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Abstract—This paper presents an experiment in which the iCub
humanoid robot learns to recognize faces through proprioceptive
information. We take inspiration in the way blind people recognize
people’s faces, i.e. through tactile exploration of the person’s face. The
iCub robot’s tactile sensors are used to provide compliance in the hand
motion so as to smoothly scan the facial features. The displacement
of the fingers, as the robot explores the face, is used to build a model
of the face using Hidden Markov Models. We show that the robot
can successfully distinguish across the faces of a standard doll and
the faces of three humanoid robots, the HOAP-3 robot, a Robota doll
robot and MyDreamBaby, a commercial robotic doll.

Keywords: face recognition, tactile sensing, humanoids, human-robot
interaction.

I. INTRODUCTION

Recent progresses in tactile sensing offer a range of novel research
directions in robotics, such as recognition of objects through texture
[1] and safety during physical human-robot interaction [2]. In
humanoid robots, the sense of touch becomes even more important
due to the resemblance of these robots to humans and the fact that
touch is an essential sense for humans. In this work, we explore
ways in which this new modality can be used in combination with
proprioception to identify people’s faces.

Although computer vision is now an effective way for robots
to recognize a person, the process of identification is invisible for
the human. It is also very sensitive to illumination conditions and
provides only partial information about texture and other individual
specific facial features. We seek to provide robots with the ability
to create a map of facial features through tactile exploration. This
process mimics the way in which blind people build a representation
of people’s faces.

The task of classifying faces through proprioceptive information,
using touch to guide the hand and finger motion across the faces,
belongs to the broader range of surface and object recognition
techniques. Various approaches have been proposed towards that
goal. A series of recognition methods are based on local probing
of the object, for instance by creating a tactile image of the contact
between a grasped object and the gripper and differentiating between
rough flat, edge, cylindrical and spherical contact shapes using a
neural network [3]. Another local approach is to model the curvature
of a surface at one point by using data from three differently oriented
curves that are concurrent at the interest point and comparing the
parameters of this local feature (normal direction and the two main
curvatures) [4]. However, comparing a local feature is often not
enough to distinguish between two complex objects. In [5], a bag-of-
features approach is applied to generate object histograms describing
their local features along their length, with tactile information
retrieved from several grasps at different positions. Moreover, once
the learning completed, in order to minimize the required number
of grasp actions, a new grasp location is chosen on the object by
maximizing the expected information gain on the probabilistic belief

about the type of object. A hybrid approach uses both tactile and
haptic information in [6] by completely modelling objects with 3-
D point clouds representations, systematically scanning the objects
with grippers equipped with tactile sensor arrays, or by creating
Self-Organizing Maps from few grasps with more complex robotic
hands [7], [8]. In contrast to the methods reviewed previously, it
might be preferable to continuously probe an object surface instead
of discretely grasp or touch an object: humans do not release and
grasp several times an object in order to recognize it by touch but
rather follow the surface with their fingers. In [9], a tactile sensor
array is moved around the surface of a convex-shaped object while
passively rotating to follow the slope. The time-series of 2D pressure
profiles are fed to several neural networks for classification after
local PCA for feature extraction and dimensionality reduction. In
another application, continuous probing is used to identify surfaces
by mobile robots [10]: the probe uses an accelerometer attached
near its tip in contact with the ground to collect data describing
the surface on which the robot is moving. Classification is done by
analysing selected features of the data from fixed time windows.

From the perspective of using tactile data to drive compliant
motions, [11] uses information from fingertip tactile sensors on a
robotic hand to compliantly adapt the grasp of a selection of objects,
by learning the non-linear correlation between finger position and
tactile signature.

Our work combines the notion of continuous exploration of the
surface and the idea of compliant control introduced in these other
works. Precisely, we use a) the tactile fingertips to introduce a
compliant mechanism for the displacement of the fingers along the
face and b) proprioceptive information, i.e. the position of the fingers
during a motion, to classify the faces. In contrast with most of the
previous works, this process does not require to probe iteratively
different locations, or to build a precise 3D model of the face.
Our approach rather relies on the essential characteristics of one
continuous human-like motion across the face.

II. THE PROBING MECHANISM

The goal of the experiment is to identify a face by touch. In
order to do so, our humanoid robot - the iCub robot [12] - moves
its hand in a vertical plane, while its fingers actively follow the
curve of the face to track its shape1.There are four faces to classify
in this experiment (see Figure 1).

The faces have been chosen because they all share similar basic
features (eyes, mouth, roundness of the head), hence making the
task to distinguish across their features more challenging: the
traditional doll (Doll1) and the robotic doll (Doll2) have faces
that are extremely similar from a tactile-view point, as the overall
surface of the face and the distance across facial features are almost
identical. Major differences lie in the shape of the mouth and nose

1The experiments are illustrated in a video with this paper.



(a) Doll1
(10x12cm)

(b) Doll2
(MyDreamBaby,
9x12cm)

(c) Robota
(plaster cast,
15x13cm)

(d) HOAP
(12x13cm)

Fig. 1: Faces to be sorted in the experiments(width x heigth)

of the two dolls. The face of the robot Robota is a scaled version
of the Doll1 robot and again differs from the previous faces mainly
through its overall size, as well as the relative proportion of the face
covered by the eyes and nose. The face of HOAP-3 robot is the most
distinctive of all four faces, because of its protruding forehead and
its lack of a nose.

A. iCub

The iCub robot is a 53-DOFs humanoid robot whose arms are
composed of 7 joints, plus 9-DOFs hands (see Figure 2). The 7 arm
joints are used to achieve the vertical motion of the hand while one
joint per finger is used to follow the face (sole index and middle
finger are used in this experiment).

(a) (b)

Fig. 2: Experimental set-up: a) The iCub robot moves slowly a
finger over the face of Doll1 and captures an image of the face of
the robot through proprioceptive measurement. b) The iCub’s hand
is endowed with tactile sensors at the finger tips.

B. Hand trajectory

The hand is controlled so as to follow a predefined vertical line
from the top to the bottom of the face, keeping a fixed orientation,
palm facing the scanned head, pointing upwards, see Figure 4. The
motion starts with the fingers at the level of the forehead and is
stopped manually when the fingers reach the bottom of the face.
For each face, this motion is repeated ten times: at each run, the
hand is shifted horizontally so as to span homogeneously the whole
width of the face (see Figure 3). These ten trajectories are used
during the learning phase to create a model of the face (see Section
III).

During the motion, the index and middle fingers stay in contact
with the face by means of a pressure loop (detailed in the next
section). Since the ring and little fingers are coupled and cannot be
controlled independently, they are not used in the experiment: they
cannot follow two different profiles simultaneously. The spacing
between the fingers (adduction/abduction) is fixed during all the

Fig. 3: Front view scheme of hand trajectories and starting points –
red dots – on HOAP. Each dot represents the center of the middle
and index fingertips on the head, at the beginning of the motion.

Fig. 4: The fingers follow the curve of the face. On the left, a wide
angle describes the depression of the eyes and on the right, the nose
bump yields a smaller angle.

experiments. The angular values of the finger joints are recorded
during the experiment. Each motion lasts approximately between
7 and 10 seconds, depending on the size of the face. The ten
recordings of these angular values form the dataset used in the
learning phase. Data are gathered at a rate of 50Hz, resulting in
400 datapoints on average.

C. Pressure control with tactile sensing

The goal of the experiment is to record the motion of the fingers
while they stay in contact with the face. This is achieved through
tactile pressure control. Our iCub robot is endowed with capacitive
tactile sensors on its fingertips [13]. Each of these sensors is
composed of 12 taxels tpf (i.e. tactile pixels), tpf ∈ [0, 255], with
finger f = 1, 2 and taxel p = 1..12. The average pressure per
finger sf is used here as the controlled variable for the pressure
loop:

sf =
1

12

12∑
p=1

tpf (1)

Note that the faces used in the experiments have been covered
with aluminium foil because this enhances the response of the
capacitive sensors and hence ensures better tactile pressure control
(refer to Figure 4).

A PD controller is implemented to follow a constant target
pressure ŝf . This target pressure is manually adjusted so as to keep
a contact with the face without damaging the fingers. Each finger
f is thus controlled in current uf following:

uf (sf , ŝf ) = κp(ŝf − sf )− κdṡf

where ṡf is the derivative of the total pressure at each finger, and
κp ∈ < and κd ∈ < are the proportional and derivative coefficients2.

2In our implementation, the gains κp and κd are hand-tuned. Note that
these gains operate on values of current, which are then mapped to torque
commands for the motors.



III. FACE IDENTIFICATION

A. Data pre-processing

The raw data from the experiments are the angles θt,nf , with
f = 1..F fingers (F = 2, index and middle fingers), n = 1..N
demonstrations and t = 1..T timesteps. These values depend
heavily on the distance between the hand and the face: the same
face profile yields different results if the face to identify is slightly
moved away from iCub’s hand. A few pre-processing steps enable
to get rid of this issue. First, we take the sinus of the angles in
order to have a value linearly correlated with the distance between
the hand and the face:

xt,nf = sin(θt,nf ) (2)

This gives us the data set
{
xt,nf

}T

t=0
(see Figure 5). The remain-

ing constant shift following from the hand being further away during
another motion can be removed by simply taking the derivative of
x with respect to z, the vertical coordinate.

Fig. 5: Scheme of the finger probing system for one finger. The
hand moves along the z axis.

This linearised value is time dependent and the vertical velocity
profile of the hand motion is not flat (the velocity is not exactly
constant during the motion), we therefore re-sample the values
according to the Cartesian vertical coordinate z. The new dataset{
x̃g,nf

}G

g=0
, indexed by g, spans regularly the vertical axis z. The

data points x̃ are interpolated from x, with G the chosen number
of sampled datapoints3. The linearised profile is then differentiated
with respect to z to obtain a set of data independent from the
velocity of the hand during the motion:

Dr =

{
dx̃g,nf

dz
=
x̃g,nf − x̃g−1,n

f

∆z

}F,N,G

f=1,n=1,g=1

(3)

with r ∈ {Doll1, Doll2, Robota,HOAP}.

The data is then de-noised using a lowess filter [14] – local
regression using weighted linear least squares, here with a 1st degree
polynomial model. These pre-processing steps yield data containing
velocity profiles which describe the slope of the faces along two
vertical lines described by the fingers. This information is sufficient
to recreate the original face profiles – sectional views as in Figure
5 – by integrating the slope.

The advantage of pre-processing the data is visible on Figure 6:
while the raw trajectories are not aligned and vary in amplitude, the
final data is much easier to compare. Note that the pre-processed
curves are not perfectly aligned. This is expected, since the profiles

3G was set to 140 points in the current implementation.
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Fig. 6: Comparison between raw and pre-processed data on the first
4 middle finger motions recorded on Doll2.

differ depending on which part of the face is spanned by the finger
(to recall, each of the trajectory is initialized at a different location
along the width of the face).

B. Learning algorithm

Due to the absence of reliable position measurement on our
robot’s end effector, recognizing the essential characteristics of the
motion of the finger when moving across the face (as opposed to
recognizing the exact 3D trajectory) is preferable. To account for
this inherent variability in the way we acquire data, we choose
to encode the distribution of our datapoints through a density-
based representation. Such probabilistic encoding offers a flexibility
that conventional data-driven techniques do not have. For instance,
computing the norm of the distance between two trajectories would
be offset by a temporal shift if they are not properly aligned. A
Hidden Markov Model [15] (HMM) offers a probabilistic encoding
of a sequence of values, and is hence well suited to encode the
dynamics of motion of the fingers. To distinguish across faces, we
compare the likelihood of each face’s model in a winner-take-all
approach. One advantage of HMM is the fact that it allows to
recognize motions even when solely part of the motion is presented.
This may prove very useful for face recognition, as it would allow
to recognize faces even when the motion of the finger is initialized
in a different location (e.g. in the middle of the face, as opposed to
the top of the face) or when the fingers loose temporarily contact
with the face as they swipe through the face.

Model description and learning: For each face r, a set of pre-
processed data Dr is used to train a fully connected continuous Hid-
den Markov Model with 2-dimensional observations dx̃1

dz
and dx̃2

dz
.

The model takes as parameters the set M = {π,A, µ,Σ}, represent-
ing, respectively, the initial states distribution, the states transition
probabilities, the means of the output variables and the output co-
variance matrices. For each state, the output variables are described
by K multivariate Gaussians, i.e. p(x) ∼

∑K

k=1
N (µk,Σk). The

transition probabilities p(q(t) = j|q(t−1) = i) and the observation
distributions p(x(t)|q(t) = i) are estimated by the Baum-Welch
algorithm, an Expectation-Maximization algorithm that maximizes
the likelihood that the training dataset can be generated by the
corresponding model.

The HMM hyperparameters – number of states and number of
Gaussians per state – are optimized through grid search with respect



Algorithm 1 Leave-one-out cross-validation

1: for run = 0 to 10 do
2: for face ∈ {Doll1, Doll2, Robota,HOAP} do
3: Build HMM(face) using all face trajectories.
4: for traj = 0 to N do
5: for faceToTest ∈ {Doll1, Doll2, Robota,HOAP} do
6: if faceToTest 6= face then
7: Compute likelihood of HMM(face) for traj.
8: else
9: Build model HMM(face){\traj} with trajectories n ∈

{1..N \ traj} and compute likelihood of this model for
traj.

10: end if
11: end for
12: Trajectory traj is correctly classified if the likelihood of the

true face is the highest.
13: end for
14: end for
15: end for

to the average classification performance on leave-one-out cross-
validation (detailed in Section IV). The HMM states are initialized
through K-means and full covariance matrices are considered for the
Gaussian distributions. The optimization resulted in 7-state models
with 2 Gaussians per output (to ensure that the comparison of
likelihood across the four face models is balanced, we fixed that
all four HMMs had the same number of states). One HMM is
thus defined by nSnG

dimG(dimG+1)
2

= 7 · 2 · 3 = 42 parameters,
with nS number of states, nG number of Gaussians and dimG

the dimension of the Gaussians. Classification performance during
testing is computed through a leave-one-out process: namely, each
of the 10 trajectories for a given face model is tested against
its corresponding HMM model (the latter being trained with the
remainder 9 trajectories) and all the other 3 face models. This is
repeated for each of the four face models. The cross-validation
algorithm is detailed in Algorithm 1.

IV. RESULTS AND DISCUSSION

We built 1 HMM for each of the four faces. Each model was
trained using 10 examples of trajectories. We run the Forward-
backward algorithm to determine the likelihood that any of the four
models has generated the testing trajectory. A trajectory is said to
be well classified if the likelihood of its associated model is larger
than the likelihood of all other models. The testing is performed by
leave-one-out cross-validation on the initial set of trajectories (10
for each of the 4 faces): each trajectory is a) compared to the fully
trained models of the other faces and b) compared to a model of the
same face built with the remaining 9 trajectories (the actual tested
trajectory excluded from the model).

Since the construction of each HMM is not deterministic, training
and classification are carried out ten times (also called here ten runs).
In total, we built for each run 4 fully trained HMMs plus 4 · 10
partially trained HMMs for the testing phase detailed previously.

All trajectories describe a different section of the face since they
are spread along the width of the face. We thus assume that the
variation of the face’s profile along its width is smooth enough so
that new trajectories generated on other points of the face will follow
a profile similar to those of the training trajectories and hence will
be correctly classified by the HMM.
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Fig. 7: Boxplot representation of classification performance by face.
(Median: red line, quartiles: blue lines, outliers: red crosses).

Performance in testing revealed very accurate results with an
overall 91% recognition rate. 100% recognition rate is achieved
for the HOAP face and 99% for the Robota face, while 77%
and 88% recognition rate are obtained for the Doll1 and Doll2
faces. Figure 7 shows the median and quartiles of classification
performance for each model across the ten runs. On average, the
number of misclassified trajectories is 3.6±2.7 out of 40 trajectories
(9% ± 7% error rate). The best performance across the 10 runs is
2 misclassified faces (5% error rate).

These results are somewhat expected. The HOAP’s face is not
very human-like and hence differs more dramatically from the three
other heads. Doll1 and Doll2, while differing in some of their
facial features are very similar in size, making it more difficult to
discriminate across the two, especially when the fingers span the
outer edges of the faces. As mentioned previously, the face of the
Robota robot differs from the other dolls’ faces mostly by its being
wider and longer. Therefore, ˙̃x (the profile slope) varies at a different
rate when the fingers slide over Doll1’s face than when it does so
over Robota’s face. Here we see how our data encoding manages
to encapsulate this relative difference in the temporal sequencing of
finger motion, while remaining robust to absolute variation in the
time it takes to span the face.

Looking more closely at the results, we find that one of the 40
trajectories is always misclassified (1st Doll2 trajectory, classified
as Robota) and another one is misclassified in 8 out of 10 runs
(6th Doll1 trajectory, also classified as Robota). The first one is a
trajectory describing the side of Doll2’s face, therefore it is more
likely to display few identificable features, whereas the second one
describes the nose of Doll1’s face, which is narrow and might not
have been described in the training set. This can be seen on Figure
8 which shows these results for the first of the ten runs. In general,
there may be several explanations to misclassifications: a) the data
of the corresponding trajectory is not reliable. This may happen,
for instance if there is a failure in the tactile pressure feedback that
leads to a finger leaving the face during the motion; b) a section
of the robot’s face is similar to a section from another face: each
trajectory covers only a fraction of the face even if two fingers
are used simultaneously to increase the specificity of one face’s
signature; c) these trajectories correspond to sections of the face
that are very different from the rest of the face yet the model is not
trained with this part of the face.

Aside from the binary classification result, it is important to
estimate the confidence of the classification. Figure 8 and Table
I give an indication on the margin of log-likelihood4 between the

4The margin of log-likelihood of a trajectory is here defined as the
difference between the log-likelihood of its associated model and the other
best log-likelihood (i.e. the best if the classification is failed or the second
best otherwise). The margin is positive if the classification is correct.
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Fig. 8: Margin of log-likelihood4 for the first run: positive values
correspond to correct classification.

Face Margin of log-likelihood
Doll1 8.77± 1.59

Doll2 6.23± 0.82

Robota 14.25± 1.19

HOAP 564.16± 40.16

TABLE I: Average margin of log-likelihood per face over ten runs
and ten trajectories.

true face and the face with the other highest log-likelihood for
each trajectory: while Doll1, Doll2 and Robota trajectories have a
margin around 10, HOAP’s trajectories have a log-likelihood margin
average of 564. As discussed previously, the HOAP’s face is very
different from the other three and such can be identified with high
confidence. This information could be used for instance to command
the robot to perform a new measure of a face if the margin of log-
likelihood, a measure of confidence in the model’s prediction, is
below a threshold.

Figure 9 shows the slopes measured by the index on the 4 faces;
only the measures from the first 5 motions are displayed for clarity.
As expected, the curves are not perfectly aligned. This results from
both the noise in the experiments and the changes of profile along
the width of one face.

V. CONCLUSION AND FUTURE WORKS

We have presented an experiment in which faces are classified
through proprioceptive information. Although the classification is
not perfect, the algorithm gives good performance at discriminating
across 4 very similar faces. The algorithm was shown to work flaw-
lessly for the two faces that were most distinguishable. However, we
can think of several ways to improve the classification performance.

As discussed in the result section, training 10 times a HMM may
result in 10 different solutions (e.g. across ten runs performance
varied from 95% recognition rate to 85%). This is due to the
fact that the initialization of the HMM parameters is stochastic
and the optimization leads only to local optimal solutions. To be
less sensitive to the choice of initial conditions, one could perform
crossvalidation on the choice of HMM during training (by training
10 HMM for each class and picking the one that yields best results).
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Fig. 9: Comparison of the slopes from the first 5 trajectories on
each face, index finger only.

We did not do this in these experiments as the results overall were
very satisfactory, but this may be required as one increases the
number of faces to classify (as would be necessary if pursuing these
experiments). Besides, HMM is not the only algorithm available to
classify time-series, echo-state networks [16] usually give very good
results in a large range of applications and could be used here to
compare their performance with HMMs’.

In our approach, we cannot recognize which part of the face is
touched. One could train one HMM per section of the faces and
compare new data to each model, thus classifying the face and the
part of the face being touched. A further drawback is the necessity
to scan the face vertically from top to bottom, however, we can
imagine that our method is robust to minor changes in the head
orientation. In order to obtain true robustness to the changes in
orientation of the motion or the face, one would require a different
approach based on modelling the face and fitting new data with this
model. This approach would also enable a more complex exploration
strategy, i.e. choosing the direction of exploration or detecting the
face’s edges. Our future work will tackle the problem of extending
this approach to classify across objects. We take inspiration in the
work by Heidemann and Schopfer [6]: the idea is to fully model
the object to identify with a 3-D point cloud. In that case, the end-
effector and embedded tactile sensor used to create the point cloud
would have to be small enough to follow the inner contours of the
faces without collision. We are planning on using an industrial-grade
7-DOF Kuka robotic arm equipped with SynTouch’s Biotac tactile
sensors [17]. Besides, the use of proprioceptive information could be
extended by investigating heat and texture perception – respectively
with the vibration and temperature sensors of the BioTac fingertip
– in order to apply the same method to a broader range of objects
or surfaces by detecting material properties, and move closer to
human-like capabilities in terms of tactile perception.
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