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Abstract— Autonomous and teleoperated robots have been
proven to be capable of solving complex manipulation tasks.
However, autonomous robots can only be deployed in predefined
domains and teleoperation requires full attention of a human
operator. Therefore, combining autonomous capabilities of the
robot with teleoperation is desirable, yet balancing the work
load between robot and operator for intuitive human-robot
interfaces is still an open issue. In this paper, we present a
knowledge-driven tablet computer application for commanding
a robot on a high level of abstraction. The application guides
an operators decisions based on the actual world state of the
robot and enables the operator to command object-centered
actions, which are autonomously interpreted symbolically and
geometrically by the robot. We evaluate our approach using the
humanoid robot Rollin’ Justin for an elaborate manipulation
experiment and an user study. We show that our approach
efficiently balances the work load between robot and operator
and provides an intuitive interface for human-robot interaction.

I. INTRODUCTION

In the near future, service robots will be introduced to
varying scenarios including elderly care, disaster response,
and space applications. With multiple manipulators and so-
phisticated sensor systems, the capabilities of such robots
will exceed the capabilities of today’s service robots, such as
vacuum robots, by far. As these new capabilities introduce
higher complexity, commanding robots gets more difficult
and therefore raises the need for autonomously acting robots.
However, solving all kind of service tasks fully autonomous
in unstructured and changing environments without human
intervention is a challenging task. A possible solution to
circumvent this issue is shared autonomy, where an operator
remote controls the robot on a high level of abstraction.

In order to command complex manipulation tasks to a
service robot, it is crucial to provide an intuitive high level
human-robot interface (HRI). This implies not just the way of
commanding a certain task to the robot, but also the opposite
direction of presenting task relevant information to the oper-
ator. The main challenge hereby lies in guiding the operators
attention intuitively by visualizing the required information,
while simultaneously hiding irrelevant information to prevent
the operator from distractions. Furthermore, it is important
to narrow the operators possible decisions w. r. t. the cur-
rent state of the environment and task since the number
of possible manipulation actions increases drastically with
the number of available objects. An appropriate knowledge

All authors are affiliated with the Institute of Robotics and Mecha-
tronics, German Aerospace Center (DLR), Wessling, Germany. Contact:
peter.birkenkampf@dlr.de

Fig. 1. The humanoid robot Rollin’ Justin of DLR operated via a
shared autonomy human-robot interface implemented as a tablet computer
application. Objects with potential actions are highlighted.

representation along with extensive reasoning mechanisms is
therefore mandatory.

The goal of this research is to provide an intuitive HRI
enabling an untrained operator to effectively command a
service robot with advanced capabilities. We believe it is
helpful for the untrained operator to use a familiar device
for commanding the robot. We exclude special designed HRI
hardware as presented in e. g. [1], [2] or [3] and focus on
affordable mobile devices of everydays life. Mast et al. [4]
present a concept providing different sized devices to control
a robot on different levels of abstraction, including smart-
phones, tablet computers and desktop computers. Rouanet
et al. [5] confirm the advantages of using a touchscreen de-
vice for commanding robots as it provides intuitive feedback
by showing video streamed from the robot on the screen.
Because of these investigations, the high mobility, and good
availability, we utilize a tablet computer for our work.

The touchscreen of the tablet computer is used to display
feedback from the robot to the operator providing the in-
formation used for gaining common ground with the robot
and situational awareness in the remote environment [6]. An
often utilized approach uses the major part of the screen for
showing the video stream of a camera mounted on the robot
[7][8] optionally augmented with additional sensor [9] or
status information [10][11][12]. In some HRI the perspective
is changed to show the robot in its environment [13][14]
or from a top-down angle [15][16]. Investigations of the
influence and user preferences of these different perspectives
showed that an egocentric perspectives supports identifica-



tion tasks and manipulation tasks whereas an exocentric
perspective has advantages in navigation tasks [14] [9].

In recent years a lot of touchscreen based - mobile and
stationary - HRIs were proposed. Some of those control basic
movement functions of the commanded robot by the use of
virtual buttons [7], joysticks [17], sketched gestures [8], or
use virtual handles that are shown after the user touches the
robot on the video stream of an external camera [13].

Other approaches command high level capabilities of the
robot. Sakamoto et al. [16] do this by directly mapping
gestures to robot actions. Correa et al. [12] reduce the gesture
set by assigning different robot actions to the same gesture
depending on its location in the video streamed from the
robot. Paravati et al. [18] allows the operator to self-assign
gestures to actions. However, even if the set of gestures
is small, the operator has to memorize the gestures and
their mapping to actions. Furthermore, gestures can be easily
misused due to their ambiguous nature. An approach around
this issue uses a virtual toolbox providing parameterizable
robot capabilities as presented by Liu et al. [15].

The HRIs described so far focus either on teleoperation or
autonomous applications. However, real world environments
often demand a combination of both [6]. Muszynski et al.
[11] proposed a tablet computer based HRI allowing the
operator to adjust the autonomy of the robot by switching
between commanding of basic movements, semiautonomous
capabilities or high level tasks. Ciocarlie et al. [19] and Chen
et al. [10] use a similar approach with robot-capability ori-
ented components such as gazing, moving and manipulating
for semi-autonomous pick and place tasks.

The described HRIs follow an action-centered approach
for commanding the robot. Expert knowledge about the
capabilities of the robot is required in order to execute a
specific task increasing the cognitive load of the operator.
An alternative approach avoiding this problem is the use of
an object-centered focus as applied by Suzuki et al. [20].
Their HRI restricts the movement of a surveillance robot
based on the relationship between the robot and a chosen
object allowing simplified inspection. Fung et al. [21] teach
sequential tasks to a robot by augmenting photographies
of task related objects with icons for possible actions. The
selected actions are manually parametrized by the operator
and afterwards checked for semantic validity. Although the
proposed system is utilized for teaching tasks offline, using
a similar approach for an online HRI could efficiently lower
the cognitive load of the operator because after selecting the
objects to be manipulated, a choice from only a small set
of action options has to be made. This can be supported by
performing semantic checks in advance to provide only valid
action possibilities to the operator.

Our contribution presented in this paper is a novel
knowledge-driven approach for a shared autonomy HRI. We
are able to reduce the cognitive load for the operator to
a minimum by choosing an object-centered high level of
abstraction to command a robot. The symbolic and geometric
reasoning is thereby shifted from the operator to the robot al-
lowing the operator to focus on the task rather then on robot-

specific capabilities. Evaluating the possibility of actions in
advance allows us to simplify the operator frontend by -
in contrast to known approaches - providing only possible
actions for commanding the robot. We apply minimalistic
graphical user interface (GUI) design principles to guide
the operators decisions w. r. t. the actual world state as it is
perceived by the robot. By directly displaying video from the
robot, we obtain an egocentric perspective which we augment
with information about the internal state of the robot. We
provide a mechanism for the operator to directly interact
with the displayed information by applying a point-and-click
paradigm. This way, we demonstrate a novel approach for
commanding manipulation tasks based on intuitive selection
of the objects to be manipulated. We present a prototypical
tablet computer application based on the proposed approach
to operate our humanoid robot Rollin’ Justin in an everyday
manipulation scenario. The usability of the application is
evaluated in an user study based on three experiments with
multiple users.

The paper is organized as follows: We begin with a
presentation of the methods we used to realize our approach
in Sec. II. A prototypical tablet computer application imple-
menting these methods is presented in Sec. III. Afterwards
the capabilities of the implementation of the proposed system
are shown in Sec. IV. We conclude the paper with a brief
summary of our results in Sec. V.

II. METHODS

While remote commanding a robot, the focus for the
operator should be on the task to be solved, rather than on the
robot to be operated. We believe this is supported by a HRI
replicating the real world experience, as if someone would
solve the given task on its own. In order to achieve this
feeling, the robot has to have the same information about
the environment and the contained objects as the operator
would have in its place. We address this issue by facilitating
an object-centered knowledge base which provides symbolic
and geometric object information to the robot. With this
information it is possible to generate actual feasible action
possibilities from the current world state as described in
Sec. II-A. To avoid distractions from too much information
while still guiding the operators decisions, an intuitive user
interface (UI) design along with a straightforward command
concept is developed according to Sec. II-B.

A. Providing Information

In our previous work we have shown that it is vital to
arrange knowledge within an object-centered context to solve
everyday manipulation tasks [22]. Following this concept,
objects are organized in a hierarchical structure according to
their functionality. The preliminary software architecture of
the knowledge system is summarized as follows:

An object storage provides prior knowledge for all known
objects by the robot. The objects are hierarchically arranged
in the object-oriented paradigm and categorized by func-
tionality. Objects of the same class share the same process
models for handling and can therefore be manipulated in the



same way while considering their specific properties such as
size and shape. The world representation holds the current
state of the environment of the robot. Objects as described in
the object storage are instantiated here with specific symbolic
and geometric properties.

The task reasoning as it is utilized in this paper is
performed in the context of the objects related to the task.
The object functionality is therefore stored in so-called action
templates which define distinct manipulation instructions.
Those action templates consist of two segments which are
evaluated in a two step hybrid reasoning approach. First, the
symbolic headers defined in the Planning Domain Definition
Language (PDDL) [23] are parsed in order to construct the
symbolic domain and to solve a given task symbolically.
The resulting symbolic transition is afterwards evaluated
in the second step. Therefore the geometric body of the
action templates is evaluated to ground the symbolic actions
into robot-specific actions by the use of modular geometric
simulations such as navigation, motion planning or dynamics
simulations. Geometric backtracking in case of unsuccessful
simulation is inherent in this step. Please refer to [22]
for a more detailed description. This approach has been
successfully evaluated to solve everyday manipulation tasks
[22], mobile manipulation tasks [24], and force-sensitive
whole-body manipulation [25].

However, to command versatile manipulation tasks to a
service robot in an effective manner, an intuitive UI is
required. We approach this issue by translating the internal
world state of the robot into an object-centered UI. The
entry point for the operator is thereby not task-specific but
the selection of a single object or a set of multiple objects
allowing our approach to scale for arbitrary tasks. A list of
all selected objects is passed to the the ListActions function
described in algorithm II.1 that identifies all available action
permutations for the selected objects.

Algorithm II.1: LISTACTIONS(objectList)

allActionsList← LIST()
combiningActionsList← LIST()

for each object ∈ objectList
do allActionsList.APPEND(GETALLACTIONS(object))

for each action ∈ allActionsList

do



valid← True
for each object ∈ objectList

do


res← SUBSTITUTEPARAMETER(action, object)
if res = False

then
{
valid← False
break

if valid = True
then combiningActionsList.APPEND(action)

return (combiningActionsList)

First all available action templates are collected, by itera-
tively calling the GetAllActions function for all objects of in-
terest. This includes all actions for the particular object class,
and all parent classes. In a second loop all object classes
respectively object parent classes are substituted at their first

appearance in the action (see SubstituteParameter). As a
result, a combiningActionsList containing common PDDL
parameter sets for all valid combinations is obtained. The
remaining parameters in the actions are afterwards resolved
according to algorithm II.2

Algorithm II.2: RESOLVEACTION(action)

resolved← LIST()
for each resolvedAction ∈ RECURSEPARAMETERS(action)

do



if resolvedAction ∈ resolved :
then continue

precons← GETPRECONS(resolvedAction)
effects← GETEFFECTS(resolvedAction)
if effects ⊂ worldState :

then tier ← 0
elif precons ⊂ worldState

then tier ← 1

else


plan← SYMBOLICPLAN(effects)
if LENGTH(plan) ≤ 1

then tier ← 0
else tier ← 2

resolved.APPEND([resolvedAction, tier])
return (resolved)

The ResolveAction function is executed for each action
given by algorithm II.1. To cover all action possibilities, the
world state is recursively parsed for all available parameter
combinations by the RecurseParameters function. All not yet
substituted parameters are therefore iterated and listed ac-
cording to the current world state. The resulting list of action
possibilities is divided in three tiers w. r. t. the preconditions
and the effects of the action:

Tier 0) Idle Actions: Idle actions have no influence to the
environment. They are of little relevance since they create
effects equal to a subset of the current world state.

Tier 1) Single-Step Actions: To solve tier 1 actions, the
robot has to execute one single action. The required symbolic
preconditions are subset of the current world state. Since they
are of limited complexity they are less error-prone and thus
of high interest for the operator.

Tier 2) Multi-Step Actions: The preconditions of tier 2
actions are not available in the current world state. In order
to perform the action, the preconditions have to be reached by
executing at least one additional action. However, since tier 2
actions are not guaranteed to be symbolically achievable or
possibly replaceable by a single tier 1 action, it is mandatory
to verify their symbolic feasability (see SymbolicPlan). Tier 2
actions are valuable for the operator since they provide an
overview of possible long-term tasks.

The described method generates a set of currently possible
actions which are divided in three tiers. For clarity, we are
going to explain our approach with an example. The domain
for this example is a table-top scenario. It is constructed of
three mugs (mug1, mug2, and mug3) of object class mug,
a tray which inherits from class surface, and a table which
also inherits from the surface class. The robot provides a
left arm and a right arm manipulator of class manip. The
geometric topology is outlined in Fig. 2. The listing below
illustrates the outcome of algorithm II.1 for this scenario.
The list of actions for the demanded mug1 object consists



Fig. 2. A table-top scenario including three mugs and a tray.

of all available actions for the single object instance. The
parameters ?s - surface, ?c2 - mug, and ?m - manip are
not yet resolved.
>>> actions = ListActions(’mug1’)

actions = [
[’pick’, ’mug1’, ’?s - _surface’, ’?m - _manip’],
[’place’, ’mug1’, ’?s - _surface’, ’?m - _manip’],
[’stack’, ’mug1’, ’?c2 - _mug’, ’?m - _manip’],
[’unstack’, ’mug1’, ’?c2 - _mug’, ’?m - _manip’],
[’dispose’, ’mug1’, ’?t - _trash_can’, ’?m - _manip’]]

The remaining open parameters have yet to be resolved
according to all other objects in the world state as illustrated
in algorithm II.2. Given the table-top scenario, the action
possibilities for mug1 correspond to the listing below. The
pick from table action is of tier 1 since the preconditions
match the current world state. The place and stack actions
are of tier 2. In order to execute these actions, mug1 has to be
picked first by the robot. The unstack actions are superfluous
since they replicate the symbolic effects of the pick action.
The dispose action cannot be resolved because no object of
the class trash can exists in the scenario.
>>> resolved = []
>>> for a in actions:
>>> resolved.extend( ResolveAction(a) )

resolved = [
([’pick’, ’mug1’, ’table’, ’right_arm’], 1),
([’pick’, ’mug1’, ’table’, ’left_arm’ ], 1),
([’pick’, ’mug1’, ’tray’, ’right_arm’], 0),
([’pick’, ’mug1’, ’tray’, ’left_arm’ ], 0),
([’place’, ’mug1’, ’tray’, ’right_arm’], 2),
([’place’, ’mug1’, ’tray’, ’left_arm’ ], 2),
([’stack’, ’mug1’, ’mug2’, ’right_arm’], 2),
([’stack’, ’mug1’, ’mug2’, ’left_arm’ ], 2),
([’stack’, ’mug1’, ’mug3’, ’right_arm’], 2),
([’stack’, ’mug1’, ’mug3’, ’left_arm’ ], 2),
([’unstack’, ’mug1’, ’mug2’, ’right_arm’], 0),
([’unstack’, ’mug1’, ’mug2’, ’left_arm’ ], 0),
([’unstack’, ’mug1’, ’mug3’, ’right_arm’], 0),
([’unstack’, ’mug1’, ’mug3’, ’left_arm’ ], 0)]

Even though not all of the actions are executable by the
robot within only one single action, they are all valuable
to the operator to get an overview of the actions the robot
can possibly execute. It is not important to the operator that
neither symbolic connections or geometric parameters are
listed within the action list, since the hybrid reasoning is
autonomously executed by the robot as described earlier.
However, the operator might still get overwhelmed by too

many available actions since everyday environments offer
a large number of objects that are subject to manipulation
tasks. In the following Sec. II-B we are going to empha-
size how this can be avoided by integrating the presented
approach into an intuitive UI design.

B. Visualizing Information

The method proposed above generates large action sets for
complex world states. Presenting all of these actions to the
operator is inapplicable as it results in high cognitive load.
Therefore we develop an UI concept based on a point-and-
click paradigm and object-centered information reduction.

In a nutshell, the point-and-click paradigm defines that
pointing to a specific location indicates an users interest
and clicking executes some kind of action. This approach
is commonly used in window-based operating systems and
adventure video games. The latter often facilitates control
over a virtual agent whose movements are directed, but not
completely specified by the user through clicking on objects
in the virtual world. By this, high level targets are specified
that are reasonable for the clicked object in the current
context. The corresponding actions to achieve these targets
are autonomously scheduled and executed by the agent.

We adapt the point-and-click paradigm for our needs to
command service robots through a minimalistic and intuitive
UI. Therefore the operator selects the objects to be manipu-
lated in the GUI of the HRI. The robot then autonomously
determines possible actions combining all selected objects
as described in Sec. II-A and provides the resulting action
set to the operator. After choosing an action of the set, the
execution is done autonomously by the robot.

As a basis for command decisions, we establish com-
mon ground between robot and operator by streaming real
time video of the head mounted camera of the robot to
the operator. This provides a robot-centered perspective on
the (remote) world supporting situational awareness of the
operator. We believe this perspective supports a focus on the
task to be solved as it replicates the real world experience the

Fig. 3. Conceptual HRI GUI showing the video stream of the robot
augmented with CAD models of the world state objects: table, tray, and
three mugs. A high saturation of the highlight color corresponds with a
high number of possible actions for the respective object.



operator would perceive in place of the robot. Additionally
we augment the video stream with CAD models of all objects
that are currently part of the internal world state of the robot.
Fig. 3 shows the concept of the resulting GUI.

The CAD data of the world state objects of the robot
is used to guide the focus of the operator by emphasizing
regions in the video stream. Therefore each object is over-
layed with its semitransparent 3D model. The saturation of
the overlay increases with the number of possible actions
of the object. Fig. 3 illustrates this approach: The world
state objects (table, tray, and mugs) are emphasized by blue
color. The mugs provide the most possible actions (pick,
place, stack) and are therefore shown with a high saturation.
The table provides no possible action thus it is draw with
a low saturation. Areas of the video not showing detected
objects are deemphasized using greyscale colors but are
nevertheless displayed to help the operator gaining situation
awareness in the remote environment. This adaptation of
visual feedback efficiently reduces unimportant information
resulting in lower cognitive load and better guidance towards
task achievement for the operator. For better overview in
cluttered scenes, the highlighted objects may be outlined.

The described highlighting of objects helps the operator to
identify possible objects for manipulation. Selecting objects-
of-interest is the entry point for commanding the robot. A set
of possible actions w. r. t. the selected objects is determined
according to Alg. II.1 and resolved into single-step actions
and multi-step actions according to Alg. II.2. The selection
of an action from the set is simplified by splitting the action
descriptions into layers as illustrated in Fig. 4.

As a result a step-by-step parametrization can be applied
which results in fewer choices per layer and thus reduces
the cognitive load of the operator when selecting an action.

Layer 1
Action Verb

Layer 2
Parameter1

Layer 3
Parameter2

Layer 0
Object(s)

right_arm

left_arm

right_arm

left_arm

right_arm

left_arm

right_arm

left_arm

mug1

tray
+

mug2

table

mug3

tray

right_arm

left_arm

pick

stack

place

place

mug1

Fig. 4. Decomposition of actions into layers. The upper part illustrates
a single selection, while two objects are selected in the lower part. The
orange box indicates the selected objects. Blue boxes are available tier 1
actions for the selected objects and are executable within one step. Gray
boxes indicate tier 2 actions which require multiple steps.

The operator can furthermore actively influence the size of
the generated action set by the number of selected objects.
The more objects are chosen by the operator the less actions
combine all of these objects as shown at the bottom of Fig. 4.

The objects used to generate the action set are collected
in layer 0 and stripped from the PDDL action descriptions
to minimize the depth of the hierarchy. At the first layer, the
operator has to choose between possible action verbs - e. g.
pick. These are refined by their respective resolved PDDL
parameters at the following layers - e. g. table, left arm. This
layering allows the stepwise specification of an action giving
the operator better focus on the aimed target as the range of
possible selections is bounded to a single layer at a time.
Using colors, we differentiate between single-step actions
(blue) and multi-step actions (grey) in the hierarchy to help
the operator choose appropriate actions.

A simple selection could be performed by classical input
methods, such as one-dimensional list boxes and drop down
menus as used in many HRIs, e.g. [11][21]. However, it
would get more difficult for an operator to pick a desired
action from the list represented by such an input element
if the set of possible actions gets large due to enhanced
capabilities of the robot and complex world states. Therefore
we utilize a hierarchical ring menu [26] as shown in Fig. 5
where every ring represents possible selections from the
respective layer of the hierarchy.

By dynamically showing children rings as their respective
predecessor is selected in the parent ring, the displayed
information is reduced to choices the operator is currently
interested in. For a better understanding of the selection,
the fully specified PDDL definition of the currently selected
action is shown at the top of the screen. Emphasizing single-
step actions in the ring menu makes it easy for the operator to
identify simple - possibly more often needed - actions. This
is particularly useful when the operator plans to command a
simple action, e. g. pick, where only one object is selected so
a large number of possible actions is generated due to that
non-restrictive operator input as shown in Fig. 4.

stack mug1 mug2 right_arm

stack

pick

pl
ac

e

mug2

mug3

right_arm

left_arm

Fig. 5. Use of a ring menu to reduce the complexity of action selection by
exploiting the hierarchical structure of actions. The colors in the ring menu
correspond to Fig. 4. Currently selected regions of each ring as well as the
selected object are highlighted with orange color.



III. PROTOTYPE IMPLEMENTATION

A prototype of the proposed HRI is implemented for
tablet computers. The complexity of the system is distributed
between the mobile device and the robot as shown in Fig. 6.
Modules for reasoning, as described in Sec. II-A and hard-
ware access are provided by the robot. The mobile device
implements the visualization and the handling of operator
input, as described in Sec. II-B.

The UI provided by the mobile device requires only few
continuous input from the robot: compressed video stream,
selected telemetry data, and current world states. CAD data
for the visualization of world state objects is downloaded
from the robot and cached at the mobile device on demand.
The commanding of the robot is done by transmitting PDDL
action descriptions from the mobile device to the robot. The
application requires little bandwidth due to the transmission
of few selected and compressed data. Furthermore, higher
latency of the overall system is tolerated by shared autonomy
compared to a teleoperation approach.

Using the mobile device, the operator interacts with the
objects in the world state of the robot. The respective CAD
models are rendered on top of the live video stream. A set of
possible actions w. r. t. the selected objects is generated from
the symbolic world state and presented to the operator using
a ring menu. Fig. 7 shows a screenshot of the implemented
GUI. After the operator selects an action from the set, the
respective action description is sent to the hybrid planner of
the robot. As described in Sec. II-A the task is first resolved
symbolically and afterwards geometrically. The robot relies
thereby on the same information from the action templates
that is used to visualize the manipulation possibilities to the
operator. Finally an execution confirmation is requested from
the operator. When the execution is confirmed, the planning
result is executed autonomously. For additional safety, a
command immediately stopping the action execution can be
sent by the operator at every time.

The described HRI strongly depends on the operator
seeing the objects, he wants to manipulate on the screen
of the mobile device. In cases when the camera is not facing
the desired objects, different methods for changing the visual

Reasoning

RobotMobile Device

CAD Data

Telemetry

Video Stream

Selected Action Hybrid Planner

Hardware
Execution

World State World Representation

Object Storage

Control

Sensors

Fig. 6. Overview of software components of the prototypical HRI
implementing the proposed system. Continuous arrows show constant data
updates. Dotted arrows show the basic data flow of an operator-initiated
action command.

(a)

(b)

Fig. 7. Screenshots of the prototypical implementation of the HRI
tablet computer application illustrating the action selection procedure: single
object selection (a), multi object selection (b)

gaze of the robot are implemented for the prototype: Gaze
following drag gestures on the touchscreen of the mobile
device, gaze mimicking movements captured by inertial
sensors of the mobile device and gaze autonomously facing
objects by using a look at capability of the robot.

IV. EVALUATION

This work describes the development of a shared au-
tonomy HRI for tablet computers implementing an object-
centered and knowledge-driven approach. The capabilities of
the overall system are evaluated in an use-case scenario with
practical relevance for modern service robots according to
Sec. IV-A. An user study has been conducted in Sec. IV-B
in order to measure the usability of the HRI. All experiments
are executed with the humanoid robot Rollin’ Justin [27] and
a Samsung Galaxy Note 8 tablet computer.

A. Experiment

Cleaning up an untidy environment is one of the most
frequent tasks in human households. In order to solve this
task objects have to be relocated which results in pick and
place sequences. For this the robot has to figure out which
objects have to be relocated and where to place them. As
the expected target location of an object changes w. r. t. the
environmental context, hardcoding a specific target location
is insufficient. E.g. a dirty mug should be placed in the
dishwasher but a book that is currently read should stay in
its place near the couch. The contextual awareness needed
to satisfactorily solve the task is a hard problem for service
robots. Furthermore, relocating an object may require to
open and close designated containers such as cupboards or



(a) (b)

(c) (d)

(e) (f)

Fig. 8. Procedure of the experimental clean up task: Picking mug3 from the
table, operator view (a), external view (b). Disposing milk1, operator view
(c), external view (d). Stacked mug1 on mug3, operator view (e), external
view (f).

drawers. Due to these problems and the ambiguity of the
problem statement in general, a generic approach to solve
clean up tasks can hardly be defined. By applying shared
autonomy, some of these problems can be avoided by using
the contextual and cognitive capabilities of the operator.

For our experiment, operator and robot are spatially sep-
arated, so the operator can only gain information about the
state of the robot and its environment via the tablet computer
HRI. The robot is prelocalized in its environment consisting
of priorly known objects. An artificial clean up scenario was
constructed based on the example introduced in Sec. II-A
Fig. 2 which was extended by a milk carton located on the
table and a trash can placed next to the table on the floor.
The robot has to move the three mugs from the table to the
tray and has to put the empty milk carton into the trash can.
Fig. 8 shows the experimental procedure.

Our system allows the operator to gain situational aware-
ness in the remote environment by turning the head of the
robot while observing the live video stream from the head
mounted camera of the robot.

The action scheduling is done by the operator via our
tablet HRI and can be split in three steps: (1) placing the
mug which blocks the milk carton on the tray, (2) putting
the milk carton in the trash can, and (3) placing the remaining
mugs on the tray.

1) The robot can reliably place mugs on a tray with
sufficient free space. Therefore mug3 is directly com-
manded to be placed on the tray.

2) Picking the milk1 object and disposing it in the
trash can is commanded using single-step actions to
demonstrate the stepwise execution of an otherwise
multi-step action. This approach allows the operator
to monitor the state of the robot after action execution
and to be responsive to execution problems.

3) Mug2 is directly placed on the tray. Mug1 is com-
manded to be stacked on the already placed mug2 due
to little remaining free space on the tray.

The experiment showed the capability to solve the am-
biguous clean up task using our HRI by commanding robot
actions on a high level of abstraction. The HRI allowed
the operator to observe the task and respond to situations
that otherwise would have been perceptive and cognitive
challenging for our robot. The accompanied video illustrates
the experiment in detail.

B. User Study

For a more general evaluation of the usability of our
HRI, we conducted a user study with 6 female and 14 male
participants aged between 20 and 52 (average 24.5). The
participants were familiar with modern smartphones or tablet
computers but had no prior experience with our HRI or the
Rollin’ Justin robot. During the study, each participant was
spatially separated from the robot and introduced to the HRI
(max. 10 minutes). Afterwards three tasks had to be solved:
(T1) pick a specified object, (T2) find and pick a specified
object, and (T3) find, pick and place a specified object in
cluttered scene on a specified target. The duration of the
execution and the number of practised clicks were captured
and set into relation with the results of an expert-user to
gain simple objective measures. The System Usability Scale
(SUS) [28] was used in addition to measure the usability of
the HRI on a scale from 0 (bad) to 100 (good).

All participants succeed in all tasks and reached averaged
execution durations between 2.0 (σ 0.5) and 4.1 (σ 2.4) times
the expert-user result and averaged numbers of practised
clicks between 1.5 (σ 0.4) and 2.3 (σ 0.8) times the expert-
user result. These results show, that the developed HRI can
be used to achieve simple tasks after only minimal training.
In addition, a good usability of the HRI is expected as the
number of practised clicks is near the expert-user results.
This is confirmed by a high SUS of 87.5 (σ 6.25).

As there existed no prior HRI allowing non-expert users
to command manipulation capabilities of Rollin’ Justin, the
positive results encourage us to further develop the system.
Comparing different UI approaches is subject of future work.

V. SUMMARY

In this paper we presented a shared autonomy HRI that
enables an operator to command high level actions rather
than robot capabilities. We argued that the cognitive and



perceptive capabilities of the operator together with hy-
brid reasoning mechanisms of the robot allow for a semi-
autonomous execution of otherwise challenging robot ma-
nipulation tasks. We efficiently lowered the cognitive load
of the operator by using the knowledge of the robot about
its environment w. r. t. current manipulation possibilities. A
point-and-click paradigm based on this knowledge was used
to intuitively command robot actions by selecting the objects
to be manipulated on a touchscreen.

This approach simplified the UI of the HRI and provided
access to priorly known actions for manipulation of priorly
known objects that are in the field of view of the robot.
Objects the robot cannot see can’t be selected by the operator,
thus e.g. fetching tasks for objects located in other rooms or
inside cupboards cannot be commanded. We plan to solve
this issue by adding other levels of shared autonomy such as
navigation in semantic maps in future work.

A prototypical tablet computer application was used to
successfully evaluate the proposed concepts in a clean up
scenario with the robot Rollin’ Justin. In a user study, we
showed that our system is highly intuitive and enables novice
users to easily command a humanoid service robot.
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