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Abstract— This study describes and evaluates two new meth-
ods for finding and following people in urban settings using
a humanoid service robot: the Continuous Real-time POMCP
method, and its improved extension calledAdaptive Highest
Belief Continuous Real-time POMCP follower. They are able
to run in real-time, in large continuous environments. These
methods make use of the online search algorithmPartially
Observable Monte-Carlo Planning (POMCP), which in contrast
to other previous approaches, can plan under uncertainty
on large state spaces. We compare our new methods with a
heuristic person follower and demonstrate that they obtain
better results by testing them extensively in both simulated
and real-life experiments. More than two hours, over 3 km, of
autonomous navigation during real-life experiments have been
done with a mobile humanoid robot in urban environments.

I. INTRODUCTION

The importance of autonomous mobile robots in industrial
and research applications is growing, therefore, the need
to execute successfully challenging missions and tasks has
also grown. Thus, humanoid urban robots require several
behaviors in order to successfully serve people. In this work,
we are interested in how the robot can find and follow people
in cluttered, dynamic environments, in order to help him or
her.

Research into Human-Robot Interaction (HRI) in the field
of find-and-follow is still new in comparison to traditional
service robotics, such as HRI on a campus [1]. Therefore,
prior research in this particular field is relatively minimal [2].
Most of the current research studies robots that participate
in social human interactions as companions [3].Find-and-
follow is a multidisciplinary field of robotics in which a mix-
ture of subjects such as perception, robot navigation and HRI
intervenes. Despite the heterogeneity of the subjects treated,
the problem can not be tackled independently but in a holistic
way, which is not an easy endeavor. In this paper, we present
two new methods: theContinuous Real-time POMCP(CR-
POMCP) model, and its improved extension calledAdapta-
tive Highest Belief Continuous Real-time POMCP Follower
(Adaptive HB-CR-POMCP Follower), which make use of
POMCP (Partially Observable Monte-Carlo Planning[4]).
The find-and-followtask is executed by the humanoid robot
in an on-line real-time fashion, using continuous state space
on large maps. In addition, the system takes into account
sensory noise in the localization.
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Fig. 1. Top: Dabo performs the find-and-follow task with a target.Bottom:
Robot’s estimation of target’s position (belief).

The CR-POMCP extends the classical POMCP model,
working in the continuous space instead of the discrete space,
plans the action in real-time. In this way we can do real-time
experiments with human volunteers. Moreover, we compare
our methods with a previous and well-known system: heuris-
tic person follower [5] Through a large number of synthetic
and real experiments, we observed that theAdaptive Highest
Belief Continuous Real-time POMCP Followerwas able to
find and follow different volunteers, while the other two
methods performed the task slowly or lost the person, and
therefore could not continue the mission.

Finally, the validation of the model is accomplished
throughout an extensive set of simulations and real-life
experiments. Our results total over 3 km of autonomous
navigation, and more than two hours during over a week
of experimentation.

In the reminder of the paper we start by introducing the
Related Work. Section III provides the different methods we
propose. Finally, the results of the methods and conclusions
are presented in Sections IV and V, respectively.

II. RELATED WORK

Robotic research has the potential to help humans in
urban services, here the robot is enabled to support humans
by finding and accompanying them. Research into Human-
Robot Interaction in the field of urban services is still
relatively new in comparison to traditional research. In this



work, we presentCR-POMCP(and the improvedAdaptive
HB-CR-POMCP Follower), where an autonomous robot is
able to find a person in a dynamic cluttered environment
and accompany him/her until a goal. For this reason, our
topics of interest are: safe find-and-follow navigation with
humans and accompanying people.

In the last several decades, major technological achieve-
ments have been accomplished with respect to the develop-
ment of autonomous mobile robots for outdoor environments.
Robust and reliable systems for navigation [6], obstacle
avoidance [7], and localization [8] have been successfully
integrated into several kinds of robotic platforms [9]. A
number of methods have been developed to allow robots
to navigate safely around people in specific, typically non-
generalizable tasks [10].

Many works have been presented on finding people in
indoors environments. In [11] a service robot is able to detect
and find people inside a house making use of their legs,
face, body-shape and motion. Nevertheless this work can not
be applied to outdoor environments and it is assumed that
the person is on the same position during the experiment,
which is a strong assumption. Johanson et al. [12] presented
a simplification of the real world problem of finding people,
the hide-and-seek game, where there is a robot seeking
and one or more players hiding. The hide-and-seek game
also requires a high number of cognitive functions such as:
search and navigation, finding coordination, anticipationand
planning.

In [13] we focused on the hide-and-seek game, because
this gives a limited and easier working environment to study
the problem of searching people and to test the methods.
First, we started to work in discrete time and space [14], and
we used MOMDPs (Mixed Observable Markovian Decision
Processes, [15]) to search for a person.

As opposed to previous works, in order to find a person
our method only requires a map of the environment and is
able to continuously plan its decisions based on people’s
behavior. Moreover, our method gives a probability map to
indicate the possible positions of the person who is being
searched for.

III. FIND-AND-FOLLOW METHODS

For a robot to find and follow a person we present
three methods: 1) theHeuristic Follower which is used as
comparison; 2)Continuous Real-time Partially Observable
Monte-Carlo Planning(CR-POMCP) which is much smarter
keeping in mind movement, and has memory; and 3) an
extension to the previous, theAdaptive Highest Belief CR-
POMCP Follower.

A. HEURISTIC FOLLOWER

The easiest way for the robot to follow a person is by
directly going to the position where he or she is detected [16].
The robot’s goal position is set just in front of the person.
When the target is not visible anymore, the robot keeps going
to the last person’s position. When reaching this position, the
robot stays and waits for the person to appear again.

B. CONTINUOUS REAL-TIME POMCP

Whereas theHeuristic Followeronly uses the last person’s
position, here we present a method that takes into account the
future movement of the robot and person, sensory noise, and
maintains a memory of the possible positions of the person.

POMCP (Partially Observable Monte-Carlo Planning[4])
is a Reinforcement Learning algorithm for planning under
uncertainty, which is present in our problem due to not
always knowing the location of the person we are looking
for and due to sensory noise.

POMCP is based on and makes use of thePartially Ob-
servable Markovian Decision Process(POMDP [17], [18]),
as we will explain firstly. Thereafter, the POMCP algorithm
will be explained first for the discrete case, then we present
how to use it in continuous space states. Moreover, all the
planning is done inreal-time.

1) POMDP: A POMDP model contains a set of
states (S), which for our case are defined as the position
of the robot and person:(srobot, sperson). The robot can do an
action out of the limited setA. Here, the robot is able to
move in one of eight directions, or stay at the same place.
Instead of knowing the exact state, an observation of the
state is done. In the find-and-follow problem observations
(O) are equal to the states, but the person’s position(sperson)
has a special valuehidden when he or she is not visible.
The probabilities of going from one states to anothers′

with an actiona are defined byT = P (s′|s, a), and the
observation probability byZ = P (o|s′, a). The reward
functionR is used to guide the learning process indicating
which are the best actions to do in which states, the policy.
Our reward function,−drp, is increasing when the robot-
person distancedrp is decreasing.

Instead of knowing the full state, a probability of being
in each possible state is stored, this is called thebelief. The
starting beliefb0 has to be given in advance, for example a
uniformly distributed probability over all the locations where
the person might be hidden. Thereafter, the belief is updated
using the observation and the probability functions. In Fig. 1-
bottom-right the belief location is represented by a high
probability (red) to a low probability (white). The resolution
of the belief is low because the map size is big, and it keeps
in mind possible sensory noise.

The best action to execute for each (belief) state is
calculated by computing the value function [19], [20], [18]:

Q(b, a) = R(b, a) + γ
∑

o∈O

P (o|b, a)V (τ(b, a, o)) (1)

where R(b, a) is the reward for the belief stateb and
action a, γ is the discount factor,V (b) = maxa∈AQ(b, a),
and τ(b, a, o) is the next belief stateb′. Finding the exact
policy would be intractable (PSPACE-hard, [21]), therefore
approximation methods are used which sample the belief
space in a smart way to find a policy [18], [17]. In general
POMDPs have two main problems [15]: 1) the growth of the
belief space (curse of dimensionality), and 2) the exponential
tree growth with the search horizon (curse of history).



Fig. 2. A part of a policy tree generated by POMCP during a find-and-
follow task. The root represents the current situation and contains a belief.
For each action (here representing a movement:north, northeast, south,
etc.) a child node is reached. From the action nodes, an observation (’?’
indicating that the person is not visible) can be taken whichreaches a new
situation. The root and observation nodes of the first layer contain a belief.
All nodes maintain an expected valueV and the number of timesN this
value has been updated.

In previous work [13], [14] we tried to tackle this problem
by using a layered MOMDP, but this was achieved for
relatively small maps. Other works [15], [22], [17], [18]
showed simulations of hide-and-seek like problems using
POMDPs, but in small discrete environments, and only few
real-life experiments [18], [14] were done.

2) POMCP: The use of POMDP models is limited
due to computational complexity and exponential memory
growth. An improvement ofMonte Carlo Value Iteration
(MCVI [23]) is to calculate the expected reward over a
random set of samples instead over all states.

The idea of using Monte Carlo simulations is extended by
Silver and Veness [4] by doing Monte Carlo simulations to
generate a policy. The big advantage of POMCPs is that they
tackle thecurse of historyand thecurse of dimensionality
by simulating the POMDP, and not requiring the whole fully
defined model. Thus, the complexity depends on the POMDP
simulator. Convergence for POMCP with finite horizon is
proven in [4], but can be extended to the infinite case as
shown in [24].

3) ALGORITHM: POMCP generates a policy tree with
two types of nodes:belief nodesthat represent a belief
state, andaction nodeswhich are their direct children and
are reached by doing an action, see Fig. 2. The root is a
belief nodeand contains the belief, which in POMCPs is
represented by a list of states instead of probabilities of all
possible discrete states. When a state is more probable then
the state is repeated more times in this list.

Whereas the POMDP solvers mainly use value itera-
tion (1) to find a policy, POMCP makes use of Monte Carlo
simulations. Each node in the tree keeps track of the average
expected rewardV , and the number of timesN a simulation
passes through the node. Before the first learning iterationis
executed, an initial belief has to be set for the root’s belief
Root.B. The POMDP simulator’s functionI(o0) is used to
generatenbelief states of the initial belief (explained in detail

Algorithm 1 The POMCP planner. Retrieving children nodes
is noted asNode[a] (for action a for example).

1: function SIM NODE(Node,s,depth)
2: if depth> dmax then return 0
3: else
4: a← argmaxaNode[a].V + c

√

log (Node.N)
Node[a].N

5: if depth = 1then Node.B = Node.B ∪ {s}
6: (s′, o, rimmediate)← G(s, a)
7: if s′ is not final and not Node[a][o] existsand
8: Node[a].N ≥ ecount then
9: Add Node[a][o]

10: end if
11: if s′ is not final then
12: if Node[a][o] exists then
13: rdelayed← SIM NODE(Node[a][o],s′,depth+1)
14: else
15: rdelayed← ROLLOUT(s′,depth+1)
16: end if
17: else
18: rdelayed← 0
19: end if
20: rtotal← rimmediate+ γrdelayed
21: Node[a].N ← Node[a].N + 1
22: Node[a].V ← Node[a].V + rtotal−Node[a].V

Node[a].N
23: Node.N ← Node.N + 1
24: Node.V ← Node.V + rtotal−Node.V

Node.N
25: return rtotal
26: end if
27: end function
28: function ROLLOUT(s,depth)
29: if depth> dmax then return 0
30: else
31: a ∼ πrollout()
32: (s′, o, r)← G(s, a)
33: return r + γ ROLLOUT(s′,depth+1)
34: end if
35: end function

later on in subsection III-B.5).
Before each robot’s step the policy tree is updated by

doing nsim simulations. Randomly a states ∼ Root.B is
sampled, and then SIM NODE(Root,s,0) in Algorithm 1 is
called. An overview of the parameters used in POMCP is
given in Table I. Firstly, an action is chosen in line 4 based
on the highest valueV of the action node and an exploration
factor [4], which is weighted by the exploration constantc.
This latest factor causes the learning process to explore
other possible actions instead of only exploiting the current
knowledge.

The POMDP simulatorG in line 6 returns the new state
s′, observationo, and rewardrimmediate based on the current
states and chosen actiona. The tree is traversed by choosing
the edges fora ando respectively; if this node does not yet
exist,s′ is not a final state and the simulation already passed
at leastecount times before, then a new belief node is added
(line 9). The expand count (ecount) prevents the tree from
growing too fast.

Then, if the state is not final, the future rewardrdelayed is
calculated by using the child node, if it exists in line 13,
or by executing the ROLLOUT function (line 28). A rollout
policy πrollout [4] is followed until the run has finished or
the maximum depth has been reached. This policy can be
random, as we used, or it can be based on a heuristic.



TABLE I

THE PARAMETERS OF THEPOMCPALGORITHM .

Parameter Description
γ Discount factor.
nsim Number of Monte Carlo simulations.
nbelief Number of states in the belief.
c Exploration constant.
ecount Expand count.
dmax Maximum tree depth.

In line 20 the reward for the current belief and action
nodertotal are calculated, whererdelayed is weighted with the
discount factorγ to reduce the influence of possible future
rewards. Next the average values and new counts of the nodes
are updated (lines 21-24).

Finally, after the policy tree has been learned, the action to
execute can be chosen from the tree:a← argmaxaRoot[a].V .

After having executed an actiona, a new observationo is
done. The new belief node can be retrieved from the tree by
following edgea, which reaches an action node, and witho

reaching the new belief node. If for example, in Fig. 2, action
ne has been taken, and observationhidden (’?’) has been
done then this would reach the new big node left-under. This
new node is then taken as root, and if this childbelief node
does not exist, a newbelief nodeis created. In simulation
the beliefs of the belief nodes at depth 1 already have been
grown (line 5 in Algorithm 1), and when this node has been
chosen as new root, implies that it already will have some
states in the belief.

A minimum number ofnbelief states in the belief are
maintained to assure a minimal spread of the belief over the
possible person’s locations. If the new root’s belief includes
less thannbelief states, then new states are generated for the
belief using the POMDP simulator:(s′, osim, r) = G(s, a),
wheres is sampled from the previous root’s belief. The state
s′ is stored in the new root’s belief if it matches the real
observationo = osim. If there is no belief in the new root, an
initial belief can be calculated from the new observation, but
this results in losing the knowledge about the state (belief).

4) POMCP IN CONTINUOUS SPACE (CR-POMCP):
The use of continuous state space in POMDPs is not evident,
furthermore the POMDP’s belief space is continuous with
an infinite number of dimensions. However Porta et al. [25]
show that value iteration can be used due to properties of
the value function, but the policy’s complexity grows.Monte
Carlo Value Iteration(MCVI) is used in [26] to find a policy
for POMDPs. A policy graph is generated to avoid having
to handle the continuous belief space. A number ofN states
are randomly sampled to estimate the expected reward.

In contrast to the previously mentioned methods, we do
not have to define a POMDP model, but we simulate the
transitions. This avoids us from having to handle belief
spaces of infinite dimensions.

Using continuous states in POMCPs requires us to 1) de-
fine the continuous states; 2) create a POMDP simulator
that handles these states; and 3) assure that the observations
are discretized. In continuous state space an exact position
is used instead of grid cells. The actions and observations

however always have to be discrete, otherwise the planner
would have to take into account too many situations, since
the policy tree could grow too wide and the values in the
nodes would not converge.

A balance of the observation discretization is important,
because very small grid cells imply a higher resolution, but
wide policy trees with lower probability of convergence to a
good policy. In contrary lower detail can cause problems
of precision in the planning, but increases probability of
convergence.

5) FIND-AND-FOLLOW POMDP SIMULATOR:Up to
this section we have explained how the CR-POMCP works,
now we will explain the details of the POMDP simulator
G (line 6 in Algorithm 1) as defined for the find-and-
follow task. The map is known beforehand, which is dis-
crete with each grid cell being either anobstacleor free.
States and observations are the position of the seeker and
hider (srobot, sperson), and person’s observationoperson can be
hidden. There are nine actions: eight movements (north,
northeast, etc.) and standing still.

Initial states are generated with the functions = I(o0),
where o0 is the initial observation. The generated state is
equal to the observation, but when the person’s observed
position is hidden then sperson is chosen randomly from
hidden positions as seen from the locationorobot.

New states are generated by(s′, o, r) = G(s, a), based on
the current state and an action. The new state variables′robot
depends on the action and robot’s positionsrobot; the person’s
movement is modeled as random, but could be modeled
heuristically. The observationo equals the new states′, but
operson =hidden when the person is not visible according
to a ray trace algorithm. The reward function is heuristic:
r = −drp, wheredrp is the shortest path distance between
the robot and person.

Gaussian noise is added to the state and observation:
N (0, σ) in order to simulate sensory noise. Different stan-
dard deviations of the noise are defined for the next seeker
state (σns), next person state (σnp), seeker observation (σos),
and person observation (σop). False negatives are simulated
by converting a person’s observationoperson in hiddenwith
probability pfn, and false positives by generating a random
position operson with probability pfp when the person is not
visible.

C. ADAPTIVE HB-CR-POMCP FOLLOWER

When executing the find-and-follow task using theCR-
POMCPmethod, our real robot Dabo [9] moved too slowly,
not being able to follow the person in real-time. This was
caused by the slightly deviating discrete actions due to the
random Monte-Carlo simulations; for example first an action
north, and then the action northeast.

To solve this problem, farther goal positions have to be
given to the robot, such that it uses its navigation system
to reach the goal without unnecessary turns. As goal the
point with the highest belief is passed to the robot. The goal
is updated everythb.updates to prevent the goal from being
changed too often.



Fig. 3. Left: Barcelona Robot Lab, North campus of the UPC. Right:
FME Lab, South Campus of the UPC.

This method, theAdaptive Highest Belief CR-POMCP
Follower, makes use of the previously discussed method,
CR-POMCP, to update the belief in each iteration. When
the person is visible, theHeuristic Follower is used to
follow the person, but at the same time the belief of the
person’s position is updated. When the person is not visible,
a 2D histogram from the belief of the position of the person
(sperson) is generated. From this matrix the cell with the
highest count is used as the robot’s next goal.

It is important to choose the right resolution for the matrix,
because a high resolution results in a high number of cells
which requires a higher number of belief points (nbelief), and
therefore more simulationsnsim. A too low resolution reduces
the precision with which the robot can be sent to find the
person.

D. SUMMARY

To sum up, theHeuristic Follower simply goes to the
last visible position of the person. A smarter method is the
CR-POMCPwhich is able to find and follow a possibly
hidden person. It takes into account movement of the robot
and person, and makes real-time usage of POMCP in a
continuous state space. Finally, an extension on the latter
is presented, theAdaptive HB-CR-POMCP Followerwhich
improves the movement behavior of the mobile robot.

IV. SIMULATIONS AND EXPERIMENTS

In this section we introduce the results obtained from the
simulations and the real-life experimentation.

A. EXPERIMENTAL SETTING

Here, the robotic platform and the testing environments
used in the present paper will be presented.

1) ROBOT PLATFORM:To conduct all the experiments
and to test the approach presented, we used two twin mobile
service robots, called Tibi and Dabo, each designed to work
in urban pedestrian areas and to interact with people, see
Fig. 3. They are based on a two-wheeled Segway RMP200
platform, which works as an inverted pendulum in constant
balancing. They can rotate on the spot (nonholonomic), and
have wheel encoders providing odometry, and inclinometers
providing pitch and roll data.

As social robots, Tibi and Dabo are designed to interact
with people. They are equipped with several interaction
devices to enable them to engage with friendly interactions,
such as a touchable screen, speaker, movable arms and head,
and LED illuminated facial expressions.

2) ENVIRONMENTS:The experiments were conducted at
the BRL (Barcelona Robot Lab) and the FME (Facultat de
Matem̀atiques i Estad́ıstica) lab, outdoor urban environments
located at the North and South Campus of the Universitat
Politècnica de Catalunya (UPC), respectively.

The BRL (Fig. 3-Left) is a large area of the campus
that was outfitted as an experimental area, covering over
10.000 m2, comprising six buildings and a central square,
with multiple ramps, staircases, and typical obstacles such
as bulletin boards, bicycle stands, trashcans and flower pots.
The area used for our experimens was discretized to80×15
grid cells, 1 m each. The FME lab (Fig. 3-right) consists of
a green space and a paved area, separated by stairs. In this
area the grid cells where of 1 m, having in total17 × 12
cells.

B. SIMULATIONS

The experiments are done on maps with discrete grid cells
which either can befree or an obstacle. For each iteration
step the robot and person can move in one of eight discrete
directions (north, northeast, south, etc.), or stay at the same
position. The coordinates are continuous, and the movement
distance is 1 cell per step for both agents (also in diagonal,
i.e. not

√
2).

For simplicity the simulations do not include neither
acceleration, nor friction, nor collision. The agents are not
allowed to be neither outside the map nor on top of an
obstacle. For algorithms that give goals farther away, such
as theAdaptive HB-CR-POMCP Follower, the shortest path
is calculated, and during each iteration one step is taken.

The person simulation is done by starting at a random
position, and by giving it a random goal. Each iteration the
goal is approached one step, and when the goal is reached,
a new random goal is chosen. A multi-person environment
was simulated by adding a group of 10 persons which cause
occlusions, and have the same behavior as the person.

The three algorithms discussed in Section III were ap-
plied in simulations: 1)Heuristic Follower; 2) CR-POMCP;
3) Adaptive HB-CR-POMCP Follower. The algorithms have
been compared by looking at the average distance to the
person.

To make the comparison between the three methods as
fair as possible, for each run of simulations the robot’s start
position and the person’s movement were the same. A total
of more than 4000 simulations have been done repeating
each of the conditions at least 40 times. For each simulation
200 steps were done, except for the smaller map FME, for
which 100 steps were done.

The parameters of the algorithms which have been used in
the simulations and real experiments were obtained experi-
mentally, and are shown in Table II. In simulation the smaller
values ofnsim andnbelief have been used for the small map
only. The Adaptive HB-CR-POMCP Followerupdates its
belief every 3 s in the real experiments and every 3 iterations
in the simulations. The 2D histogram used by the adaptive
method has a resolution two times lower than the larger BRL
Lab’s grid map.
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Fig. 4. Real-life experiments.Left: Some video captures of real experiments. Dabo performs thefind-and-followtask.Right: The trajectory performed
by the robot, and the same scene showing the belief of the person’s location.

TABLE II

THE PARAMETERS VALUES USED DURING THE REAL AND SIMULATED

EXPERIMENTS.

Parameter Real Sim. Parameter Real Sim.
γ 0.95 0.95 σnp 0.3 0.3
nsim 1000 2500 σos 0.1 0.1
nbelief 500 1000 σop 0.1 0.1
c rows× cols pfn 0.3 0.3
ecount 2 2 pfp 0 0.001
dmax 2(rows× cols) prh 0.01 0.01
σns 0.2 0.2 thb.update 3 s 3 steps

TABLE III

METHOD Dist. [m]

Adaptive HB-CR-POMCP Follower 1.52 (±0.24)

0
P

eo
pl

e

Heuristic Follower 1.70 (±0.31)
Continuous Real-Time POMCP 2.33 (±0.23)

F
M

E
LA

B

Adaptive HB-CR-POMCP Follower 2.54 (±0.36)

10
P

eo
pl

e

Heuristic Follower 3.11 (±0.47)
Continuous Real-Time POMCP 3.26 (±0.36)

Adaptive HB-CR-POMCP Follower 3.91 (±1.27)

0
P

eo
pl

e

Heuristic Follower 6.36 (±1.71)
Continuous Real-Time POMCP 5.59 (±1.26)

B
R

L
LA

B

Adaptive HB-CR-POMCP Follower 5.51 (±1.54)

10
P

eo
pl

e

Heuristic Follower 7.25 (±1.68)
Continuous Real-Time POMCP 6.81 (±1.58)

In Table III we show the average distances between the
robot and the targets in our simulations. It can be seen, that
in different environments and conditions theAdaptive HB-
CR-POMCP Followerworks much better than the other two
approaches.

Finally, in order to evaluate if significant difference exists
between the presented three methods, we used the Wilcoxon
ranksum test, 2-sided. We can conclude thatAdaptive HB-
CR-POMCP Followerworks better than theHeuristic Fol-
lower (p < 0.01) and CR-POMCP (p < 0.01) with or
without other pedestrians. Comparing theCR-POMCPand
the Heuristic Follower, we found thatCR-POMCPis better
(p < 0.01) for the large map BRL. For the smaller map FME,
theHeurstic Followeris better thanCR-POMCP(p < 0.01).

The latter can be explained because the FME is a relatively
small environment, and therefore the robot has a higher
probability of re-detecting the person again. Moreover the
Heuristic Follower’s movement is more efficient because it
uses a shortest path planner, whereasCR-POMCPgenerates
actions which are discrete and influenced lightly by the
randomness of the Monte-Carlo simulations.

C. REAL-LIFE EXPERIMENTS

To evaluate the methods, more than one week of experi-
ments were done with our mobile robot Dabo [9] in the two
environments shown in Fig. 4. A total trajectory of more
than 3 km was covered during all the successfully executed
experiments, summing up to more than 3 hours. The lines
in Fig. 4-right indicate the total trajectory executed by the
robot.

In a single experiment, volunteers were used as person
to follow, and others as dynamic obstacles, obstructing the
robot’s vision by passing in front of the robot or by standing
in a group of people. The person to be followed was told
to start at a location not too far, hidden or not to the robot.
The robot did not move quickly for security reasons, and
therefore the volunteer was also asked not to move too fast.
From then on the person could walk, and let the robot find
and follow him/her. The person wore a tag, see Fig. 4-left,
such that the robot was able to recognize him or her.

In order to validate the models in real experiments, we
have compared our approach with respect to theHeuristic
Follower. Experiments in the FME lab showed that the robot
using the Heuristic Follower did not move most of the
time (50.4%;p < 0.001, Fisher’s exact test), therefore, the
robot was not able to follow the target. In contrast, using
the Adaptive HB-CR-POMCP Followerthe robot moved
all the time when the person was not visible, except for
3.7% of the time, and therefore it could follow the target.
The CR-POMCPmethod alone showed promising results



in simulation, but in the real-life experiments it moved too
slowly to follow the person.

Extensive experiments with theAdaptive HB-CR-POMCP
Follower showed that for the BRL map, over all experiments,
the person was visible 57% of the time, and the average
distance to the person when visible was2.7±1.8 m (average
± standard deviation). For the FME environment 48% and
3.6± 1.8 m respectively.

For further information, check the videos
of the experimental results in the project web
http://www.iri.upc.edu/groups/lrobots/
find-and-follow/humanoids2014.html.

V. CONCLUSIONS

This work has presented a find-and-follow behavior for
a humanoid service robot, in order to serve humans in
an urban environment and thereby improving Human-Robot
Interaction. The presented methods in real-life experiments
work on-line, real time in a large continuous space with noisy
sensor information.

The models have been tested in simulations which showed
us the robustness to the occlusions of dynamic obstacles,
i.e. other pedestrians walking in the same environment.
The CR-POMCPmethod did not work significantly better
than the Heuristic Follower in the smaller map, due to
the slow motion of our robot, produced by the discrete
actions. The improved methodAdaptive HB-CR-POMCP
Follower worked significantly better than the previous ones,
by combining the smartCR-POMCP with the Heuristic
Follower.

Real-life experiments, where the robot covered several
kilometers, were done to test our methods. TheAdaptive HB-
CR-POMCP Followershowed that in all urban environments,
the robot was able to follow the target and find him/her in
all the experiments performed with volunteers.

Next we would like to use a smarter prediction of the per-
son’s path, instead of a random movement [5]. Furthermore
the adaptive method could be improved by giving preference
to close search locations.
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