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Abstract—In this paper we propose a deterministic approach
to solve the Motion Planning along End-Effector Paths problem
(MPEP) for redundant manipulators. Most of the existing ap-
proaches are based on local optimization techniques, hence they
do not offer global guarantees of finding a path if it exists. Our
proposed method is resolution complete. This feature is achieved
by discretizing the Jacobian nullspace at each waypoint and
selecting the next configuration according to a given heuristic
function. To escape from possible local minima, our algorithm
implements a backtracking strategy that allows our planner
to recover from erroneous previous configuration choices by
performing a breadth-first backwards search procedure. We
present the results of simulated experiments performed with
diverse manipulators and a humanoid robot.

I. INTRODUCTION

The Motion Planning along End-Effector Paths problem
(MPEP), as defined by Oriolo in [1], refers to the problem in
which a task-redundant robot must trace a given end-effector
path while avoiding collisions with its environment.

Task redundancy is a desirable feature in robotic manipula-
tors. The additional degrees of freedom allow the robot to not
only achieve its primary task, such as end-effector tracing,
but it also endows the system with the ability to achieve
secondary goals along the way. While our main concern is
obstacle avoidance, other redundancy uses in the planning
literature include joint velocity control, singularity avoidance
and torque minimization.

The MPEP problem implies mapping an end-effector path
onto an executable configuration path. Diverse methods have
been proposed to solve this problem, most of which are
based on a redundancy resolution approach. In this area,
the majority of the existing solutions are based on local
optimization of task-based performance functions [2]. Global
methods do exist, but their high computational costs have
precluded them from being extensively used.

Our interest in solving the MPEP problem is twofold:
First, MPEP is a very common problem in industrial envi-
ronments, where tasks that require end-effector precision are
usually performed (e.g. laser cutting). Our second motivation
is related to human-robot interaction. Since service robots
(mostly humanoids) will eventually become part of our
households, they will be required to navigate through clut-
tered environments, in which redundancy becomes crucial to
successfully achieve manipulation tasks (i.e. grab a bottle).
Additionally, MPEP is potentially useful for robots to learn
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Fig. 1: Experiment with a 7-DOF BarretWMA Arm

new manipulation tasks from human demonstrations. By
considering only the end-effector path as a key feature, it is
up to the robot to figure out how to replicate the movement
with its own particular kinematic configuration (that may or
may not be anthropomorphic).

The rest of the paper is organized as follows: We present
background inverse kinematic theory and a brief review of
existing approaches related to MPEP in Section II. In Section
III we describe our proposed algorithm. Results of simulated
experiments are presented in section IV. Finally, Section V
concludes this paper.

II. BACKGROUND

The forward kinematics of a manipulator is given as
follows:

x = f(q) (1)

and its differential version is expressed as:

ẋ = Jq̇ (2)

where x ∈ Rm, q ∈ Rn, and m and n are the dimensions
of the task and joint space respectively. If m < n, the
manipulator is task redundant.

Manipulator tasks are varied; here we briefly describe two
of the most common (as it is similarly explained in [3]):
• End-Point Goal Task: The manipulator is given start and

end task space points. The task is to find a sequence
of joint space configurations that connect them. This is
most known as a path planning problem

• Point-to-Point Task: The manipulator is given a task
space trajectory to be mapped to a joint space trajectory.
This is most known as a tracking problem, which will
be the focus of this paper.
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The inverse kinematics problem consists on finding a
mapping such that q = f−1(x). For redundant manipulators
there are potentially infinite values q for a given x, which
can be obtained by solving (2). A particular solution is given
by:

q̇ = J†ẋ (3)

where J† is a generalized inverse that can be chosen
to minimize a specific criterion. In [4], Whitney used the
Moore-Penrose pseudo-inverse to minimize the norm of q̇.
Whitney further proposed to use a pseudo-inverse Jacobian
weighted with the inertia matrix in order to minimize the
kinematic energy of the system. A generalization of this is
the weighted least-norm method (WLN) presented in [5],
which proved to be particularly effective to avoid joint limits.
Recent extensions to this approach include the work of Xiang
with GWLN [6].

(3) is a particular solution of (2). In general, the set of
possible solutions can be expressed as:

q̇ = J†ẋ+ (I − J†J)q̇0 (4)

The second right-hand term represents the homogeneous
solutions or self-motions, that is, motions in the configuration
space that do not produce motions in the task space.

Homogeneous solutions are configurations in the Jacobian
nullspace. These can be found by projecting an arbitrary
vector q̇0 on the nullspace, such as in (4) where the columns
of (I − J†J) are the basis of the nullspace of J . Most of
the proposed methods differ in their choosing of q̇0. The
most widely used method is the Gradient projection method
(GPM) proposed by Liegeois in [7]. The GPM method
consists on defining an optimization function H(q) to be
minimized. By defining:

q̇0 = −α∂H
∂q

(5)

it produces solutions that move the manipulator away from
undesirable configurations. Diverse H functions have been
used in the literature, such as the manipulatability measure
in [8], used to avoid singularities. Other applications include
obstacle avoidance [9], torque minimization [10], avoidance
of joint limits [7], among others. An excellent overview of
these early methods can be found in [11]. For problems
with more than one subtask, nested approaches have been
proposed [12] [13], based on the relative priority between
each subtask. Other methods instead define a weigthed sum
of optimization functions, such as in [14].

There are other approaches that tackle the redundancy
problem by defining additional constraints such that the
problem is no longer redundant. Examples of these are the
Extended Jacobian [15] and the Augmented Jacobian [16]
[17].

The methods mentioned above solve different kinds of
problems; however all of them share the same weakness of

being local, which precludes them to fall in local minima.
There are a few global approaches in the literature, but these
are rarely used in practice due to the intensive computation
required [18], [19]. In the next section we propose a method
that attempts to escape the local minima curse by using
backtracking in the discretized nullspace of the manipulator.

III. PROPOSED ALGORITHM

A. Basics

We saw in section II that the solution to (2) has the general
form:

q̇ = J†ẋ+ (I − J†J)q̇0 (6)

where the second right-hand term represents the self-
motions in the Jacobian nullspace, which is a subspace of
dimensions (n −m). Hence, we can write (6) equivalently
as:

q̇ = J†ẋ+

n−m∑
i=1

wiêi (7)

where:
• êi: Normalized basis of the Jacobian nullspace
• wi: Coefficients of each êi
Both representations are equivalent, however (7) is of

special interest to us since instead of having to define a vector
q0 ∈ Rn, we define the homogeneous solution in terms of
the (n −m) coefficient wi. The problem, however still has
potentially infinite solutions.

Our approach proposes, instead of finding a q0 vector (as
GPM does), to effectuate a search in the discretized Jacobian
nullspace. The discretization is carried out by selecting a
range of values for each wi. Notice that, since we are
considering the tracking of a task space trajectory, we do
only consider homogeneous solutions that are realizable in
one time step. To make this clear, please refer to Fig.2.
Figures 2.a and 2.c show the one-step self-motions that can
be achieved in one time step. Figures 2.b and 2.d show the
subset of additional self-motions corresponding to these that
would require more than one time-step to be executed, hence
they are not considered in the nullspace search explained in
this paper1.

Once the set of self-motions is generated we proceed to
eliminate the configurations that are in collision, keeping
only the set of valid configurations, from which any can be
a possible solution for the task space point evaluated. Rather
than picking a random configuration from the nullspace
set, we choose a configuration such that it maximizes a
performance optimization function. Previous work such as
[20] suggested a series of diverse functions to assess the
desirability of each configuration. In particular, we have

1Notice that in the general case of tracking a path, all the self-motion
configurations should also be considered. We are currently working on this
topic
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(a) One-step self-motion A (b) Set of self-motions A

(c) One-step self-motion B (d) Set of self-motions B

Fig. 2: Illustration of self-motion considered

evaluated two of these functions: The so-called Joint Range
Availability measurement (JRA):

JRA(q) =

n∑
i=1

qi − q̄i
qiMax − qiMin

(8)

that measures how far is q from the joint limits. The second
function is the Joint Velocity measure (JVM):

JVM(q) =

n∑
i=1

(qi − qprevious
i )2 (9)

which measures the variation in velocity with respect to
the previous configuration. The results in the next section
were obtained using the JVM function. We save the nullspace
sets as priority queues ordered w.r.t. the function measure of
each configuration. The approach explained so far is shown
in Algorithm 1

Algorithm 1: Simple Track( P , q0, Q )
Input: Workspace trajectory P and initial joint

configuration q0
Output: Jointspace trajectory Q
q ← q01

for i← 1 to P .size() do2

if Generate_Sol(q, P[i], NS[i]) is false3

then
return false4

else5

q ← NS[i][0] ; // Top priority element6

Q.push_back(q)7

return true8

Algorithm 1 is prone to fall in local minima. This can
be easily seen in Line 3 in Algorithm 1, which reports

Algorithm 2: Generate Sol( q, p, ns )
Input: Current joint configuration q, next workspace

point p
Output: Nullspace queue ns corresponding to q

ds← (p− ToTaskSpace(q))1

qp ← J†(q) · ds ; // Least-norm sol2

ê = J(q).kernel() ; // J nullspace basis3

forall combinations of wj do4

qns ← q + qp +
∑m−n

j=1 wj êj5

if ‖ p - ToTaskSpace(qns)‖< thresh then6

if InCollision(qns) is false and7

InLimits(qns) is true then
ns.Push_Queue(qns,JRA(qns))8

if ns.size() > 0 then9

return true10

else11

return false12

failure if a solution is not found for a workspace point. We
know that a solution might exist if previous configurations
were chosen differently. Hence, our method improves this by
implementing a backtracking schema that operates whenever
local solutions fail.

B. Backtracking

Algorithm 4 implements a recursive backtracking pro-
cedure. It accepts as input the current configuration, the
stored nullspace sets of the trajectory mapped so far and
the maximum number of backtracking steps allowed. When
a failure is detected at time i, our algorithm goes back one
step (i−1), pops up the failing configuration and then chooses
a different one from NS[i−1]. Notice that since NS stores
the nullspace sets as priority queues, the next configuration to
be evaluated is the next best, according to our optimization
function. In case the backtrack fails again in producing a
valid solution, it backtracks to i − 2 and it will repeat the
procedure until it finds a solution or until it reaches the
maximum allowed number of backtracking steps.

Of course, backtracking can be computationally intensive
if the depth is too big. In order to avoid backtracking as
much as possible, we must use a reasonable heuristic function
such that backtrack is only used in extreme cases. In our
experiments we used the JVM function, which produced
adequate and smooth results.

Our proposed method is shown in Algorithm 3. The
recursive backtracking routine (which actually implements
a breadth-first search) is presented in Algorithm 4. Notice
that the latter algorithm depends on the ForwardSearch
routine(Algorithm 5) which searches for a solution from the
backtracked configuration (i − step). Also note that each
time a backtrack is executed, the nullspace sets generated



2012 IEEE-RAS International Conference on Humanoid Robots

previously from (i − step − 1) to i are cleared and updated
according to the new configuration found in (i− step).

Algorithm 3: Complete Track( P , q0, Q, maxStep )
Input: Workspace trajectory P and initial joint

configuration q0, maximum backtrack allowed
maxStep

Output: Jointspace trajectory Q
q ← q01

for i← 1 to P .size() do2

if Generate_Sol(q, P[i], NS[i]) is false3

then
step ← 14

b = Backtrack(i, step, maxStep, NS , P)5

if b is false then6

return false7

else8

Update(Q, i, step, NS)9

else10

q ← NS[i][0]11

Q.push_back(q)12

return true13

Algorithm 4: Backtrack( i, step, maxStep, NS , P )
Input: current index i, current backtrack step,

maximum backtrack maxStep, nullspace sets
NS , workspace trajectory P

Output: Updated NS
if step < maxStep then1

if ForwardSearch(i, step, maxStep, NS , P) is2

false then
return Backtrack(i, step++, maxStep, NS ,3

P)
else4

return true5

else6

return ForwardSearch(i, step, maxStep, NS ,7

P)
return true8

IV. EXPERIMENTS AND RESULTS

In this section we present a series of simulated experiments
with diverse manipulators. The simulations were made using
the integrated GRIP + DART2 software platform. For colli-
sion detection we used the VCOLLIDE package [21]. All the
experiments were executed on a Intel 2 Core Duo (2.80GHz).

2GRIP (https://github.com/golems/grip) is a robotics simulator based on
the physical engine DART (https://github.com/golems/dart). Both packages
are OpenSource projects currently developed at Georgia Tech

Algorithm 5: ForwardSearch( i, step, maxStep, NS , P)
Input: current index i, current backtrack step,

maximum backtrack maxStep, nullspace sets NS
Output: Updated NS
ForwardClear_NS(i, step, NS)1

j ← i - step2

found ← false3

while NS[j].size()> 0 and found is false do4

b ← Generate_Sol(NS[j][0], P[j + 1],5

NS[j + 1])
if b is true then6

if step > 1 then7

found ← ForwardSearch(i, step-1,8

maxStep, NS , P)
else9

found ← true10

else11

NS[j].Pop_Queue()12

if found is false then13

if step is maxStep then14

return false15

else16

NS[j + 1].Pop_Queue()17

else18

return true19

Procedure Update(Q, i, step, NS)
for j ← 1 to step do1

// Update the changed joint trajectory points2

Q[i− j]← NS[i− j][0]3

end4

A. Preliminaries

Before presenting the experiments, some details should be
mentioned:

• All the experiments presented are end-effector position
tracking problems. We chose to focus this paper on po-
sition (rather than pose) tracking since the manipulator
has more redundant degrees of freedom with respect to
this kind of tasks. Having less constraints poses a more
challenging scenario to test our algorithm.

Procedure ForwardClearNS(i, step, NS)
if step > 1 then1

for j ← 1 to step do2

NS[i− j].clear()3

end4

end5
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(a) Workspace trajectory (b) Joint trajectory

(c) Execution

Fig. 3: Experiment with a 7-DOF LWA3 Schunk arm

• The workspace trajectories used in the experiments were
generated with a low-level workspace planner [22]

• All the kinematics evaluations were handled by the
DART dynamics package. Additional linear algebra
calculations (such as the nullspace basis or the Jacobian
pseudo-inverse) were performed using Eigen3.

• All the experiments used a discretization of 10 values
per each wi. The range of each wi was [−10, 10]. The
nullspace basis êi were normalized to have the same
relative norm w.r.t each other.

B. Experiment 1: LWA3

Our first series of experiments were done with a 7 DOF
LWA3 arm, as shown in Fig.3. The initial configuration of the
robot has its end effector below the cabinet. The workspace
trajectory to follow is shown in Fig.3(b). Notice that the
end-effector trajectory is very close to the cabinet, hence
the tracking is harder since there are more chances of the
manipulator links colliding with the object. The resulting
execution is shown in Fig.3(c).

C. Experiment 2: BarretWMA

Our second experiment was done with a 7 DOF Bar-
retWMA manipulator. The scenary kept the same as in the
experiment with the LWA3 but the initial configuration of
the arm changed as it is shown in Fig.4. The arm has its end
effector located on top of the cabinet and its target location
is resting on top of the table. The resulting trajectory is
shown in Fig.4.(c). In this execution, two backtrack calls
were needed (at time step 3 and 31 out of the total trajectory
of 35 points) both of them requiring a depth of 2. Notice
that a simple search such as GPM is not able to solve this
problem for this particular workspace to follow.

3http://eigen.tuxfamily.org

(a) Workspace path (x, y, z) (b) Tracking

(c) Execution

Fig. 4: Experiment with a 7-DOF BarretWMA

D. Experiment 3: Mitsubishi

Our third experiment involved a 5-DOF Mitsubishi arm
and the tasks consisted on drawing oriented lines on a table.
The results are shown in Figures 5 and 6

(a) Workspace trajectory (b) Tracking

(c) Execution

Fig. 5: Experiment with a 6-DOF manipulator

E. Experiment 4: Dual-Armed robot

Our final experiment involved planning the movement of
2 7-DOF arms of a humanoid. Results are shown in Fig. 7.

V. CONCLUSIONS AND FUTURE WORK

We have presented an approach to solve the trajectory
tracking problem for redundant manipulators based on the
discretization of the Jacobian nullspace and a backtracking
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(a) Workspace trajectory (b) Tracking

(c) Execution

Fig. 6: Experiment with a 6-DOF manipulator

(a) Problem setup (b) Workspace trajec-
tory

(c) Reach execution (d) Move execution

Fig. 7: Experiment with a Dual-Armed robot

strategy to prevent local minima traps. In contrast with
previous approaches, we exploit the nullspace by considering
more than one possible configuration and allow our method
to be more flexible. In contrast with previous work in which
a set of joints were arbitrarily selected as non-redundant, our
approach uses the nullspace basis of the Jacobian to perform
the search with the minimum required values.

As future work, we intend to devise more simulated
experiments with more challenging scenarios and further test
the presented method in a physical manipulator. Additionally,
we plan to test our approach with pose tracking problems to
verify its effectiveness.
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