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Abstract—The Surface-Approximation Polynomials (SAP)
descriptor has been shown to be an appropriate global surface
descriptor for object categorization tasks in robotic applica-
tions [1]. Nevertheless, in the original formulation the SAP
descriptor is not invariant against rotations around the camera
axis. This paper explains and evaluates two methods which
pre-process the input data to yield repeatably well-aligned point
clouds for the computation of the SAP descriptor. We show that
the SAP descriptor can be rendered robust against rotations
while retaining almost the full performance of the original
approach which is superior to GFPFH, GRSD and VFH.

I. INTRODUCTION

Understanding the elements of the environment is essential
for robots that are supposed to assist humans in their homes.
Only if robots are able to recognize objects in their surround-
ings, they can manipulate them in a useful way. However, the
large variety of objects in home environments turns instance-
based object recognition infeasible as the appearance of
each single object would have to be learned individually by
the robot. Object categorization instead strives to recognize
object classes. Hence, objects of a known class can still be
recognized even if a certain instance is completely new to
the robot. Moreover, the recognition problem becomes more
tractable since there are less classes than individual objects.

The Surface-Approximation Polynomials (SAP) descriptor
has been recently introduced as a global 3D surface descrip-
tor that is well-suited for the task of object categorization
with a robot [1]. The SAP descriptor approximates the
surface geometry of a single-shot view onto an object with
polynomials. The categorization system based on the SAP
descriptor can determine the category label of unknown
objects that are captured with a depth sensing device like
a PMD CamCube or a Microsoft Kinect. It has been shown
in [1] that the SAP descriptor is robust enough to compensate
smaller viewpoint changes up to 15◦ in pan and tilt direction.
However, roll rotations of the object or camera cannot be
handled at all with the basic approach. Especially, modeling
all possible roll rotations with sufficiently many training
views is infeasible as the number of required images would
explode. Please consult Fig. 1 for the definitions of rotations.

In the real world objects may occur in any arbitrary pose.
Consequently, the SAP descriptor should be able to cover
every object pose. In this paper we propose and carefully
evaluate two methods which align the input data canonically:
a full 6 DOF transformation based on Principal Component
Analysis (PCA) over the input point cloud as well as a
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Fig. 1. Definition of the rotational axes for the analysis of the rotational
robustness of the SAP descriptor and an example image with real catego-
rization results of variously aligned, previously unseen objects.

roll compensation which only aligns the input data to a
common roll angle. We furthermore introduce a rule to obtain
a repeatable definition of the axis directions of PCA.

The outline of the paper is as follows. In Section II we
discuss relevant work to the topics of object categorization
and pose alignment. Section III explains the employed ap-
proaches, which are evaluated in Section IV. We conclude in
Section V with a summary and an outlook for future work.

II. RELATED WORK

Object categorization is a topic of high interest in robotics.
The most popular global descriptors that can be computed
fast enough for using them in robotics are Global Fast
Point Feature Histograms (GFPFH) [2], Global Radius-based
Surface Descriptors (GRSD) [3], and Viewpoint Feature
Histogram (VFH) [4]. GFPFH builds histograms on local
Fast Point Feature Histograms [5] which themselves are
histograms on the relative pose of local coordinate frames
determined at all point pairs within a neighborhood. The
GRSD descriptor is composed similarly to the GFPFH de-
scriptor from local RSD features, which basically represent
the local minimum and maximum curvature around a point.
VFH is very similar to GFPFH but supposed to also encode
the viewpoint at the visible object surface. VFH includes
the camera axis in the computation of FPFH histograms
to establish viewpoint dependent signatures for the trained
objects. The recently proposed SAP descriptor [1] instead
directly builds a global descriptor without computing local
features and produces categorization results superior to the
previous descriptors. We will provide a short description of
the SAP descriptor in Section III-B.
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As stated above, the problem of the original SAP descrip-
tor is the missing inherent invariance to roll rotations. Pose
normalization of 3D object models is an important topic in
the shape retrieval literature where it is applied to trans-
form objects into a canonical orientation w.r.t. translation,
size and rotation for the use with pose variant descriptors.
The most popular approach in this community seems to
be a PCA-based alignment [6]–[11] because of its simple
and fast computation and numerical robustness. However,
a serious problem with PCA is the repeatable definition of
the coordinate axis into positive or negative direction of the
principal axes. In [6] all four possible configurations were
tested and the orientation with the best similarity between
two query objects was chosen. However, our task does not
involve two previously known objects. Therefore, we define
the axis definitions according to the distribution of points of
the query object in the new coordinate system. This method
is similar to the approach of [12] where the axes are directed
to the side with a greater total area of the polygons. In [8]
continuous PCA is introduced to deal with different triangle
resolutions in polygon meshes. These problems do not occur
with volumetric or mass-based 3D models as we use.

A second classical method for pose alignment is Extended
Gaussian Images (EGI) [13]. This algorithm computes the
projections of the surface normals on a Gaussian sphere
around the object. In [10] maximum normal distribution is
proposed as another normal-based pose alignment method
for polygon meshes. The idea is to create a histogram over
the total area of surfaces which have the same distance to
the object center and the same surface normal. Then the
normal direction with the largest total area is picked as first
principal axis and the orthogonal normal with next largest
area as second. Since our input data does not contain meshes
we use a PCA-based full pose alignment with adequate axis
definitions and a roll compensation with PCA involved in
the computations.

III. METHODS

Besides the detailed description of the orientation align-
ment this section briefly summarizes the principle of the SAP
descriptor and the underlying categorization framework. The
next paragraph starts with a description of data preparation.

A. Data Acquisition and Segmentation

The SAP descriptor is a global descriptor which describes
the surface of objects. Therefore, segmented object data is
needed to compute the SAP descriptor. After capturing a
depth image the scene is segmented in three steps. First, the
amount of points in the input point cloud is reduced with a
voxel filter that has a leaf size of 7.5 mm. Then the larger
planes are iteratively estimated and removed from the input
point cloud. Third, the remainder of points is aggregated
with Euclidean clustering. Those clusters which contain more
than 50 points are then considered as object candidates and
forwarded to the SAP descriptor computation. The functions
for clustering base upon the PCL library [14].
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Fig. 2. Computation scheme of the SAP descriptor. The upper left image
shows the raw point cloud input. Following the arrows, pose and scale
normalization is applied, surface cuts are extracted (red and blue planes cut
the surface, cuts indicated as red points) and finally approximated with a
polynomial (original points in blue, the red line shows the polynomial).

B. The Surface-Approximation Polynomials Descriptor

The Surface-Approximation Polynomials (SAP) descriptor
has been described in detail in [1]. Therefore, we only pro-
vide a schematic summary of the algorithm at this place. The
basic idea behind the SAP descriptor is to represent object
classes by the shape of their surface. As shown in Fig. 2 this
is accomplished by normalizing the input point cloud P to a
common centroid and scale, cutting the surface with planes
perpendicular to the camera plane and approximating the
geometry of the cuts with polynomials via linear regression.
Having nx cuts along the x-direction of the camera plane and
ny cuts along the y-axis this yields nx+ny parameter vectors
iaT, i = 1, . . . , nx + ny, of the polynomial coefficients.
Furthermore, we compute a Principal Component Analysis
(PCA) to obtain the eigenvalues λ1, λ2, λ3 which serve as a
measure of object size within the three principal directions.
The SAP descriptor is a concatenation of these three size
parameters and the polynomial coefficients

c =

[
λ1
γ
,
λ2
λ1
,
λ3
λ1
, 1aT, . . . , nx+nyaT

]
. (1)

To support a range of object sizes λ2 and λ3 contribute only
with their relation to λ1. λ1 is stored with an optional scale
parameter γ to incorporate one measure of absolute size.

C. Extensions for Rotation Invariance

The unaligned SAP descriptor as described in [1] is
only invariant against translation and scale but not against
rotations, especially around the camera axis (roll). Although
it is possible to model viewpoints from different pan or tilt
angles with respective training images from a grid around
the object, there is no way to capture different poses in roll
direction without capturing a vast mass of images. To be able
to handle objects in arbitrary poses, rotation invariance has
to be accomplished by further measures. Here we propose a
full pose alignment with PCA that can compensate pan, tilt
and roll rotations of the captured objects as well as a roll
compensation method which still has a need for sufficient
coverage of training views regarding pan and tilt rotations.
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1) PCA-based Pose Normalization: To receive a repeat-
able, scale- and rotation-invariant description, the pose of the
point cloud is normalized by computing the mean m and
the principal axes v1,v2, v3 via PCA. Every point p̂ of the
camera coordinate system Ĉ with the axes x̂ = (1, 0, 0), ŷ =
(0, 1, 0), and ẑ = (0, 0, 1) is then translated to shift the
point cloud’s center into the origin, rotated such that the
eigenvectors are aligned with the coordinate axes and scaled
with the largest eigenvalue λ1 yielding the normalized point

p =
1

2
√
λ1
·
[
v1 v2 v3

]T · (p̂−m) . (2)

Translating the center of the point cloud to the origin ensures
translation invariance w.r.t. the coordinate system of the
depth sensor while the rotation compensates for any object
rotation around the camera axis and for minor rotations
around the other two axes. The scaling operation effects that
the majority of the coordinates resides in the range of [-1,1].

As the sign of the direction of the eigenvectors obtained
from PCA does not necessarily coincide between several
recordings, we have to enforce a repeatable orientation
of the new coordinate system C with the coordinate axes
x = v1,y = v2, and z = v3. Therefore, we first check that
the eigenvectors constitute a right-handed system which is
the case if the triple product

(v1 × v2) · v3 > 0 (3)

is positive. If condition (3) is not met, we invert the co-
ordinates of eigenvector v3 before transforming the point
cloud. Then, we obtain a repeatable coordinate system if the
following three rules are fulfilled:

1) The new z-axis, which has the coordinates z = v3,
must point towards the camera. Hence, the condition
ẑ·z < 0 must hold since the initial ẑ-axis of the camera
coordinate system with coordinates ẑ = (0, 0, 1)T

points away from the camera.
2) The majority of points should have negative x-

coordinates in the new coordinate system C.
3) The new coordinate system C is a right-handed system.

These conditions are checked in the given order. If rule 1
is not fulfilled, we only change the signs of eigenvectors
v2 and v3 before transforming the point cloud to keep the
coordinate system right-handed. The second condition can
only be verified after the transformation of the points. If it is
not met, we have to negate the eigenvectors v1 and v2 and
the x- and y-components of the transformed points to keep
the coordinate system right-handed at the same time. After
executing the preceding steps, rule 3 is already fulfilled. Rule
3 is always enforced in step 1 and step 2 by negating v2,
the y-axis, and the y-coordinates. After the verification of
all three rules, the eigenvectors v1,v2, and v3 correspond
to the new coordinate axis x,y, and z, respectively. After
normalization, the surface of the object is aligned in a way
that the two dimensions with the largest extent correspond to
the x- and y-axes. We evaluate the success of this measure
in Sec. IV-B.

2) Roll Compensation: The second approach to render the
SAP descriptor rotation invariant w.r.t. roll rotations does not
apply a full 3D transform to the point cloud but only aligns
its rotation around the camera axis. This way, roll rotations
of objects are made transparent to the algorithm. The roll
compensation is motivated by the possible misalignments
with full PCA (see Sec. IV-B) and was developed with the
goal to transform the point cloud as little as possible.

The roll compensation algorithm works as follows: first a
silhouette image is created from the projection of the point
cloud onto the camera plane. Then we compute the centroid
m of this 2D silhouette as well as the two principal axes
v1 and v2 using PCA. Next the silhouette is rotated to be
aligned with the principal axes and it is counted whether
more points have positive x-coordinates than negative. If this
condition does not hold, the directions of the principal axes
are negated. This step ensures to have a repeatable definition
of the direction of the new coordinate system. Then we
compute the angle α between the first principal axis v1 and
the image’s x-axis (1, 0):

cosα =
1√

v211 + v212
·
[
v11
v12

]
·
[

1
0

]
. (4)

Finally, we rotate every point p̂ of the original point cloud
P by angle α around the camera axis ẑ:

p =

 cosα − sinα 0
sinα cosα 0
0 0 1

 (p̂−m) +m . (5)

This yields a repeatable roll compensation for the input point
cloud so that the SAP descriptor can then be computed on a
point cloud with aligned roll angle. Section IV-C examines
how well the roll compensation works in practice.

D. Classification Framework

The object categorization framework is identical to [1]. It
is supposed to serve two purposes: first the system should
be able to search for instances of a certain class and assert
whether test objects belong to it. This is a binary classifica-
tion task. Second, it should be able to label unknown objects
with the correct class. This is a multi-class classification
problem. To be able to deal with both problems the classifi-
cation framework builds on binary Random Forest classifiers
[15] which separate each class against the remainder of
classes. Binary decisions are obtained by directly querying
these classifiers. A probabilistic multi-class extension is
employed for the labeling task, which directly computes the
labels from the likelihoods of the binary classifiers and their
decision reliabilities that originate from statistics.

IV. EVALUATION

The SAP descriptor of unaligned point clouds has already
been examined in [1]. In this paper we discuss the impact
of the PCA-based pose alignment and roll compensation and
compare the outcomes with those from unaligned input data.
All results reported on database tests are determined with a
10-fold leave out one object cross-validation.
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A. Database
Database tests are conducted with the database of house-

hold objects named IPA-2 in [1]. It contains 151 objects
from 14 classes. Among these classes are binders, bottles,
cans, cups, dishes, drink cartons, computer mice, pens,
silverware, etc. Each object was captured 36 times with a
PMD CamCube from a light tilt angle with an offset of
10◦ in the pan angle. The average number of points per
object is 26491. A detailed description of the IPA-2 object
database can be found in [16]. This set is publicly available at
http://www.kyb.mpg.de/nc/employee/details/browatbn.html.

B. PCA-based 6 DOF Pose Normalization
This section analyzes the robustness of the SAP descriptor

against rotations and camera distance of the captured objects
when the input point cloud is aligned with the PCA-based
approach (Sec. III-C1). The analysis of the basic SAP de-
scriptor in [1] shows that the SAP-7-7-2 configuration yields
very good results. Thus, all experiments in this section will
be conducted with this parameter setting if not mentioned
else. The naming scheme for SAP descriptors is SAP-nx-ny-
np, where nx and ny describe the number of cuts along the
x- and y-coordinate axes (after alignment of the point cloud)
and np denotes the degree of the approximating polynomial.

1) Theoretical Analysis: The function and power of PCA-
based pose normalization is demonstrated on a cuboid. Fig.
3(a) displays this cuboid as well as a multitude of camera
view points which pan in the range [5.625◦, 84.375◦], tilt
within [15◦, 75◦] and are depicted as black dots with a black
line indicating the camera axes. The black point in the middle
of the object is the real centroid of the cuboid whereas
the red points with the coordinate frames attached display
the object centers that are computed from the three visible
surfaces of the cuboid. The offset between the centroid that
we can estimate from the visible data and the real centroid
has an effect on the chosen translation compensation since
the position of the estimated centroid depends on the view
point. The locations of the estimated centroids differ since
the depth sensor samples the less points from a surface the
more the viewing angle onto the surface becomes acute.
Let S = {S1, S2, S3} denote the set of visible surfaces of
the cuboid. Then the theoretical centroid xs of the visible
surfaces is computed as

xs = x(S1)A(S1) + x(S2)A(S2) + x(S3)A(S3) (6)

where A(S) stands for the area of surface S and x(S) for
the centroid of S. However, depending on the viewing angle
the depth sensor can only capture a ratio of the maximum
amount of points that could be captured from a surface if
the camera axis was perpendicular to the surface. We model
this effect with the following ratios for the visible portions
of each area where α is the pan angle and β represents the
tilt angle:

S1: cos(α) cos(β),
S2: sin(α) cos(β),
S3: sin(β) .

The view-dependent centroids (red points in Fig. 3(a)) are
computed according to Eq. (6) where every area A(Si) only
accounts with the respective view-dependent ratio. It shows
that the perceived centroids still lie quite close to each other
when the change in viewing angle is below 15◦. If the surface
of the object is sufficiently smooth this small translation of
the centroid will not affect the polynomial approximation
substantially given that the rotation can be compensated.

The rotation compensation is supposed to be accomplished
by the PCA-based alignment. The idea is to determine the
principal axes of the captured object, which are supposed
to be stable under minor rotations, and rotate the surface
to be aligned with these principal axes. While computing
the principal axes we obey the aforementioned ratios of
visible points on the object’s surfaces to obtain a realistic
result. The pose normalized coordinate system is assigned
to the principal axes in descending order of corresponding
eigenvalues, that is the new x-axis is the eigenvector with the
largest eigenvalue. The resulting pose normalized coordinate
axes for the cuboid example are displayed for all viewing
angles at the position of the estimated centroids in Fig. 3(a).
The red axis displays the x-axis, the y-axis is green and the
z-axis is blue. It is visible that the estimated principal axes
correspond roughly to the real principal axes of the cuboid
and all coordinate frames are similarly aligned over a wide
range of view points. To illustrate the latter fact, a compari-
son of the distribution of coordinate frames without and with
PCA-based pose normalization is provided in Fig. 3(b) and
Fig. 3(c), respectively. While the original coordinate frames
scatter a lot, the normalized coordinate frames have little
deviation over intermediate viewpoint changes and barely
follow the camera movements. Consequently, PCA-based
pose normalization will align object surfaces similarly within
an intermediate range of pan and tilt rotations and hence yield
similar SAP descriptors. Roll rotations are not considered in
this analysis because the PCA-based pose normalization and
the computation of repeatable axis directions yield the same
normalized pose for every roll angle while pan and tilt angles
are fixed.

(a)

(b)

(c)

Fig. 3. (a) The normalized coordinate frames are displayed at the estimated
centroids for the considered viewing angles, which are displayed as black
dots and lines. Collection of (b) the original coordinate frames and (c) the
normalized coordinate frames of the cuboid seen from those viewpoints.
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Fig. 4. Point cloud of a milk box captured from six neighboring viewing
angles. The first and the third row show the original data from the depth
sensor. Row two and four display the corresponding point clouds which are
aligned with PCA-based pose normalization. Two exemplary surface cuts
are drawn in each cutting direction into the pose normalized views.

To demonstrate the effect of PCA-based pose normaliza-
tion on real data Fig. 4 shows a sequence of views onto a
milk box. This box rotates on a rotary disc so that the camera
movement is effectively a pan rotation with an angular
offset of 10◦ between successive views. The first and third
row show the point clouds as captured by the sensor. The
second and fourth row display the corresponding views onto
the milk box after PCA-based pose normalization has been
applied. While the original point cloud rotates by 50◦ over
the sequence the pose normalized views look very similar in
all images as predicted by the previous analysis.

To back the claim that the SAP descriptors obtained from
pose normalized views are more similar to each other than
those obtained from the original views, Fig. 5 provides two
pieces of evidence. The first row of images displays the SAP-
7-7-2 descriptors of all views of the milk box from Fig. 4. In
detail, Fig. 5(a) contains all six SAP-7-7-2 descriptors from
the original views whereas Fig. 5(b) displays the SAP-7-7-
2 descriptors from the PCA-based pose normalized views.
To ensure a fair comparison between both cases the original
views are scaled to fit into the unit volume as well. To com-
pare the descriptors of both approaches please consider that
the axis definitions change through the pose normalization.
In the milk box example, the x- and y-axis definitions swap
between original and normalized view and consequently,
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Fig. 5. Analysis of the similarity of SAP descriptors: SAP-7-7-2 descriptors
from (a) the original snapshots and (b) the pose normalized point clouds of
the example views of the milk box. Averaged descriptor similarity between
views with varying angular offset on (c) the original data and (d) the pose
normalized data. Average similarity is measured against rotations of the
same object, objects from the same class and objects of other classes.

the SAP polynomial coefficients from the first half of one
diagram can be found in the second half of the other diagram.
The corresponding coefficients are inverted because the z-
axis direction switches through the pose normalization. Only
the first three size components of the descriptors correspond
in both cases and take the same values. We can observe that
the SAP-7-7-2 descriptors from a range of viewing angles of
50◦ do not differ much when PCA-based pose normalization
is applied whereas the descriptors obtained from the original
views exhibit a transition in the coefficients in the first half of
the descriptor. This steady decrease in magnitude is caused
by the pan rotation of the object which lets the surface appear
as a backwardly slanted plane at first and transitions to a
plane parallel to the camera in the end. The pose normalized
views present a parallel plane for all views instead which
results in very similar descriptor coefficients in all cases.

To show that this fact holds in general this analysis has
to be extended to the whole database. Figure 5 therefore
displays two plots in the second row in which the similarity
of SAP-7-7-2 descriptors of neighboring views is studied
on the whole dataset. Similarity between two descriptors
c1 and c2 is measured as the sum of squared differences
(SSD) SSD = ‖c1 − c2‖2L2

. We can see in Fig. 5(c) that
the descriptor similarity decreases significantly with growing
offset between two views if the descriptors are computed
on the original point cloud. If computed on the normalized
data instead (see Fig. 5(d)), the similarity of descriptors from
neighboring views barely increases even for larger rotations.
This finding indicates that PCA-based pose normalization
helps to keep SAP descriptors computed from neighboring
views quite similar.
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Fig. 6. Comparison of different configurations of the SAP descriptor with
varying numbers of surface cuts and degrees of the polynomials. The input
data was aligned with (a) PCA and (b) roll compensation.

Although the preceding analysis has pointed out several
desirable properties of the chosen PCA-based pose normal-
ization it is well known that this kind of pose normalization
is problematic and possibly unstable if applied to objects
which do not have such canonical orientations as the cuboid
[17]. Therefore, we test the impact of pose normalization by
measuring the performance on the object categorization task.

2) Database Tests: According to the analysis in [1] the
influence of the numbers of surface cuts nx and ny as well
as the degree of the approximating polynomials needs to
be examined. Figure 6(a) displays the recall rates for the
binary classification problem of separating one object class
against the others as well as for the multi-class labeling task
where each object view has to be assigned one of the class
labels. The influence of the number of cuts is as expected and
coincides with findings of experiments with the unaligned
data: especially in the multi-class problem the recall rates
increase steadily with growing numbers of surface cuts. The
binary categorization performance, however, remains almost
constant independent of the number of surface cuts. Never-
theless, the increasing performance for the multi-class task
indicates that the binary decisions become more confident,
that is the probabilities for the respective decisions of the
binary classifiers grow with the number of surface cuts.

As in the unaligned case approximations of higher order
polynomials yield a worse performance. Manual inspection
of the descriptors provides an explanation for this observa-
tion: it shows that higher order polynomials are less stable
and tend to model the noise from the sensor. Besides these
qualitative observations we also confirm that the SAP-7-
7-2 configuration proves to be among the top performers,
however, with slightly lower recall rates than with unaligned
data. In the binary classification case the performance drops
from 94.9% with unaligned data to 91.7% with PCA-aligned
data and for the multi-class labeling task the performance
decreases from 77.9% to 73.2%. The good performamce in
the unaligned case is not surprising since the objects in the
database are already well-aligned. The decrease by almost
5% of multi-class recall indicates that the PCA alignment
introduces a significant number of misalignments.

Next, Figure 7(a) shows the average computation time
for one SAP descriptor and Figure 7(b) the respective
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Fig. 7. Dependency of (a) computation time and (b) throughput of the SAP
descriptor for increasing numbers of surface cuts and polynomial orders. The
input data is either aligned with PCA or with roll compensation.

computational throughput. These results resemble those of
the unaligned computation very much in qualitative and
quantitative aspects. Thus, the additional pose alignment does
not introduce significant overhead for the computation. There
is a linear increase in computation time with rising numbers
of surface cuts. The computation time for the SAP descriptor
is quite low as all examined configurations are determined
within less than 100 ms on one core of a 2.8GHz Intel I7
mobile processor with 6GB RAM. The runtime of the SAP-
7-7-2 configuration e.g. allows to compute the descriptor with
almost 21 Hz. That is SAP could classify up to 21 objects
in a scene within one second which is a respectable rate.

C. Roll Compensation

We will not provide a similarly extensive evaluation for
this approach of orientation compensation as the results
strongly resemble those of the unaligned approach. The
reason for this lies in the good alignment of objects in the
database which renders the input data almost equal for both
database tests. However, the success of roll compensation on
objects in other poses than those in the training data is proven
by the examples in Fig. 1 and 9, e.g. for cans, cups and the
binder. The following analysis indicates the equalities and
differences to the results of the unaligned approach.

The impact of parameters nx, ny and np on the catego-
rization performance is shown in Fig. 6(b). The qualitative
results correspond with previous findings and the recall rate
of 77.0% of the SAP-7-7-2 descriptor with roll compensation
comes close to the 77.9% of the unaligned method. The
computation times with roll compensation are higher than
with PCA-based alignment or without alignment by 20 ms
to 30 ms as we can see in Fig. 7(a). Nevertheless, the SAP-7-
7-2 configuration still classifies almost 14 objects per second.
The linear dependency on the number of cuts remains.

D. Comparison of the Approaches

This paragraph compares the unaligned, PCA-aligned and
roll-compensated SAP descriptors according to their catego-
rization performance, runtime and robustness against rota-
tions and scale changes. Table I summarizes the categoriza-
tion performance and computation times of the three variants
of SAP descriptors and other descriptors from literature. It
shows that the SAP variant with roll compensation achieves
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TABLE I
COMPARISON OF SEVERAL DESCRIPTORS REGARDING MULTI-CLASS

CATEGORIZATION PERFORMANCE, AVERAGE COMPUTATION TIME PER
VIEW AND AVERAGE THROUGHPUT IN POINTS PER SECOND.

Descriptor Recall Time Throughput
Shape Distributions [16] 25.4 % 31 ms ∼ 855 000 pts/s
Shape Index [16] 34.6 % 78 ms ∼ 339 000 pts/s
Shape Context 3D [16] 55.2 % 234 ms ∼ 113 000 pts/s
Depth Buffer [16] 72.9 % 16 ms ∼ 1 656 000 pts/s
GFPFH [1] 54.4 % 921 ms 28 928 pts/s
GRSD [1] 56.1 % 957 ms 27 841 pts/s
VFH [1] 68.4 % 93 ms 205 883 pts/s
SAP-7-7-2
unaligned [1] 77.9 % 57 ms 463 439 pts/s
with roll compensation 77.0 % 72 ms 370 314 pts/s
with PCA alignment 73.2 % 48 ms 552 262 pts/s

almost the recall rate of the unaligned SAP descriptor but
needs 15 ms of additional computation time. The similar
recall rate indicates that roll compensation works with few
errors since the performance of the unaligned SAP descriptor
is kind of a limit for methods with pose alignment as the
database objects are already well-aligned. The recall rate of
the SAP descriptor with PCA alignment is almost 5% lower
than this limit suggesting that some misalignments occur. The
faster computation time compared to the unaligned method is
caused by the changed orientation which affects the number
of points on surface cuts. All runtime measurements were
taken on one core of a mobile I7 2.8 GHz machine with
6GB RAM. A confusion matrix for the categorization with
roll compensation is provided in Fig. 8(d). Many class labels
are found quite reliably whereas the occurring confusions can
usually be easily explained, e.g. bottles and dishliquids have
a similar shape and silverware and scissors look the same
when seen from the slim side.

The next analysis evaluates the robustness of the variants
of SAP descriptors against rotations of the object in pan
and tilt direction. For the evaluation on pan rotations we
just exclude the respective views from the training data to
yield sparser object models sampled only every α degrees
in the pan direction. Fig. 8(a) reports on the recall rates
obtained with respect to the angular offset α/2 of the views
of unknown test objects. This means, the angles reported in
the diagram correspond with the maximal angular offset to
the closest view on another object of this class available in
the training set. It is remarkable that in all three cases the
performance is still around 60% when the training data only
consists of 4 views of each object. We also notice that the
recall rate virtually remains constant up to an offset of 15◦

for the PCA-aligned SAP descriptor and up to 10◦ for the
other two variants. The gap between the PCA-aligned and
the unaligned descriptor remains almost constant over the
whole range and is surprising as the pose alignment should be
benefitial with few views. Apparently the misalignment rate
of the PCA-based approach eats up this potential advantage.
The performance of roll compensation begins at the same
level as the unaligned approach but degrades with growing
angular offset towards the performance of PCA alignment.
A similar analysis has been carried out for tilt rotations.
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Fig. 8. Robustness of the three variants of the SAP descriptor with respect
to (a) pan and (b) tilt rotations as well as (c) camera distance. (d) Confusion
matrix for categorization with the SAP descriptor and roll compensation.

Lacking real data from all tilt angles, the experimental setup
for tilt rotations is different: the original point clouds are
tilted by angle β and because of the changed perspective
only a ratio of cosβ points are kept in the model. The system
is trained with data from tilt angle 0◦ and β. The test data
only contains point clouds tilted by β/2. Fig. 8(b) displays
the recall rates with respect to β/2. Up to tilt angles of 35◦

the performance keeps above 67% with all three approaches
which is quite high. For PCA-based alignment, the recall
rate remains almost constant up to that point, for roll com-
pensation it converges to the level of the aforementioned
method. For the unaligned data recall decreases steadily and
falls below the other methods at tilt offsets of 15◦.

The last experiment evaluates the robustness of the three
variants of SAP descriptors against varying camera distance
to the objects. To emulate different distances between ob-
ject and camera we downsample the original point clouds
randomly to different distance levels, e.g. to simulate the
double distance we only keep 25% of the original points.
Fig. 8(c) shows the recall rates for various distances. The
unaligned and roll compensated SAP descriptors can retain
their performance over almost the whole range of analyzed
distance factors. The recall rates of PCA-based alignment,
however, decrease significantly after the distance doubles.
Apparently, the impact of noise in the point measurements
grows larger if less points are available and this affects the
stability of the PCA-alignment.

The robustness analysis has also been conducted for VFH
to allow for a comparison. The rotational robustness is
similar to the SAP descriptors but the robustness to camera
distance is lower as visible in Fig. 8(a), 8(b) and 8(c).

Finally, we demonstrate the categorization system on real
scenes with previously unseen objects in Fig. 1 and Fig. 9.
We selected the roll compensation approach for point cloud
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Fig. 9. Exemplary real world scenes with objects from various classes in
diverse poses. The objects are not part of the training set. The point clouds
are aligned with roll compensation before the SAP descriptor is computed.
The right column shows the corresponding object clusters of the point cloud.

alignment to benefit from the higher recall rates and the good
robustness against transformations including roll rotations,
which are not covered by the unaligned SAP descriptor.
We placed the objects in different distances to the camera
and turned them in various pan, tilt and roll directions. The
recognized object classes are denoted on top of each object
with the probability mass for this label in brackets. Although
the probability is only in the range of 20% for several objects
the alternatives often have significantly lower probabilities.
Please notice that a probability of 50% means that no other
object can be more likely. Consequently, probabilities of 40%
are already strong assertions.

V. CONCLUSIONS AND OUTLOOK

The analysis of the two proposed pose normalization
methods has shown that the PCA-based full pose align-
ment of the input point cloud is regularly inferior to the
approach with roll compensation which can almost achieve
the performance of the unaligned SAP descriptor on aligned

data. For modeling object classes with the SAP descriptor
we therefore recommend to pre-process the input data with
roll compensation and capture training images every 20◦ in
pan and tilt direction to obtain optimal performance. If a
performance drop up to 5% in the worst case is acceptable,
objects can be modeled with 38 views: 12 images per pan
rotation at tilt angles -45◦, 0◦, and 45◦ as well as one shot
from the top and the bottom.

For future research on the SAP descriptor it is planned
to substitute the polynomial approximations with splines.
Furthermore, we like to add a size parameter to each cut to
represent the length of the approximated curves. A transition
to part-based models is also planned to cope with occlusions.
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