGHTS, EACH OF WHICH IS LEARNT BY MODEL-FREE AL WITH

EMG SIGNALS AND THEIR COMBINATIONS. SHOWN ARE (MEAN VALUE ±
S.D.) OVER 10 TRIALS.

differences in priorities are also reflected after transfer to the

robot imitator (Fig. 3(e)), where again, the behaviour learnt

with the erroneous model compromises on accuracy in favour

of end-time velocity.

Finally, if we look at the accumulated cost of the trajectories

learnt with the different approaches (Fig. 3(a)) (evaluated

under the demonstrator’s original cost function), the same

pattern emerges. The behaviour learnt with the correct model,

and the model-free approach incur similar costs as that of

the expert. However, the behaviour learnt with the erroneous

dynamics model incurs much higher cost, since it optimises

for the wrong trade-off in (17).

B. Experiment

In this experiment, we illustrate the feasibility of our approach

for learning from real human demonstrations and transferring

behaviour to a robotic system in hardware. The goal is to

investigate the robustness of our approach in a setting where

it would be difficult to apply a model-based approach due to

measurement errors.

We again focus on a ball hitting task using wrist-action.

For collecting demonstrations, the measurement rig shown in

Fig. 4(a) is used. The rig consists of a hinge joint with a paddle

attached, that is aligned to a ball suspended from a string. The

rig has a handle which the demonstrator grasps to rotate the

joint and hit the ball with the paddle. A magnetic motion

sensor (Flock of Birds, Ascension Tech. Corp.) is used to

measure the angle of the demonstrator’s wrist (hinge angle) at

a 500Hz sampling rate. Simultaneously, surface EMG sensors

(Bagnoli-8, Delsys), placed on the forearm measure the muscle

activations of the demonstrator. With this setup, we are able

to measure trajectories of the human through state- (modelled

as e
x = (q, q̇)⊤, the instantaneous wrist angle and velocity)

and action-space (modelled as the muscle activations e
u).

One of the difficulties of applying a model-based approach

in this experiment, is the accurate placement of EMG sensors

on the subject in a way that is consistent with the model.

For example, if a model such as that illustrated in Fig. 3(b) is

used, one must carefully align the EMG sensors on appropriate

muscles of the subject to ensure correspondence with those

in the model. However, with a model-free approach, such

careful alignment is not necessary, since the wrist dynamics are

implicitly captured in the auxiliary data. To investigate this, we

use three EMG sensors casually placed at different points on

the arm (ref. Fig. 4(a)), and then look at learning performance

(a) Measurement rig.
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(d) Trajectories on MACCEPA.

Fig. 4. Transferring human skills. Shown are (a) Apparatus for recording
human demonstrations of the hitting task, (b) MACCEPA arm which imitates
the human hitting motion, (c) Human data profiles, where three EMG signals
(u1, u2, u3) are collected from different sensors in a single human motion, (d)
Trajectories on MACCEPA, each of which is obtained by applying the motor
command sequence optimised under learnt weights ŵ. Features to note in (d)
are (i) the hitting error (top row), (ii) the impact velocity (bar chart in second
row) and (iii) the integrated effort (represented by the area of the shaded
circles, bottom row). The trajectory learnt with u2 is significantly different
to those learnt with u3 and the EMG combinations.

using data from single sensors and different combinations of

sensors, to verify if we get consistent results.

Demonstrations were collected of a human hitting the ball

(suspended at q∗=18.4◦) with the paddle as hard as possible,

given a fixed time duration (T = 0.24 s) in which to complete

the movement. To reduce the effects of noise and variability

in the demonstrations, 3 trajectories from each of 5 start

positions q = {10, 0,−10,−20,−30}◦) were collected, and

the data was preprocessed by (i) smoothing the signals with

a Butterworth filter and (ii) temporal alignment of trajectories

around the time of impact T . The trajectories from each start

state were then averaged, and the resultant K=5 mean trajec-

tories used as training data eD. Additionally, 15, 000 auxiliary

data samples aD were collected in short bursts of random

left-right wrist movements, and subsampled into sets of 900
training and 200 test points with roughly uniform distribution

in state-action space. The latter were used for cross-validation:

the value function approximation was evaluated by the mean

squared TD error at the test points and, if this became large,

the subsampling was repeated and the forward optimisation

and value estimation retried.



For estimating the human objective, we again modelled the

cost function with (17), and sought the best estimate of the

weights ŵ. Note that, in this experiment, since the true human

cost function is unknown, we cannot explicitly calculate the

error in the estimated weights. Instead, convergence was

measured by examining the magnitude of the weight update,

and the consistency of the weight prediction between different

learning runs (different subsamples and combinations of EMG

sensors).

Table II gives the weights learnt using the different combi-

nations of EMG signals. As can be seen, for all combinations

(u1, u2), (u2, u3), (u1, u3) and (u1, u2, u3), the learnt weights
are approximately similar, which suggests that, given a wide

enough coverage of the muscle signals, our approach is largely

unaffected by sensor placement.

Examining the weights learnt with a single sensor (u1, u2

or u3), we see that those learnt with u1 or u2 have large

variance, and their average is quite different from those of the

combined measurements: the weight on the velocity term (w2)

is 10 times increased, and those pertaining to the accuracy

and effort terms (w1 and w3) are also different. It appears

that the data from the single sensor does not give sufficient

representation of the underlying control strategy used by the

human (e.g., information about the action related to the flexor

is not captured in the u1 signal and vice versa, see Fig. 4(c)).

Interestingly, the weights learnt with u3 are similar to those

with the combinations, since both features of u1 and u2 are

roughly represented in u3 (see Fig. 4(c)), which seems to be

a sufficient representation for this task. Overall, the results

confirm that a consistent model of the human’s cost function

can be obtained without the need for careful sensor placement,

provided they give sufficient coverage of the arm.

Finally, to evaluate our approach for behaviour transfer, we

used ILQG to find the optimal controller for the MACCEPA

with respect to the cost function (17) using the weights

learnt under the different combinations of sensors. The results

are depicted in Fig. 4(d). For the cases where the weight

predictions were consistent, we also see consistency in the

behaviour transfer in terms of the trade-off between accuracy,

impact velocity and effort. In contrast, however, the behaviour

learnt with u2 made impact at earlier time with lower velocity.

This indicates that, while the exact placement of sensors is

unimportant with the model-free approach, it is still necessary

to take some care in placing the sensors in order to ensure

appropriate coverage of the arm muscle signals and accurately

capture the demonstrated behaviour.

V. CONCLUSION AND FUTURE WORK

We presented a model-free approach to apprenticeship learning

(AL) that enables transfer of task-oriented skills from humans

to robots. Our approach is strongly motivated by the appli-

cation of AL techniques to learning from human behaviour:

while previous model-based approaches have relied on the

ability to model the dynamics of the expert, for the complex

human musculo-skeletal system this is infeasible, especially

in the face of measurement errors (e.g., due to inconsistent

placement of sensors). In response to this, we have derived a

novel formulation of LSPI and LSTD reinforcement learning

methods in finite horizon, such that they can be effectively

applied in an AL framework. Simulation and experiment show

the effectiveness and robustness of our approach for transfer of

hitting behaviour from human recordings to a non-biomorphic

variable impedance robot.

In future work, we plan to scale our method up to higher

dimensional systems, such as transferring human punching

movements to a 2-link MACCEPA system. Other directions

of investigation will also include methods for automatic con-

struction of the basis functions of the cost model.
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