Continuous Real Time POMCP to Find-and-Follow People
by a Humanoid Service Robot

Alex Goldhoorn, Angs Garrell, Reg Alguézar and Alberto Sanfeliu

Abstract— This study describes and evaluates two hew meth-
ods for finding and following people in urban settings using
a humanoid service robot: the Continuous Real-time POMCP
method, and its improved extension calledAdaptive Highest
Belief Continuous Real-time POMCP follower. They are able
to run in real-time, in large continuous environments. These
methods make use of the online search algorithnPartially
Observable Monte-Carlo Planning (POMCP), which in contrast
to other previous approaches, can plan under uncertainty
on large state spaces. We compare our new methods with a
heuristic person follower and demonstrate that they obtain
better results by testing them extensively in both simulated
and real-life experiments. More than two hours, over 3 km, of
autonomous navigation during real-life experiments have been
done with a mobile humanoid robot in urban environments.

. INTRODUCTION

The importance of autonomous mobile robots in industrial
and research applications is growing, therefore, the nee
to execute successfully challenging missions and tasks has
also grown. Thus, humanoid urban robots require severgl. 1. Top: Dabo performs the find-and-follow task with a targ@ettom:
behaviors in order to successfully serve people. In thiskyorRobot's estimation of target's position (belief).

we are interested in how the robot can find and follow people _
in cluttered, dynamic environments, in order to help him or 1€ CR-POMCP extends the classical POMCP model,

her. working in the continuous space instead of the discretesspac

Research into Human-Robot Interaction (HRI) in the field®!ans the actlonk:nhreal—Ume.l In this W‘;’\‘Ay we can do real-time
of find-and-followis still new in comparison to traditional €XPerMents with human volunteers. Moreover, we compare

service robotics, such as HRI on a campus [1]. Therefor@U" methods with a previous and well-known system: heuris-

prior research in this particular field is relatively minihfi2]. tic person follower [5] Through a large number of synthetic

Most of the current research studies robots that partieipa?n? rfeal experlments, vlve observed thatA:(Iﬂaptlve Hlbglhest
in social human interactions as companions Bhd-and- Bellef Continuous Real-time POMCP Followaas able to

follow is a multidisciplinary field of robotics in which a mix- ind and follow different volunteers, while the other two

ture of subjects such as perception, robot navigation and H@heth?ds perflormed the task E'OWIY or lost the person, and
intervenes. Despite the heterogeneity of the subjecttetiea tN€refore could not continue the mission.. _

the problem can not be tackled independently but in a holisti Finally, the val|dat|qn of the m_odel IS accompllshe_d
way, which is not an easy endeavor. In this paper, we presetﬁl{oughout an extensive set of simulations and real-life
two new methods: th€ontinuous Real-time POMCECR- experiments. Our results total over 3 km of autonomous
POMCP) model, and its improved extension calfedapta- navigation, and more than two hours during over a week
tive Highest Belief Continuous Real-time POMCP FolloweP! €xPerimentation. . _
(Adaptive HB-CR-POMCP Followgr which make use of In the reminder of the paper we start by introducing the
POMCP Partially Observable Monte-Carlo Planninf]). Related Work. Section Il provides the different methods we
The find-and-followtask is executed by the humanoid robot?roP0se. Finally, the results of the methods and conclssion
in an on-line real-time fashion, using continuous statecepaa'® Presented in Sections 1V and V, respectively.

on large maps. In addition, the system takes into account Il RELATED WORK

sensory noise in the localization. '

Robotic research has the potential to help humans in
This work has been partially funded by the DPI12013-42458-P. urban services, here the robot is enabled to support humans
The_ authors are with the Instltu_t de Rilca i Informatica by finding and accompanying them. Research into Human-
Industrial (CSIC-UPC). Llorens Artigas 4-6, 08028 Barcelp Rob | . . he field of b . . il
spain.  {agol dhoor n, agarrel |, ral queza, sanfeliu} obot Interaction in the field of urban services Is sti
@ri.upc. edu relatively new in comparison to traditional research. lis th



work, we presenCR-POMCP(and the improvedAdaptive B. CONTINUOUS REAL-TIME POMCP
HB-CR-POMCP Follower, where an autonomous robot is
able to find a person in a dynamic cluttered environme
and accompany him/her until a goal. For this reason, o
topics of interest are: safe find-and-follow navigation hwit

Whereas théleuristic Followeronly uses the last person’s
rHosition, here we present a method that takes into accoent th
titure movement of the robot and person, sensory noise, and

. maintains a memory of the possible positions of the person.
humans and accompanying people.

In the last several decades, major technological achiev _POMCP Partially Observable Monte-Carlo Plannir(g])

I5 a Reinforcement Learning algorithm for planning under

ments have been accomplished with respect to the develolﬂﬁcertainty which is present in our problem due to not

ment of autonomous mobile robots for outdoor environment31ways knowing the location of the person we are looking
Robust and reliable systems for navigation [6], obstacl br and due to sensory noise

avoidance [7], and localization [8] have been successfully POMCP is based on and makes use of Baetially Ob-

integrated into several kinds of robotic platforms [9]. A ervable Markovian Decision Proce(@OMDP [17], [18]).

number of methods have been developed to allow robois . L ’

. . o . as we will explain firstly. Thereafter, the POMCP algorithm

to navigate safely around people in specific, typically non-" ) , .
4 will be explained first for the discrete case, then we present

generalizable tasks [10].

. how to use it in continuous space states. Moreover, all the
Many works have been presented on finding people in

. ) i . lanning is done irreal-time

indoors environments. In [11] a service robot is able to aete” i .

and find people inside a house making use of their legs 1) POMDP.‘ A POMDP  model cpntams a set 'c')f
face, body-shape and motion. Nevertheless this work can nsot?tes €). which for ou.r case are defined as the position
be applied to outdoor environments and it is assumed tha t_he robot and pers.omS’Ob"t’ Sperson- The robot can do an
the person is on the same position during the experimerﬁ?non,om of the .“m'te(_j Se.ﬁ' Here, the robot is able to
which is a strong assumption. Johanson et al. [12] present ve in one of eight directions, or stay at the same place.

a simplification of the real world problem of finding people, nstead of knowing th? exact state, an observation Of. the
the hide-and-seek game, where there is a robot seekif te is done. In the find-and-follow problem observations
and one or more players hiding. The hide-and-seek ga ) are equ_al o the _states, but the persons_pos(txggsqr)
also requires a high number of cognitive functions such a as a special valugiddenwhen he or she is not visible.

HHT H !/
search and navigation, finding coordination, anticipatod he probab_llltles of gong from one statleto anothers
planning. with an actiona are defined by = P(s|s,a), and the

. . ,
I [13] v fcused on t iceand-sk game, becaufBEEEr POOSOY Tl Toe e
this gives a limited and easier working environment to stud hich the best ? 0 do i h'ghp tates. th i 9
the problem of searching people and to test the methods. Ich are the best actions 10 do In which stales, the policy.

First, we started to work in discrete time and space [14], an ur reward function,—d,,,, is increasing when the robot-

we used MOMDPs (Mixed Observable Markovian Decisio €">°" distance., 1S decreasing. . .
Processes, [15]) to search for a person. . Instead of knowing the full state, a probability of being

As opposed to previous works, in order to find a persoW each possible state is stored, this is calledkbkef The

our method only requires a map of the environment and Isstgrting bEI_iefb.O has to be g_i\_/en in advance, for_ example a
able to continuously plan its decisions based on people iformly distributed probability over all the locationshere

behavior. Moreover, our method gives a probability map t e person might be hidden. Thereafter, the belief is update

indicate the possible positions of the person who is bein@Sing th? observatio_n and th? prqbability functions. In EEig
searched for. ottom-right the belief location is represented by a high

probability (red) to a low probability (white). The resdhn
I1l. FIND-AND-FOLLOW METHODS of the belief is low because the map size is big, and it keeps

For a robot to find and follow a person we presenitn mind possible_ sensory noise. ) _
three methods: 1) theleuristic Followerwhich is used as  1he best action to execute for each (belief) state is
comparison; 2)Continuous Real-time Partially Observablec":llcUIatecj by computing the value function [19], [20], [18]
Monte-Carlo Plannin CR-POMCP) which is much smarter

. . . = P 1
keeping in mind movement, and has memory; and 3) an @b, a) R(b’a)jbyz (0lb, )V (7(b, a,0)) - (1)

extension to the previous, th&daptive Highest Belief CR- 00

POMCP Follower where R(b,a) is the reward for the belief staté and
actiona, v is the discount factor}' (b) = max,c4Q(b, a),

A. HEURISTIC FOLLOWER and 7(b, a,0) is the next belief staté’. Finding the exact

The easiest way for the robot to follow a person is byolicy would be intractable (PSPACE-hard, [21]), therefor
directly going to the position where he or she is detectefl [Léapproximation methods are used which sample the belief
The robot’s goal position is set just in front of the personspace in a smart way to find a policy [18], [17]. In general
When the target is not visible anymore, the robot keeps goiffOMDPs have two main problems [15]: 1) the growth of the
to the last person’s position. When reaching this positioa, t belief spacecurse of dimensionali)yand 2) the exponential
robot stays and waits for the person to appear again. tree growth with the search horizoaufse of history.



Algorithm 1 The POMCP planner. Retrieving children nodes
is noted asNodda] (for action a for example).

1: function SIMNoDE(Nodes,depth
if depth> dmax then return 0
else

a + argmaxNodda].V' + ¢y / 25 Geeel)

2

3

4.
<N=2546, V=067> 5: if depth = 1then NodeB = NodeB U {8}
B={(6,2),(7,2)....} B={(5.2)} 6: (8/7 0, Timmediate) — g(s, a)

7

8

9

. - . . if s is not final and not Nodda][o] exists and

<N=10415, V=0.72>
B={(6,3).(5,4),(6,4)}

n ne e se
SN=894,V=0.68>> (EN=4884,V=0.803 <N=755,V=0.66>
?

(5.2

Nodda].N > ecount then
Add Nodda][o]

10: end if
11: if s’ is not final then
12: if Nodda][o] exists then
13: Tdelayed+— SIMNODE(Noddal][o],s’,depth+1)
Fig. 2. A part of a policy tree generated by POMCP during a &nd- 1‘51 elserdela ed¢— ROLLOUT(s depth+1)
follow task. The root represents the current situation aontains a belief. ;6. end if Y '
For each action (here representing a movemantth, northeast, south, ;. else
etc.) a child node is reached. From the action nodes, an \aiger ('?’ 18: TFdelaved < 0
indicating that the person is not visible) can be taken whédthes a new 1g. end if Y
situation. The root and observation nodes of the first lagetain a belief. 20: Ttotal < Timmediate+ YTdelayed
All nodes maintain an expected valié and the number of times/ this 5. Nodda].N «+ Nodqa]_]\}'Jr 1
value has been updated. 29: Nodda].V «+ Nodda].V + rmt?\}gd'\ég‘]iﬁ]»v
23: NodeN < NodeN + 1
_ _ _ 24; NodeV « NodeV/ - Teal_RodeV’
In previous work [13], [14] we tried to tackle this problem 2s: return ral

by using a layered MOMDP, but this was achieved foR6: end if
relatively _small maps. O'Fher works [15], [22], [17], [18] %; ?unndctfilcjagcr?%nuow( s,depth)
showed simulations of hide-and-seek like problems usingp:  if depth> dmax then return 0
POMDPs, but in small discrete environments, and only fewo: else
real-life experiments [18], [14] were done. g; ?Sfoffg"jt_()g(s’a)
2) POMCP: The use of POMDP models is limited 33: return 7+~ RoLLOUT(s' deptht1)
due to computational complexity and exponential memorggf endefnudn::ftion
growth. An improvement oMonte Carlo Value Iteration -
(MCVI [23]) is to calculate the expected reward over a
random set of samples instead over all states.
The idea of using Monte Carlo simulations is extended biater on in subsection I1I-B.5).
Silver and Veness [4] by doing Monte Carlo simulations to Before each robot’s step the policy tree is updated by
generate a policy. The big advantage of POMCPs is that thelping nsim Simulations. Randomly a state ~ RootB is
tackle thecurse of historyand thecurse of dimensionality sampled, and then 18 NoDE(Roots,0) in Algorithm 1 is
by simulating the POMDP, and not requiring the whole fullycalled. An overview of the parameters used in POMCP is
defined model. Thus, the complexity depends on the POMDgtven in Table I. Firstly, an action is chosen in line 4 based
simulator. Convergence for POMCP with finite horizon ison the highest valu®” of the action node and an exploration
proven in [4], but can be extended to the infinite case dactor [4], which is weighted by the exploration constant
shown in [24]. This latest factor causes the learning process to explore
3) ALGORITHM: POMCP generates a policy tree withother possible actions instead of only exploiting the autrre
two types of nodesbelief nodesthat represent a belief knowledge.
state, andaction nodeswhich are their direct children and The POMDP simulatog in line 6 returns the new state
are reached by doing an action, see Fig. 2. The root is <4, observatioro, and rewardrimmediate Pased on the current
belief nodeand contains the belief, which in POMCPs isstates and chosen actioa. The tree is traversed by choosing
represented by a list of states instead of probabilitiesllof ahe edges for ando respectively; if this node does not yet
possible discrete states. When a state is more probable trexist, s’ is not a final state and the simulation already passed
the state is repeated more times in this list. at leastecoun: times before, then a new belief node is added
Whereas the POMDP solvers mainly use value iterdline 9). The expand countedoun) prevents the tree from
tion (1) to find a policy, POMCP makes use of Monte Carl@rowing too fast.
simulations. Each node in the tree keeps track of the averageThen, if the state is not final, the future rewarg@ayeqis
expected reward’, and the number of time¥ a simulation calculated by using the child node, if it exists in line 13,
passes through the node. Before the first learning iteradionor by executing the BLLouUT function (line 28). A rollout
executed, an initial belief has to be set for the root’s lheliepolicy moiout [4] is followed until the run has finished or
RootB. The POMDP simulator’s functiof(og) is used to the maximum depth has been reached. This policy can be
generatenpejies States of the initial belief (explained in detail random, as we used, or it can be based on a heuristic.




TABLE |

THE PARAMETERS OF THEPOMCPALGORITHM. however always have to be discrete, otherwise the planner

would have to take into account too many situations, since

[ Parameter | Description ] the policy tree could grow too wide and the values in the
5 Discount factfor. . ] nodes would not converge.
Tisim Number of Monte Carlo simulations. A balance of the observation discretization is important,
Nbelief Number of states in the belief. . . . )
c Exploration constant. because very small grid cells imply a higher resolution, but
€count Expand count. wide policy trees with lower probability of convergence to a
dmax Maximum tree depth. good policy. In contrary lower detail can cause problems

of precision in the planning, but increases probability of

In line 20 the reward for the current belief and actionconvergence.
noderia are calculated, whergyelayedis weighted with the 5) FIND-AND-FOLLOW POMDP SIMULATORUp to
discount factory to reduce the influence of possible futurethis section we have explained how the CR-POMCP works,
rewards. Next the average values and new counts of the nodesv we will explain the details of the POMDP simulator
are updated (lines 21-24). G (line 6 in Algorithm 1) as defined for the find-and-

Finally, after the policy tree has been learned, the action follow task. The map is known beforehand, which is dis-
execute can be chosen from the tree- argmaxRoofa].V. crete with each grid cell being either abstacleor free

After having executed an actian a new observation is  States and observations are the position of the seeker and
done. The new belief node can be retrieved from the tree Byder (syonot, Sperson), and person’s observatiaferson can be
following edgea, which reaches an action node, and with hidden There are nine actions: eight movements (north,
reaching the new belief node. If for example, in Fig. 2, attio northeast, etc.) and standing still.
ne has been taken, and observatibiden ('?") has been Initial states are generated with the functien= Z (o),
done then this would reach the new big node left-under. Thishere oy is the initial observation. The generated state is
new node is then taken as root, and if this chilelief node equal to the observation, but when the person’s observed
does not exist, a newelief nodeis created. In simulation position is hidden then sperson iS chosen randomly from
the beliefs of the belief nodes at depth 1 already have be&idden positions as seen from the locatiggyot
grown (line 5 in Algorithm 1), and when this node has been New states are generated by, 0,7) = G(s,a), based on
chosen as new root, implies that it already will have somthe current state and an action. The new state varighle
states in the belief. depends on the action and robot’s positigf.; the person’s

A minimum number ofnpejier States in the belief are movement is modeled as random, but could be modeled
maintained to assure a minimal spread of the belief over theeuristically. The observation equals the new stat€, but
possible person’s locations. If the new root’s belief imea  operson =hidden when the person is not visible according
less thampeier States, then new states are generated for the a ray trace algorithm. The reward function is heuristic:
belief using the POMDP simulatofs’, osim,7) = G(s,a), r = —d,p,, Whered,, is the shortest path distance between
wheres is sampled from the previous root’s belief. The stat¢he robot and person.

s’ is stored in the new root’s belief if it matches the real Gaussian noise is added to the state and observation:
observatiorv = ogim. If there is no belief in the new root, an NV(0,0) in order to simulate sensory noise. Different stan-
initial belief can be calculated from the new observatian, b dard deviations of the noise are defined for the next seeker
this results in losing the knowledge about the state (beliefstate §,,;), next person stater(,,), seeker observatiom{;),

4) POMCP IN CONTINUOUS SPACE (CR-POMCP): and person observatiow ,). False negatives are simulated
The use of continuous state space in POMDPs is not evidebly converting a person’s observatioperson in hiddenwith
furthermore the POMDP’s belief space is continuous witlprobability pr,, and false positives by generating a random
an infinite number of dimensions. However Porta et al. [25position operson With probability py, when the person is not
show that value iteration can be used due to properties wiible.
the value function, but the policy’s complexity growdonte
Carlo Value Iteration(MCVI) is used in [26] to find a policy C. ADAPTIVE HB-CR-POMCP FOLLOWER
for POMDPs. A policy graph is generated to avoid having When executing the find-and-follow task using to&-
to handle the continuous belief space. A numbeiNo$tates POMCP method, our real robot Dabo [9] moved too slowly,
are randomly sampled to estimate the expected reward. not being able to follow the person in real-time. This was

In contrast to the previously mentioned methods, we doaused by the slightly deviating discrete actions due to the
not have to define a POMDP model, but we simulate theandom Monte-Carlo simulations; for example first an action
transitions. This avoids us from having to handle beliehorth, and then the action northeast.
spaces of infinite dimensions. To solve this problem, farther goal positions have to be

Using continuous states in POMCPs requires us to 1) dgiven to the robot, such that it uses its navigation system
fine the continuous states; 2) create a POMDP simulattw reach the goal without unnecessary turns. As goal the
that handles these states; and 3) assure that the obsesvatigoint with the highest belief is passed to the robot. The goal
are discretized. In continuous state space an exact positis updated everyn, ypdaeS to prevent the goal from being
is used instead of grid cells. The actions and observatiombanged too often.



2) ENVIRONMENTSThe experiments were conducted at
the BRL (Barcelona Robot Lab) and the FME (Facultat de
Matenatiques i Estaidtica) lab, outdoor urban environments
located at the North and South Campus of the Universitat
Politecnica de Catalunya (UPC), respectively.

The BRL (Fig. 3Leff) is a large area of the campus

_ _that was outfitted as an experimental area, covering over
Fig. 3. Left: Barcelona Robot Lab, North campus of the UPC. Right: 2 . . .

FME Lab, South Campus of the UPC. 10.000 m*, comprising six buildings and_a central square,
with multiple ramps, staircases, and typical obstacle$ suc

This method, theAdaptive Highest Belief CR-POMCP as bulletin boards, bicycle stands, trashcans and flowet pot

Follower, makes use of the previously discussed methoa-,hg arelzla ulsed for ﬁu[rﬁ)(pg'r\'ﬂnéelni Wlf‘_s dlsgtretlz@t?wf
CR-POMCR to update the belief in each iteration. Whend"d c€lis, 1 m €each. inhe ab (Fig.riy )con3|s_s 0 .
the person is visible, thédeuristic Follower is used to a green space and a paved area, sepgrate_d by stairs. In this
follow the person, but at the same time the belief of thgr?la the grid cells where of 1 m, having in total x 12
person’s position is updated. When the person is not visiblgfe S:
a 2D histogram from the belief of the position of the persol. SIMULATIONS
(sperson i generated. From this matrix the cell with the
highest count is used as the robot’s next goal.

It is important to choose the right resolution for the matrix

The experiments are done on maps with discrete grid cells
which either can bdree or an obstacle For each iteration
?tep the robot and person can move in one of eight discrete

because a high resolution results in a high number of Celﬁrections (north, northeast, south, etc.), or stay at Hiaes

\t,mlr(:er}()rre)equ::(r)?z ;ﬂggzgxmbirtgg ?sxerzzg:zﬁ)ﬁer% dinc?as position. The coordinates are continuous, and the movement
m distance is 1 cell per step for both agents (also in diagonal,

the precision with which the robot can be sent to find the

erson r.e. noty/2).
P ' For simplicity the simulations do not include neither
D. SUMMARY acceleration, nor friction, nor collision. The agents acg n

- ) allowed to be neither outside the map nor on top of an
To sum up, theHeuristic Follower simply goes to the ,pqiacie For algorithms that give goals farther away, such

last visible position of the person. A smarter method is thﬁs theAdaptive HB-CR-POMCP Followethe shortest path
CR-POMCPwhich is able to find and follow a possibly js ¢ajcylated, and during each iteration one step is taken.
hidden person. It takes into account movement of the robot The person simulation is done by starting at a random

and person, and makes real-time usage of POMCP in fiqition and by giving it a random goal. Each iteration the
pontlnuous state space. Finally, an extension on the Iatt§6a| is approached one step, and when the goal is reached,
is presented, thédaptive HB-CR-POMCP Followewhich 5 o\ random goal is chosen. A multi-person environment
improves the movement behavior of the mobile robot. was simulated by adding a group of 10 persons which cause
V. SIMULATIONS AND EXPERIMENTS occlusions, and ha}ve the same behgvior as the person.
The three algorithms discussed in Section Il were ap-
In this section we introduce the results obtained from thgjied in simulations: 1Heuristic Follower 2) CR-POMCP
simulations and the real-life experimentation. 3) Adaptive HB-CR-POMCP FollowefThe algorithms have
been compared by looking at the average distance to the
A. EXPERIMENTAL SETTING person.
Here, the robotic platform and the testing environments To make the comparison between the three methods as
used in the present paper will be presented. fair as possible, for each run of simulations the robot’ststa
1) ROBOT PLATFORM:To conduct all the experiments position and the person’s movement were the same. A total
and to test the approach presented, we used two twin mobdé more than 4000 simulations have been done repeating
service robots, called Tibi and Dabo, each designed to wodach of the conditions at least 40 times. For each simulation
in urban pedestrian areas and to interact with people, s860 steps were done, except for the smaller map FME, for
Fig. 3. They are based on a two-wheeled Segway RMP2@thich 100 steps were done.
platform, which works as an inverted pendulum in constant The parameters of the algorithms which have been used in
balancing. They can rotate on the spot (nonholonomic), antle simulations and real experiments were obtained experi-
have wheel encoders providing odometry, and inclinometeraentally, and are shown in Table II. In simulation the smalle
providing pitch and roll data. values ofngim and npejier have been used for the small map
As social robots, Tibi and Dabo are designed to interadnly. The Adaptive HB-CR-POMCP Followeupdates its
with people. They are equipped with several interactiobelief every 3 s in the real experiments and every 3 iteration
devices to enable them to engage with friendly interactiongn the simulations. The 2D histogram used by the adaptive
such as a touchable screen, speaker, movable arms and heaethod has a resolution two times lower than the larger BRL
and LED illuminated facial expressions. Lab’s grid map.
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Fig. 4.

by the robot, and the same scene showing the belief of the iperszation.

THE PARAMETERS VALUES USED DURING THE REAL AND SIMULATED

D3lvdL

S43171349

D3lvdL

S4311349

Real-life experimentd.eft: Some video captures of real experiments. Dabo performgitdeand-followtask. Right: The trajectory performed

TABLE I

EXPERIMENTS

[ Parameter Real Sim. [ Parameter Real Sim.
¥ 095 0.95 Onp 0.3 0.3
Nsim 1000 2500 | oos 0.1 0.1
Npelief 500 1000 Oop 0.1 0.1
c rows x cols | pm 0.3 0.3
€count 2 Prp 0 0.001
dmax 2(rows x cols) | pn 0.01 0.01
Ons 0.2 0.2 thb.update 3s 3 steps|

TABLE Il
[ “ METHOD “ Dist. [m] ]
o || Adaptive HB-CR-POMCP Follower| 1.52 {0.24)
2 | 5 || Heuristic Follower 1.70 0.31)
= | 3 || Continuous Real-Time POMCP 2.33 #£0.23)
Y [2 || Adapiive HB-CR-POMCP Follower| 2.54 F-0.36)
L | 8 || Heuristic Follower 3.11 0.47)
S || Continuous Real-Time POMCP 3.26 0.36)
© Adaptive HB-CR-POMCP Follower]| 3.91 &1.27)
2 § Heuristic Follower 6.36 1.71)
- |s Continuous Real-Time POMCP 5.59 {1.26)
# |2 || Adaptive HB-CR-POMCP Followell| 5.5 &1.54)
o | 8 || Heuristic Follower 7.25 1.68)
E Continuous Real-Time POMCP 6.81 (1.58)

in different environments and conditions tielaptive HB-

The latter can be explained because the FME is a relatively
small environment, and therefore the robot has a higher
probability of re-detecting the person again. Moreover the
Heuristic Followets movement is more efficient because it
uses a shortest path planner, wheré&POMCPgenerates
actions which are discrete and influenced lightly by the
randomness of the Monte-Carlo simulations.

C. REAL-LIFE EXPERIMENTS

To evaluate the methods, more than one week of experi-
ments were done with our mobile robot Dabo [9] in the two
environments shown in Fig. 4. A total trajectory of more
than 3 km was covered during all the successfully executed
experiments, summing up to more than 3 hours. The lines
in Fig. 4+ight indicate the total trajectory executed by the
robot.

In a single experiment, volunteers were used as person
to follow, and others as dynamic obstacles, obstructing the
robot’s vision by passing in front of the robot or by standing
in a group of people. The person to be followed was told
to start at a location not too far, hidden or not to the robot.
The robot did not move quickly for security reasons, and

In Table 1l we show the average distances between titherefore the volunteer was also asked not to move too fast.
robot and the targets in our simulations. It can be seen, thatom then on the person could walk, and let the robot find

and follow him/her. The person wore a tag, see Fidefg-

CR-POMCP Followemworks much better than the other twosuch that the robot was able to recognize him or her.
approaches.
Finally, in order to evaluate if significant difference dgis have compared our approach with respect to Hweairistic
between the presented three methods, we used the WilcoxXesllower. Experiments in the FME lab showed that the robot

ranksum test, 2-sided. We can conclude thdaptive HB-
CR-POMCP Followenworks better than théleuristic Fol-
lower (p < 0.01) and CR-POMCP (p < 0.01) with or
without other pedestrians. Comparing t6&®-POMCPand
the Heuristic Follower we found thatCR-POMCPIs better
(p < 0.01) for the large map BRL. For the smaller map FME,3.7% of the time, and therefore it could follow the target.
the Heurstic Followeris better tharCR-POMCP(p < 0.01).

In order to validate the models in real experiments, we

using the Heuristic Follower did not move most of the
time (50.4%;p < 0.001, Fisher’s exact test), therefore, the
robot was not able to follow the target. In contrast, using
the Adaptive HB-CR-POMCP Followethe robot moved
all the time when the person was not visible, except for

The CR-POMCP method alone showed promising results



in simulation, but in the real-life experiments it moved too

slowly to follow the person.

Extensive experiments with thedaptive HB-CR-POMCP

(6]

Follower showed that for the BRL map, over all experiments,
the person was visible 57% of the time, and the averagé’]

distance to the person when visible wag+1.8 m (average

+ standard deviation). For the FME environment 48% and

3.6 £ 1.8 m respectively.

(8]

For  further information, check the videos

of the experimental results in the project web
http://ww.iri.upc.edu/groups/I|robots/ 9
fi nd- and- f ol | ow hurmanoi ds2014. ht i . ol
V. CONCLUSIONS [10]

This work has presented a find-and-follow behavior for
a humanoid service robot, in order to serve humans ify;
an urban environment and thereby improving Human-Robot

Interaction. The presented methods in real-life experisien
work on-line, real time in a large continuous space with yois

sensor information.

[12]

The models have been tested in simulations which showétf!
us the robustness to the occlusions of dynamic obstacles,
i.e. other pedestrians walking in the same environment.
The CR-POMCPmethod did not work significantly better (4]

than the Heuristic Follower in the smaller map, due to

the slow motion of our robot, produced by the discrete

actions. The improved methoAdaptive HB-CR-POMCP
Follower worked significantly better than the previous ones,

by combining the smarCR-POMCP with the Heuristic
Follower.

[15]

. . 6
Real-life experiments, where the robot covered severgl]

kilometers, were done to test our methods. Raaptive HB-

CR-POMCP Followeshowed that in all urban environments, 1]
the robot was able to follow the target and find him/her in

all the experiments performed with volunteers.

(18]

Next we would like to use a smarter prediction of the per-
son’s path, instead of a random movement [5]. Furthermoygg)

the adaptive method could be improved by giving preference
[20] S. Thrun, W. Burgard, and D. FoRrobabilistic Robotics (Intelligent

to close search locations.
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