
Walking on Non-planar Surfaces using an

Inverse Dynamic Stack of Tasks

Oscar E. Ramos, Nicolas Mansard, Olivier Stasse, Philippe Souères

CNRS, LAAS, 7 av. du Colonel Roche, F-31400 Toulouse, France

University of Toulouse, LAAS, F-31400 Toulouse, France

Email: {oramos, nmansard, ostasse, soueres}@laas.fr

Abstract—This paper presents a method to handle walking
on non-planar surfaces. The method obtains the trajectory of
the center of mass and the next position of the foot from a
pattern generator. Then, an inverse dynamics control scheme
with a quadratic programming optimization solver is used to let
the foot go from its initial to its final position, controlling also
the center of mass and the waist. This solver is able to handle
an arbitrary number of contact points. When the swinging foot
is going down, collision points are detected and they are added
as contact points to the model as soon as they appear. If there
are three or more contact points, the foot can safely step, but
if there are one or two contact points, the foot rotates properly
to generate the largest support polygon. Using this heuristic,
the foot can stand on non-planar surfaces. The results show the
simulation of HRP-2 walking on a surface with obstacles.

I. INTRODUCTION

Biped walking is a sequencial task that alternates the motion

of both legs and that strongly relies on contact forces between

the feet and the ground in order to realize stable motions. Static

balance keeps the center of mass (CoM) inside the support

polygon, whereas dynamic balance keeps the zero moment

point (ZMP) inside the support polygon allowing the CoM to

be outside of it for a certain period of time. Dynamic balance,

which represents the way that humans walk, is the preferred

walking strategy in robotics research but classical schemes

allow mainly walking only on planar surfaces.

However, there are several works that have succeded to walk

on uneven terrain. In [1], a control method for adapting to

a horizontally composed plane with unknown steps height is

proposed. The method allows walking on non-flat floor by

using the sole sensors that measure a distance between the

sole itself and the ground before landing. In [2], a pattern

generation system that updates the CoM trajectory in a short

cycle using preview control and a feedack controller that

tracks the ZMP reference was proposed. This method also

enabled a robot to change the walking pattern according to the

change of applied force. A method that uses preview control

from the current inclination of the upper body to a stable

future state in order to update the upper body trajectory was

proposed in [3]. Another method [4] is based on a predictive

attitude compensation control and a nonlinear compliance

control using only force sensors and a particular biped foot

system that adapts to a rough terrain.A technique to stabilize

the upper body postion under varying ground reaction forces is

proposed in [5]. This technique generates moments to handle

Fig. 1: The robot HRP-2 stepping over a non-planar obstacle

with its right foot.

disturbances that cannot be handled by ground reaction forces

by using horizontal and rotational acceleration of the upper

body and step duration change: as a result, a landing position

is locally modified.

More recently, a strategy for adjusting the ZMP reference to

generate online repetitive walking has been proposed [6]. The

strategy consists on changing the reference ZMP inside the

sole area, changing the position of the next step and changing

the duration of the current step. In [7], proper impedance gains

of the feet and updates of the desired landing position of the

CoM pattern after a contact is detected are used as a method

for a collision of a swinging foot on uneven terrain.

In this paper, we propose to use a generic hierarchical

optimization solver to track the position of the CoM and to

autonomously control the swinging foot based on the next

foot position on the ground given by a pattern generator.

The considered solver consists of the inverse-dynamics control

cascade proposed in [8], [9], and modified in [10] to allow

faster computations. As the foot goes down, possible collisions

are detected and handled by the solver as contact points, and,

if necessary, the foot is properly rotated to move towards the

ground without losing dynamic stability. Figure 1 shows an

example of an obstacle on which the robot can stand keeping

its stability.

This paper is organized as follows. Section II presents the

inverse dynamics control including the contact constraints.

Section III gives a brief summary of the pattern generator



used in this work. The usage of the inverse dynamics scheme

with the pattern generator is presented in Section IV. Finally,

the results of the simulation are presented in Section V.

II. INVERSE DYNAMICS CONTROL

A. Generic Dynamic Model

The humanoid robot configuration will be represented by

the generalized coordinates q = [xb qa]
T , where xb represents

the position and orientation of the robot (more specifically,

the base, free-floating or free-flyer) with respect to the world,

and qa represents the n actuated joints. It will be assumed

that there are nf points in contact with the environment. Let

xp = [x1 x2 · · · xnf
]T ∈ R

3nf represent the contact points in

the world frame, and f = [f1 f2 · · · fnf
]T ∈ R

3nf represent

the punctual contact forces, with fi acting at point xi. The

dynamic model of the robot is

ST τ = Aq̈ + b+ JT
f f (1)

where S = [0 I] is a matrix that selects the actuated joints, τ
is the torque vector on the joints, A is the whole-body inertia

matrix, b is the drift including Coriolis, centrifugal and gravity

forces, and Jf =
∂xp

∂q
is the Jacobian of the contact points.

Additionally, for rigid contacts, the contact points must

not move and the restriction ẍp = 0 must be added. This

restriction is equivalent to

Jf q̈ + J̇f q̇ = 0 (2)

provided that ẋp = Jf q̇. Let Sn be a matrix that selects

the normal component (third component) of each force in

f and of each point in xp, with its elements given by

{snij} = δ(3i − j), where δ represents the Kronecker delta

function. When considering the model of “point contact” [11],

the entire contact constraint is described simultaneously by

Snxp = 0 and Snf ≥ 0, if the contact persists. The first part

of the constraint is already satisfied by (2), and the second

part relating the contact forces

Snf ≥ 0 (3)

must be explicitly considered in the model. The unidirectional-

lity of (3) guarantees that the ZMP will exist inside the support

polygon, ensuring the dynamic stability condition [9].

B. Decoupled Dynamics

The explicit separation of the dynamic equations into mo-

tion and actuation has been proposed in [10]. The decoupling

allows a faster computation since the decoupled variables are

of lower dimension than the coupled original variables. This

section will give a brief review of the decoupled model. Using

the Choleski decomposition, the inverse of the inertia matrix A
can be expressed as A−1 = BBT , and thus A = B−TB−1,

with B an invertible triangular matrix. Multiplying the dy-

namic model (1) by BT on the left we obtain:

BTST τ = B−1q̈ +BT b+GT f (4)

where G = JfB. The result of multiplying (4) by G on the

left, using (2) to guarantee no kinematic motion at the rigid

contact points, is:

GBTST τ = GBT b+GGT f − J̇f q̇ (5)

and solving for BTST τ gives

BTST τ = BT b+GT f + δc + V u (6)

where δc = −G+J̇f q̇ is the contact drift, V is a basis of

the kernel of G such that V V T = I − G+G, and u is a

vector in this kernel. The matrix S̄ = [I 0] is defined so

that it cancels out ST (S̄ST = 0), and thus the torque. By

multiplying both terms of (6) by S̄B−T on the left, a torque-

free relation between u and the contact forces f is obtained:

0 = S̄b+ S̄JT
f f + S̄B−T δc + S̄B−TV u (7)

This expression is composed of both (1) and (2), but explicitly

using u and f as variables. The other contact condition related

to the unidirectionallity of the forces (3) can be directly

included in the decoupled model as Snf ≥ 0.

It is also possible to recover the torques from this model

multiplying (6) by SB−T on the left to obtain:

τ = Sb+ SJT
f f + SB−T (δc + V u) (8)

where the fact that SST = I has been used.

C. Representation of the tasks

For any observable si(q) of the robot configuration, a

desired position and orientation s∗i can be specified without

loss of generality by the ith task ei = si− s∗i . A usual choice

for the reference acceleration of the task is the proportional

derivative (PD) control law ë∗i = −Kpei−Kv ėi with Kp > 0
and Kv = 2

√

Kp, to make the error decrease exponentially to

zero. At the acceleration level, the classical relation between

the task space and the joint space becomes:

ëi = J̇iq̇ + Jiq̈ (9)

where Ji = ∂ei
∂q

is the ith task Jacobian. The equivalence

between (4) and (6) leads to the direct relation between u and

the acceleration q̈ as:

q̈ = Bδc +BV u (10)

so that u can be interpreted as a “motion” variable. Then, using

(10), the generic task representation (9) can be equivalently

expressed in terms of the decoupled variable u as:

ëi = J̇iq̇ + JiBδc + JiBV u (11)

D. Spatial-force reduction

Let xc ∈ R
6 represent the position and orientation of a

central point rigidly attached to the foot (for instance, its

center of mass, or the ankle). The 6D Jacobian associated



with this frame is Jc =
∂xc

∂q
, and the relation between Jc and

the Jacobian Jf in (1) is Jf = XJc, with [10]:

X =







I −p̂1
...

...

I − ˆpnf






(12)

where pi is the position of the contact point i with respect to

the frame xc, and p̂i represents the skew-symmetric matrix ob-

tained from pi equivalent to a cross product pre-multiplication.

When there are three or more contact points on the same body,

X is full-column rank and the null space of Jf is equal to the

null space of Jc. In this case, Jc can be used to compute the

V basis as V = ker(JcB) instead of V = ker(JfB), and the

contact drift as δc = −(JcB)+J̇cq̇. However, the null spaces

are not equal when there are only 1 or 2 contact points, which

is a case that will be discussed in section IV-B

E. QP for the dynamic inversion

The robot motion implies the fulfillment of one or more

tasks satisfying at the same time the dynamic model and

the contact constraints. Under this premise, the optimization

problem for a task i is expressed using (11), (7), and (3) as

min
u,f

‖ JiBV u+ J̇iq̇ + JiBδc − ë∗i ‖

s.t. (S̄B−TV )u+ (S̄JT
f )f = −S̄(b+B−T δc)

Snf ≥ 0

In [8], it has been proposed to use a hierarchical QP solver

(HQP) [12] to solve the operational-space inverse dynamics.

The hierarchy is denoted by ≺ where a ≺ b means that a has

more priority than b. With this notation, the dynamic stack

of m tasks is (7) ≺ (3) ≺ (11.1) ≺ · · · ≺ (11.m), and the

optimization variables determined by the HQP solver are the

decoupled u and f . Using these optimization variables, the

torque τ obtained from (8) can be used as input to a torque-

controlled robot or simulator, and the acceleration q̈ from (10)

can be integrated to be used as input to a position-controlled

robot.

III. PATTERN GENERATOR

The pattern generator assumes that the robot CoM is

kept at a certain constant distance zcm above the ground,

so that the position of the CoM can be represented only

by two components (xcm, ycm). For simplicity in notation,

xcm
k = xcm(kT ) = xcm(tk), where T is the sampling

period and k is the k-th sample, and the state variables are

x̂k = [xcm
k ẋcm

k ẍcm
k ]T . The ZMP position on the ground plane

is represented as (zx, zy). In the following treatment only

the x components will be explicited, but the y components

are obtained in a similar way. The discrete dynamic system

relating the ZMP and the CoM is [13]:




xcm
k+1

ẋcm
k+1

ẍcm
k+1



 =





1 T T 2/2
0 1 T
0 0 1









xcm
k

ẋcm
k

ẍcm
k



+





T 3/6
T 2/2
T





...
xcm
k (13)

zx =
[

1 0 −zcm/g
]





xcm
k

ẋcm
k

ẍcm
k



 (14)

Considering a prediction horizon of N samples, and using

the previous dynamics recursively, it can be shown [3] that the

velocity of the CoM from time tk+1 to tk+N is expressed as:

Ẋk+1 =
[

ẋcm
k+1

· · · ẋcm
k+N

]T
= Pvsx̂k + Pvu

...
Xk (15)

where
...
Xk = [

...
xcm
k · · ·

...
xcm
k+N−1]

T is the jerk of the CoM

from time tk to tk+N−1, and

Pvs =







0 1 T
...

...
...

0 1 NT






, Pvu =







T 2/2 0 0
...

. . . 0
(1 + 2N)T 2/2 · · · T 2/2







Also, the ZMP from time tk+1 to time tk+N is expressed as:

Zx
k+1 = [zxk+1 · · · zxk+N ]T = Pzsx̂k + Pzu

...
Xk (16)

where

Pzs =







1 T T 2/2− zcm/g
...

...
...

1 NT N2T 2/2− zcm/g







Pzu =







T 3/6− Tzcm/g 0 0
...

. . .
...

(1 + 3M + 3M2)T
3

6
− Tzcm

g
· · · T 3

6
− Tzcm

g







with M = N − 1.

The pattern generator used in this work is the one pro-

posed in [14], which basically regulates the speed of the

CoM and obtains the foot placement as output of the op-

timization process. The considered optimization variable is

uk = [
...
Xk

...
Y k Xf

k Y f
k ]T , where (Xf

k , Y
f
k ) corresponds to

the positions on the ground of the following m foot steps.

The optimization problem in [14] is stated as:

min
uk

α

2

(

‖ Ẋk+1 − Ẋref
k+1

‖2 + ‖ Ẏk+1 − Ẏ ref
k+1

‖2
)

+
β

2

(

‖ Zx
k+1 − Zx ref

k+1
‖2 + ‖ Zy

k+1
− Zy ref

k+1
‖2
)

+
γ

2

(

‖
...
Xk ‖2 + ‖

...
Y k ‖2

)

(17)

where Ẋref
k+1

and Ẏ ref
k+1

are the desired mean value for the

speed of the CoM, and Zx ref
k+1

, Zy ref
k+1

are the references for

the ZMP. These ZMP references are not fixed in advanced but

are permanently recomputed from the feet position decided

by the algorithm so that the ZMP lies in the middle of the

foot. Let (Xfc
k , Y fc

k ) be the current position of the foot on the

ground. Then, the ZMP references are given by:

Zx ref
k+1

= U c
k+1X

fc
k + Uk+1X

f
k (18)

Zy ref
k+1

= U c
k+1Y

fc
k + Uk+1Y

f
k (19)



with

U c
k+1 =



































1
...

1
0
...

0
0
...

0



































Uk+1 =



































0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0



































Additionally, during the single support phase, the constraint

on the ZMP to ensure that it lies inside the support polygon

is expressed as:

[

dx(θ) dy(θ)
]

[

zx − xf

zy − yf

]

≤ b(θ) (20)

where (xf , yf ) is the position of the foot, θ is its orientation,

dx(θ), dy(θ) are column vectors containing the x, y coordi-

nates of the normal vectors to the edges of the feet, and b(θ)
is the column vector containing their position with a security

margin.

IV. USING THE PATTERN GENERATOR WITH THE INVERSE

DYNAMIC CONTROL SCHEME

The pattern generator gives the desired trajectory of the

CoM and of the swinging foot. Classical schemes track these

elements using only kinematics and no notion of contact

with the ground. The method proposed here uses the inverse

dynamics stack of tasks control scheme described in section II

with the online output of the pattern generator. While the CoM

and the wais are tracked as tasks, the swinging foot is not

tracked. Since the solver can handle the notion of contact

with a surface (the ground or a local irregularity), only the

next position of the swinging foot is considered. Then, an

interpolation task to take the foot from its initial position to

its final position is used. This task is interrupted as soon as

a contact appears leading to a possible rotation of the foot to

reach stability.

A. Interpolation task

The interpolation task is used to take the swinging foot

from its initial position to its final position. The objective is

to achieve a desired final position and velocity in a specific

period of time, assuming that the current position and velocity

are known. Let the evolution of a generic feature be described

by x(t), and let the initial time be t0 with corresponding initial

position and velocity given by x0 = x(t0) and ẋ0 = ẋ(t0),
respectively. After a desired time duration T , the desired posi-

tion and velocity will be xf = x(t0+T ) and ẋf = ẋ(t0+T ).
The control is performed via the acceleration ẍ(t) which is

set to a linear function of the form [15]:

ẍ(t) = ẍ0 +
ẍf − ẍ0

T
(t− t0) (21)

Fig. 2: Scheme of the usage of the pattern generator with the

inverse dynamics stack of tasks.

whose solution leads to quadratic velocity and cubic position

trajectories given by:

ẋ(t) =
ẍf − ẍ0

2T
(t− t0)

2 + ẍ0(t− t0) + ẋ0 (22)

x(t) =
ẍf − ẍ0

6T
(t− t0)

3 +
ẍ0

2
(t− t0)

2 + ẋ0(t− t0) + x0

(23)

The unknown parameters ẍ0 and ẍf can be obtained evaluating

(22) and (23) at time tf . However, as time passes by, the

initial position and velocity as well as the time remaining

for tf are updated, and a new acceleration trajectory (21) is

computed. Then, since (21) is permanently updated, only the

initial acceleration ẍ0 is needed (accelerations at the following

instants of time are of no interest), and the dynamic task in

(11) is simply defined as ë∗ = ẍ0, which can be obtained by

solving the system (22) and (23) at time tf resulting:

ë∗ = ẍ0 =
6

T 2
(xf − x0)−

2

T
(ẋf + 2ẋ0) (24)

It should be noted that T becomes smaller after each iteration

and is eventually close to zero as the initial time reaches the

final time. To handle this situation, when T < th, where th is

a threshold, the previous value of ẍ0 is kept, which in practice

gives good results.

B. Handling 1 and 2 contact points

One of the main objectives of this control scheme is to

explicitly handle the case of a rigid body with only 2 or 1
contact point(s) with the environment. In this situation, X
in (12) is not full-column rank, and the reductions where Jc
could be used instead of Jf do not necessarily hold since both

matrices do not have the same null space anymore.

In this case, the equivalence Jf = XJc has to be used

and the computation of V will be explicitly ker(XJcB).
The relation between the derivative of both Jacobians is

J̇f = XJ̇c+ẊJc, but the second term is null provided that Ẋ
is null (the contact points do not move) leading to J̇f = XJ̇c.

Then, for the contact drift, δc = −(XJcB)+XJ̇cq̇.

C. Walking generation scheme

In order to make the robot walk, the output of the pattern

generator is used as input to the inverse dynamics solver as



Fig. 3: A single contact point on the sole of the robot.

shown in Figure 2. The dynamic solver (section II-E) considers

the following three tasks:

• Task to track the trajectory of the CoM. The pattern

generator gives the desired trajectory for the center of

mass assuming a constant height. This task controls only

the x and y components of the CoM.

• Task to partially track the waist trajectory. This task aims

to control the height (position in z) of the waist at a

certain constant value (since this is the basic premise of

the pattern generator), as well as the orientation in x, y.

It is partial because not all the six degrees of freedom

are controlled.

• Interpolation tasks on the swinging foot. The pattern

generator gives the next final position of the foot on

the ground. This task takes the swinging foot from its

initial position to its desired final position. There are

two interpolation steps: the first task takes the foot

from the initial position to an intermediate position that

lies halfway between the initial and final positions with

a predetermined height. The second interpolation takes

the foot from the intermediate to the final position, if

possible. If a contact is detected before arriving to the

final position, the collision is handled as described in the

following section. The interpolation task (section IV-A)

guarantees that the time constraint is fulfilled according

to the pattern generator.

D. Non-horizontal foot contacts handling

The second interpolation for the foot, described in the

previous section, would ideally end without interruption if

the ground is flat. However, if there is a non-planar surface,

generated by the own irregular ground or by a small obstacle

(whose size is assumed to be smaller than the step height),

the interpolation will not end but will be interrupted as soon

as some point(s) on the foot sole touch(es) a rigid object. In

this case, there are three possibilities for the contact situation:

• There is only one contact point

• There are two contact points

• There are three or more contact points

If there are more than three contact points, the foot can step on

those points, which will generate the support polygon. When

(a) Case 1 (b) Case 2

Fig. 4: Two contact points on the sole of the robot.

there are less than 3 contact points, the foot still needs to move

to find at least one more contact. In this case, if the foot is

left uncontrolled after the first contact(s), the robot dynamics

might take the foot to an unstable position. In order to avoid

these instabilities, the foot extremes have to be controlled so

that the maximum support polygon is obtained.

If there is only one contact point, the foot is in the situation

shown by figure 3, where the single contact point is pc1 and the

foot extremes are denoted by pe1, pe2, pe3 and pe4. Four triangles

are formed by joining the contact point to two consecutive foot

extremes. The area of the triangle formed by the consecutive

foot extremes pei and pei+1 is given by

Ai = 0.5 ‖ (pc1 − pei )× (pc1 − pei+1) ‖ (25)

The triangle with the greatest area will contain the extremes

of the foot that are farther from the contact point, and thus,

it is desirable to take those extremes to the ground so that

the largest support polygon is obtained. To that end, a task is

assigned to each of these extremes controlling only the vertical

z position so that they go to the ground. While these points are

moving, if a contact point is detected, it is added as a contact

to the solver and its position is checked against the points that

were going to the ground. The task for the closest extreme is

removed. The foot continues its rotation until another contact

point is detected, in which case, the remaining extreme task

is removed.

If there are only two contact points, there are two possibil-

ities shown in figure 4. To obtain the case, a line L is passed

through both contact points and the extremes of the foot are

determined to lie in one side or on the other side of the line.

Let the contact points be pc1 and pc2, the vector joining these

points be v = (vx, vy) = pc1 − pc2, and the vector joining one

point with one extreme of the foot be vi = (vix, viy) = pei−pc2.

The idea is to rotate the points so that the line L is aligned

with the vertical line. Then, the sign of the arctangent can be

used to determine the side of the line in which a point lies. The

angle that line L must rotate to be aligned with the vertical is

θ = atan2(vy, vx). Then, each vi is rotated by the angle θ as:

vfix = vixcos(−θ)− viysin(−θ) (26)

vfiy = vixsin(−θ) + viycos(−θ) (27)



Fig. 6: Evolution of the center of mass in the XY (horizontal)

plane. The dashed line shows the reference of the pattern

generator and the solid line shows the tracking result of the

controller.

After this rotation, the angle to the line is determined as φ =
atan2(vfiy, v

f
ix), the sign of φ indicating whether the point is

on one side or the other of line L. If only one point is on

one side and three are on the other side (Figure 4a), the three

points are taken to the ground. If two points are on each side

(Figure 4b), then, the area of the quadrilateral formed by the

contact points and the extremes on each side is computed and

the largest area indicates that those extremes are farther and

must be taken to the ground. As in the case of a single contact,

as soon as a new contact appears, it is added as a contact to

the solver, and the task for the closest extreme is removed.

V. RESULTS

To validate the proposed scheme, a simulation of the robot

HRP-2 considering its full dynamics was performed on a

ground where random objects were presented. The height

of the obstacles was always smaller than the step height.

As described in the paper, only the CoM and the waist are

tracked by the solver. The foot position are specified using two

interpolation tasks. The robot first walks in a straight line and

then slightly turns left. Some snapshots of the robot are shown

in Figure 5, and a video of the robot walking can be found

in homepages.laas.fr/oramos/humanoids2012/walking.avi. The

snapshots show the right and left foot stepping over different

obstacles in different conditions. Since there is no control on

the arms, they move freely to help keep the CoM position.

Figure 6 shows the tracking of the center of mass using

the inverse dynamics stack of tasks. It can be observed that

the CoM is properly tracked by the system. Figure 7 shows

the trajectory of the right foot. The dashed line shows the

trajectory that is obtained from the pattern generator, which

assumes a constant ground height. As stated before, the right

foot does not follow this trajectory but only uses the final

position of the foot. In this experience, the two first steps of

the right foot find an obstacle on the ground. It can be observed

in the curves with solid line that even though the foot is not

Fig. 7: Trajectory of the right foot in xyz. The dashed line

shows the trajectory of the pattern generator and the solid

line shows the trajectory generated by the inverse dynamics

controller.

Fig. 8: Trajectory of the left foot in xyz. The dashed line shows

the trajectory of the pattern generator and the solid line shows

the trajectory generated by the inverse dynamics controller.

tracked, the interpolation task generates a trajectory similar to

that of the pattern generator. The difference in the height z
for the two first steps is due to the obstacle found by the foot,

which is properly handled by the system without losing the

dynamic balance. Figure 8 shows the same information for the

left foot. In this case, the second, third and fourth steps found

an obstacle on the ground and that is the reason why there

is an observable difference in the z axis between the output

of the pattern generator and the trajectory generated by the

dynamic solver.



(a) (b) (c) (d)

Fig. 5: Robot walking on a non-planar surface.

VI. CONCLUSION

The control scheme presented in this paper makes the hu-

manoid robot able to walk on non-planar surfaces by detecting

collision points and moving the foot properly to reach a larger

support polygon. This approach is grounded on a mathematical

reasoning and has been tested in a simulation environment

where collision detection is available. The method is limited

to horizontal surfaces and would fail if the ground has a large

slope, in which case, a modification in the pattern generator

would be needed. The implementation of the controller on

the real robot requires a strategy to efficiently detect contact

points. This constitutes our current work.

REFERENCES

[1] J. Yamaguchi, A. Takanishi, and I. Kato, “Development of a biped
walking robot adapting to a horizontally uneven surface,” in Proceedings

of the IEEE/RSJ/GI International Conference on Intelligent Robots and

Systems’ 94, vol. 2. IEEE, 1994, pp. 1156–1163.

[2] K. Nishiwaki and S. Kagami, “High frequency walking pattern genera-
tion based on preview control of zmp,” in IEEE International Conference

on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 2667–
2672.

[3] P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in IEEE International

Conference on Humanoid Robotics, Genova, Italy, October 2006, pp.
137–142.

[4] K. Hashimoto, Y. Sugahara, M. Kawase, A. Ohta, C. Tanaka, A. Hayashi,
N. Endo, T. Sawato, H. Lim, and A. Takanashi, “Landing pattern
modification method with predictive attitude and compliance control
to deal with uneven terrain,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, 2006, pp. 1755–1760.

[5] T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura,
H. Kaneko, and A. Orita, “Real time motion generation and control
for biped robot-4th report: Integrated balance control,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’09).
IEEE, 2009, pp. 1601–1608.

[6] K. Nishiwaki and S. Kagami, “Strategies for adjusting the zmp reference
trajectory for maintaining balance in humanoid walking,” in IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2010, pp. 4230–4236.

[7] M. Morisawa, F. Kanehiro, K. Kaneko, S. Kajita, and K. Yokoi,
“Reactive biped walking control for a collision of a swinging foot on
uneven terrain,” in IEEE-RAS International Conference on Humanoid

Robots (Humanoids’11). IEEE, 2011, pp. 768–773.

[8] L. Saab, N. Mansard, F. Keith, J. Fourquet, and P. Soueres, “Generation
of Dynamic Motion for Anthropomorphic Systems under Prioritized
Equality and Inequality Constraints,” in IEEE International Conference

on Robotics and Automation (ICRA’11), Shanghai, May 2011.

[9] L. Saab, O. Ramos, N. Mansard, P. Soueres, and J.-Y. Fourquet, “Generic
Dynamic Motion Generation with Multiple Unilateral Constraints,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2011), San Francisco, USA, September 2011.
[10] N. Mansard, “A dedicated solver for fast operational-space inverse dy-

namics,” in IEEE International Conference on Robotics and Automation,

ICRA’12, Minnesota, USA, May 2012.
[11] R. Featherstone, Rigid Body Dynamics Algorithms. Springer Berlin,

2008, vol. 49.
[12] A. Escande, N. Mansard, and P. Wieber, “Fast resolution of hierarchized

inverse kinematics with inequality constraints,” in IEEE International

Conference on Robotics and Automation (ICRA’10). IEEE, 2010, pp.
3733–3738.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on

Robotics and Automation (ICRA’03), Taipei, Taiwan, September 2003.
[14] A. Herdt, H. Diedam, P. Wieber, D. Dimitrov, K. Mombaur, and

M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, 24, vol. 5, no. 6, pp. 719–737, 2010.

[15] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-Based Locomo-
tion Controllers,” ACM Transactions on Graphics, vol. 29, no. 3, 2010.


