
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Nicholas Rotella1, Alexander Herzog2, Stefan Schaal1,2 and Ludovic Righetti2

Abstract— This work presents approaches for the estimation
of quantities important for the control of the momentum of a
humanoid robot. In contrast to previous approaches which use
simplified models such as the Linear Inverted Pendulum Model,
we present estimators based on the momentum dynamics of the
robot. By using this simple yet dynamically-consistent model,
we avoid the issues of using simplified models for estimation. We
develop an estimator for the center of mass and full momentum
which can be reformulated to estimate center of mass offsets as
well as external wrenches applied to the robot. The observability
of these estimators is investigated and their performance is
evaluated in comparison to previous approaches.

I. INTRODUCTION

Recent work has shown the utility of controlling momentum
in order to stabilize humanoid robots and generate dynamic
motion [1],[2],[3],[4]. These approaches, however, are lim-
ited on real systems due to the lack of accurate estimates
of momentum. Even traditional approaches using simplified
models such as the Linear Inverted Pendulum Model (LIPM)
for planning rely on accurate center of mass (COM) estimates
to achieve good tracking. Few papers have been published on
humanoid state estimation approaches which address these
issues. This work introduces several different estimators
which address the shortcomings of previous approaches by
using dynamics consistent with the full robot model to
estimate the COM, linear and angular momentum as well
as COM and momentum offsets and external wrenches.

Kwon et al. [5] recognized the challenge of performing
ZMP preview control using inaccurate COM information.
Their solution was a Kalman Filter (KF) which fused a
LIPM-based process model and the expected motion of the
COM, computed from the previewed ZMP and resolved
into joint angles. This relied heavily on the expected ZMP,
making it suitable only for open-loop walking on simple
terrain. Endeffector force/torque (F/T) sensors were used but
the simplified model limited their utility. Rotational motion
(angular momentum) was ignored.

Stephens [6] investigated simplified models for estimation
of COM position/velocity, center of pressure (COP), COM
offsets and external forces. He introduced filters based on the
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LIPM, analyzed their observability and demonstrated their
performance. However, the use of a LIPM-based process
model compromises the filter optimality which can lead
to delays and even destabilize control. In addition, the
observability of a simplified model is not the same as that
of the original system. Third, use of the COP limits these
estimators to planar terrain. Finally, this work does not
consider estimation of angular momentum.

Xinjilefu et al. [7] investigated whether simplified models
are sufficient for estimation. They fused LIPM dynamics with
COM and COP measurements in one estimator and a planar,
five-link model with joint angle measurements and inertial
measurements from an IMU in another. The estimators were
evaluated on simulated data with added biases. However,
biases were not modeled explicitly; instead, noise parameters
were tuned to account for them. No observability analysis
was performed, making the filters difficult to analyze; they
are difficult to compare since they serve different purposes.

Hashlamon et al. [8] presented a COM and COP estimator
which does not require F/T sensors. Contact wrenches and
COPs were determined from IMU acceleration by solving
an optimization problem using contact constraints. However,
they assumed the IMU measures COM acceleration and that
the angular momentum is constant. They then presented a
LIPM-based KF which uses the computed COP as an input
to the LIPM dynamics. The resulting filter, despite providing
COP estimates without using F/T sensors, demonstrates poor
performance likely due to its strong assumptions.

Xinjilefu et al. [9] developed an optimization-based es-
timator which uses the full dynamics and measurements
from many sensors. Both states and controls are estimated
in a quadratic program (QP) and sensors can be easily
integrated since the dynamics are linear in terms of the state.
Additionally, constraints can be enforced whereas this is not
straightforward to do in a KF. However, this approach relies
heavily on the full robot dynamics (namely link inertias)
which we usually do not have good estimates of. Further,
offsets in the COM and momentum are not considered.

Most previous studies used simplified models to avoid
using the full dynamics. However, for linear systems it can
be shown [10] that an inaccurate process model can lead to
unstable estimation error dynamics; stability proofs assume
exact plant cancellation. Further, an inaccurate model can
destabilize both the controller and observer. This is because
the separation principle - which says that the controller
and observer can be designed independently - no longer
holds. Of course, since the true dynamics are nonlinear, these
theorems can only be applied qualitatively to inform design.
This suggests avoiding simplified models when possible; we
thus present estimators which use the momentum dynamics.

ar
X

iv
:1

50
7.

04
40

1v
1 

 [
cs

.R
O

] 
 1

5 
Ju

l 2
01

5



Also known as the Newton-Euler equations, they appear in
the full rigid body dynamics as the equations describing
the unactuated portion of the state; they are reduced, not
simplified, dynamics. Motivated by issues observed on our
SARCOS humanoid, we develop estimators which:

• Filter noisy kinematics-based COM and momentum
measurements without inducing significant delays (Mo-
mentum Estimator, Section III-A).

• Estimate configuration-dependent COM and momentum
offsets caused by inaccurate link model parameters (Off-
set Estimator and COP-Based Offset Estimator, Sections
III-B and III-C).

• Estimate a time-varying external wrench applied to the
COM (External Wrench Estimator, Section III-D).

We investigate the observability of each of the presented
estimators and compare their performance against corre-
sponding LIPM-based estimators proposed in [6].

II. MODELS OF ROBOT DYNAMICS

In recent work, we have implemented a momentum controller
derived as a state feedback controller using LQR design
and realized using a hierarchical QP-based inverse dynamics
solver [4]. We thus design a momentum estimator to use with
this controller based on the same dynamics, given below.

ċ =
1

m
l (1)

l̇ =
M∑

i=1

(Fi + wFi
) +mg (2)

k̇ =

M∑

i=1

(pi − c)× (Fi + wFi) +

M∑

i=1

(τi + wτi) (3)

Here c is the COM, l and k are the linear and angular
momentum respectively, pi is the ith point of contact (M in
total), Fi and τi are the force and torque at the ith contact
respectively, m is the total mass of the robot and g is the
gravity vector. The vectors wFi

and wτi represent additive
white Gaussian force and torque noise processes, respectively
(with standard deviations qF and qτ ).

These dynamics are preferable to the full dynamics for
prediction because they avoid using inaccurate link inertia
models and instead use only the total mass, which can
be measured. Additionally, they can be linearized easily.
Qualitatively, an estimator which uses the true momentum
dynamics should interact with a momentum controller more
favorably than one which uses simplified dynamics.

The estimators in [6] are derived from the LIPM dynamics

ẍ =
g

zc
(x− xCOP ) (4)

where x denotes the COM position, zc is the (constant)
height of the COM and xCOP denotes the COP position.
The dynamics of the y direction are exactly the same since
the LIPM is decoupled. This equation can be derived from (2)
and (3) by replacing pi with the COP, neglecting rotation and
constraining motion to a plane. For use with less-dynamic
controllers, an estimator based on (4) may prove sufficient.

III. ESTIMATORS

In this section, we introduce four estimators based on the
momentum dynamics, each serving a different purpose. We
choose to implement these using Extended Kalman Filters
(EKFs), however the observability results of Section IV hold
for any implementation. Each estimator’s nonlinear process
dynamics are used for prediction but are linearized for the
update step into the state-space dynamics ẋ = Ax + Lw
and the measurement y = Cx + v (with x being the
state and w and v the process and measurement noise
vectors). We specify estimators by their nonlinear process
and measurement models as well as the continuous-time
Jacobians A, L and C resulting from linearization.

A. Momentum Estimator

On our humanoid, joint velocities are computed by differen-
tiating noisy potentiometer signals; momentum is computed
from kinematics using these noisy velocities and base in-
formation from a base-state estimator developed in previous
work [11]. We currently filter momentum using second-order
Butterworth low-pass filters but this introduces delays. By
integrating low-noise measured contact wrenches and using
the noisy kinematics computations as measurements, we can
filter momentum without inducing delays.

We choose the state x = [c, l, k] so the process model is
(1)-(3) and the measurement model is y = [c, k]; we measure
the COM and angular momentum computed from base in-
formation, kinematics and inertias. These measurements have
noise standard deviations rc and rk, respectively. Although
inaccurate inertias are used to compute k, we demonstrate
robustness to model errors in Section V. The dynamics are

A =




0 1
mI 0

0 0 0∑
F̄×
i 0 0


 , Li =




0 0
I 0

(p̄i − c̄)× I




C =

[
I 0 0
0 0 I

]

where a× denotes the cross product matrix formed from
vector a. The noise Jacobian L is formed by concatenating
Li horizontally for all i = 1 . . .M contacts. F̄i, p̄i and c̄
are the measured force and the foot and COM positions,
respectively, treated as constants over a single timestep.

B. Offset Estimator

The kinematic model of a robot is often imprecise. Here, we
assume the total mass m is known but that incorrect link
masses and COM locations contribute to a configuration-
dependent COM offset. These errors also create offsets in
momentum; we thus extend the state to x = [c, l, k,∆c,∆l]
where ∆c and ∆l are the COM and linear momentum offset
vectors, respectively. In theory, there is also an offset ∆k
but this is unobservable (see Section IV) so we choose not
to estimate it. Since the offset dynamics are unknown, we
assume random walks so the prediction dynamics are (1)-
(3) plus ∆ċ = w∆c and ∆l̇ = w∆l where w∆c and w∆l

are additive Gaussian white noise processes with standard



deviations q∆c and q∆l. The measurement model is

y =




c+




∆cx
∆cy

0




l + ∆l
k




where the linear momentum measurement noise has standard
deviation rl. This equation indicates that the kinematics-
based COM and linear momentum measurements contain
offsets. It is shown in Section IV that ∆cz is unobservable
and is thus ignored.1 The linearized dynamics are given by

A =




0 1
mI 0 0 0

0 0 0 0 0∑
F̄×
i 0 0 0 0

0 0 0 0 0
0 0 0 0 0



, Li =




0 0
I 0

(p̄i − c̄)× I
0 0
0 0




C =



I 0 0 I2 0
0 I 0 0 I
0 0 I 0 0




where I2 = diag(1, 1, 0) since we ignore ∆cz . Because the
dynamics of ∆cz affect the estimate of lz , it is best to ignore
this offset and accept that it cannot be observed. This is why
we write the measurement this way. Note that we do not
explicitly consider link inertia errors, however these would
contribute only to the unobservable offset ∆k.

C. COP-Based Offset Estimator

In the above estimator, ∆cx and ∆cy are observable due to
the dynamics of the angular momentum measurement (see
Section IV for details). However, this measurement is subject
to an offset ∆k. While ignored above, this leads to degraded
performance for significant modeling errors. We add the COP
measurement to give us force-based information about the
COM which is accurate despite modeling errors. This comes
at the disadvantage of assuming coplanar contacts.

We use the same state and add the COP measurement (with
noise standard deviation rCOP ). We keep the measurement of
k and increase rk relative to rCOP in order to filter angular
momentum while relying primarily on the COP to render
∆cx and ∆cy observable. The measurement model becomes
nonlinear with the addition of the measurement

yCOP,x = cx −
1∑
Fi,z

(
cz
∑

Fi,x + k̇y

)

yCOP,y = cy −
1∑
Fi,z

(
cz
∑

Fi,y − k̇x
)

where k̇ =
∑

(pi−c)×Fi+
∑
τi. The measurement Jacobian

1Unobservable states can drift arbitrarily; when coupled to other states
through their dynamics, this drift affects their estimation. Because of this,
adding an unobservable offset ∆k would corrupt the information about ∆c
which is provided by the angular momentum measurement. We are better
off incorrectly assuming that ∆k = 0 and accepting that our estimates of
∆c may be inaccurate depending on the severity of the modeling errors.
The filter of Section III-C addresses this.

is

C =




I 0 0 I2 0
0 I 0 0 I
0 0 I 0 0
H 0 0 0 0


 , H =


2 0

−2
∑
F̄ix∑

F̄iz

0 2
−2

∑
F̄ix∑

F̄iz




where H is the Jacobian relating the COM to the COP.
D. External Wrench Estimator

It is often the case that F/T sensors drift or disturbances
are applied to the robot. We begin with the Momentum
Estimator state and introduce an external wrench acting at
the COM which encapsulates these errors. The state becomes
x = [c, l, k,∆F,∆τ ] where ∆F,∆τ are the external force
and COM torque (torque computed about the COM). Again,
we assume random walks for each so the dynamics are

ċ =
1

m
l

l̇ =
M∑

i=1

(Fi + wFi
) +mg + ∆F

k̇ =
M∑

i=1

(pi − c)× (Fi + wFi
) +

M∑

i=1

(τi + wτi) + ∆τ

∆Ḟ = w∆F

∆τ̇ = w∆τ

where w∆F and w∆τ have standard deviations q∆F and q∆τ .
The measurement model is y = [c, k] as in the original
Momentum Estimator. The linearized dynamics are

A =




0 1
mI 0 0 0

0 0 0 I 0∑
F×
i 0 0 0 I

0 0 0 0 0
0 0 0 0 0



, Li =




0 0
I 0

(p̄i − c̄)× I
0 0
0 0




C =

[
I 0 0 0 0
0 0 I 0 0

]

IV. OBSERVABILITY ANALYSIS

The presented estimators have nonlinear process models and,
where the COP is used, nonlinear measurement models. We
investigate the observability of each estimator by forming
the nonlinear observability matrix [12], denoted O. As in
the linear case, the state is observable if O has full rank;
unobservable state combinations are parameterized by the
nullspace of O. Given a system with nonlinear process model
ẋ = f(x) and measurement model y = h(x),

O =




∇h(x)
∇(∇h • f(x))

∇(∇(∇h • f(x)) • f(x))
...




where ∇ denotes the Jacobian with respect to x. In the
linear case, ∇h = C and f(x) = Ax so ∇(∇h • f(x)) =
∇(CAx) = CA, ∇(∇(∇h • f(x)) • f(x)) = CA2 and so



on. Unlike in the linear case, there is no condition limiting
the size of O; however, only a finite number of derivatives
usually need be taken before successive rows become zero
(and thus no longer affect the rank). Essentially, O illustrates
that states are observable because they are measured directly
or because they appear in the dynamics (of some order) of
a state which is measured directly.

Note that since O is state-dependent in general, this
procedure investigates local observability. We cannot list
every point at which O becomes rank-deficient but we will
highlight relevant cases. Due to space constraints, we present
the observability matrix for each estimator without proof;
they can be derived by straightforward computation.

A. Momentum Estimator

The nonlinear observability matrix is

O =




I 0 0
0 0 I
0 1

mI 0∑
F×
i 0 0

0 1
m

∑
F×
i 0




This matrix has full rank so the state is observable. We could
add a kinematics-based linear momentum measurement but
it would be redundant since it is computed from the same
sensors as the COM. Since linear momentum is a function
of noisy velocities, it is subject to considerable noise; it is
better to leave it out and let differentiation occur in the filter.

B. Offset Estimator

The observability matrix is given below; we include the full
∆c in the state to prove that it cannot be observed.

O =




I 0 0 I∗ 0
0 I 0 0 I
0 0 I 0 0
0 1

mI 0 0 0∑
F×
i 0 0 0 0

0 1
m

∑
F×
i 0 0 0




This matrix is rank deficient; the unobservable subspace is
a linear combination of the COM and COM offset. This
occurs because the skew-symmetric matrix

∑
F×
i has at

most rank two. In theory, this means we could observe any
two directions of the COM offset, effectively replacing I∗ in
O. However, when the robot is stationary on flat ground,

∑
F×
i =




0 −mg 0
mg 0 0
0 0 0




forcing the z direction to be unobservable. Either the x or y
direction can be made unobservable in its place only when∑
Fi,x or

∑
Fi,y is nonzero. This occurs only when an force

acts on the robot in these directions at the COM (when the
robot accelerates or is on a slope so gravity affects x and/or
y). For this reason, we set I∗ = I2 = diag(1, 1, 0) so that
∆cx and ∆cy are observable. Note that

∑
Fi = 0 for a robot

in flight phase; in this case, ∆c is completely unobservable.

C. COP-Based Offset Estimator

The nonlinear observability matrix is

O =




I 0 0 I2 0
0 I 0 0 I
0 0 I 0 0
H 0 0 0 0
0 1

mI 0 0 0∑
F×
i 0 0 0 0

0 1
m

∑
F×
i 0 0 0

0 1
mH 0 0 0




Observability is the same as for the Offset Estimator; how-
ever, the COP provides information about the COM derived
from F/T sensors rather than from kinematics. This improves
offset estimation in the case when the unmodeled angular
momentum offset is large. This makes the important point
that adding redundant measurements can affect performance
even though observability is unchanged.

D. External Wrench Estimator

The nonlinear observability matrix is

O =




I 0 0 0 0
0 0 I 0 0
0 1

mI 0 0 0∑
F×
i 0 0 0 I

0 0 0 1
mI 0

0 1
m

∑
F×
i 0 0 0

0 0 0 1
m

∑
F×
i 0




This matrix has full rank - since the external force and torque
appear in the momentum dynamics, and since momentum
is observable through the COM and angular momentum
measurements, the external wrench is observable.

E. Offset and External Wrench Estimator

If we extend the Offset Estimator state so that x =
[c, l, k,∆c,∆l,∆F,∆τ ] then we obtain the matrix

O =




I 0 0 I∗ 0 0 0
0 I 0 0 I 0 0
0 0 I 0 0 0 0
0 1

mI 0 0 0 0 0
0 0 0 0 0 I 0∑
F×
i 0 0 0 0 0 I

0 0 0 0 0 1
mI 0

0 1
m

∑
F×
i 0 0 0 0 0

0 0 0 0 0 1
m

∑
F×
i 0




This matrix is rank deficient; its nullspace is a linear com-
bination of c, ∆c and ∆τ . This implies that we can never
observe both the offsets and an external wrench simultane-
ously. However, if the external force is applied at the COM
then ∆τ = 0 and the state (except ∆cz) becomes observable.

V. RESULTS

All results presented in this work were obtained in the
SL simulation environment [13]. White Gaussian noise was
generated based on data from our SARCOS humanoid robot,
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Fig. 1: Estimation of COM (top row), linear momentum (middle row) and angular momentum (bottom row). Inset zoomed-in
views (3x magnification) show finer details and demonstrate superior performance of the ME.
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Fig. 2: Estimation of linear momentum for increasing frequen-
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Fig. 3: Zoomed-in views of angular momentum esti-
mates versus low-pass filtered kinematics measurements.

discretized at the filtering frequency and added to simulated
sensor outputs. Noise having standard deviation qθ was
added to joint angles (and propagated to joint velocities
through numerical differentiation) as well as to endeffector
F/T sensor signals. Table I below lists the values of the
standard deviations of the simulated noise processes.

TABLE I: Simulated sensor noise standard deviations. Cor-
responding values for 1kHz sampling rate are shown.

Continuous Discrete (1kHz)
qθ 0.00000316rad/

√
Hz 0.0001rad

qF 0.06325N/
√
Hz 2N

qτ 0.00316Nm/
√
Hz 0.1Nm

In this and subsequent sections, we refer to the four filters
based on the momentum dynamics as the ME (Momentum
Estimator), OE (Offset Estimator), COE (COP-Based Offset
Estimator) and EWE (External Wrench Estimator). Process

noise parameters were set using the values in Table I.
All other noise parameters were tuned for each filter and
are summarized in Table II. Note that measurement noise
standard deviations are specified in discrete time. All filters
based on the LIPM are referred to as LIPMF in this section
and denote the corresponding filter and noise parameters
introduced in [6].

Estimation was performed during a 15s ZMP preview
control-based walking task [14] having single and double
support phases lasting 0.5s each and a forward motion of
5cm per step for 10 steps. Since this is a relatively-dynamic
gait, the contacts created are often not completely flat and
subject to impulsive contact wrenches; this was desired in
order to test the estimators with realistic contact switching.
Ideal base state estimation was assumed for simplicity but
estimators were additionally verified using a base state esti-
mator [11] subject to simulated IMU sensor noise. Estimation
and data recording were performed at 1kHz unless noted.
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direction (top) and y-direction (bottom).



TABLE II: Noise standard deviations for momentum-based
estimators. N/A indicates that a parameter is not used.

Name (Units) ME OE COE EWE
q∆c(m/

√
Hz) 1.0 1.0 1.0 N/A

q∆l(kgm/s/
√
Hz) 1.0 1.0 1.0 N/A

q∆F (N/
√
Hz) N/A N/A N/A 1.0

q∆τ (Nm/
√
Hz) N/A N/A N/A 0.1

rc(m) 0.0001 0.001 0.001 0.00001
rl(kgm/s) N/A 1.0 1.0 N/A
rk(kgm2/s) 0.1 1.0 10.0 0.01
rCOP (m) N/A N/A 1.0 N/A

A. Momentum Estimator

Both the LIPMF and ME accurately estimate the COM well
as shown in Figure 1. This is expected since the COM is
measured directly and rc was chosen small in both filters.
However, linear momentum estimation is significantly better
using the ME since the dynamics of this state are inaccurate
in the LIPMF. The LIPMF relies on the COM measurement
to correct for simplified model errors, introducing a delay.

The difference in performance between the two filters is
more pronounced when they are updated at slower rates.
Figure 2 shows estimation of ly by each estimator for update
rates of 50Hz, 125Hz, 250Hz, 500Hz and 1000Hz (lower
frequencies are plotted in red, higher ones in yellow and
ground truth in black). The degradation of performance with
decreases in update rate is much more severe for the LIPMF.

The ME was motivated by the desire to avoid low-
pass filtering computed momentum. Figure 3 shows the
kinematics-based angular momentum filtered using cutoffs
of 3% and 5% of the Nyquist frequency (15Hz and 25Hz
respectively for a 1kHz update rate) and compared to the
estimated angular momentum. While the estimate lags by
several milliseconds, the delays for cutoffs of 15Hz and
25Hz are as large as 20ms and 10ms, respectively. For
dynamic motions, low-pass filtering not only creates delays
but can entirely change the structure of the signal.

B. Offset Estimator

First, a constant offset of ∆cx = 5cm was added directly
to the COM measurement, as was done in [6] (assuming ∆l
and ∆k remain zero). Both the LIPMF and the OE converge
to the true COM, though the OE provides more accurate and
responsive estimates as shown in the top plot of Figure 4.

Next, configuration-dependent offsets in the COM and
momentum were created using a set of perturbed link pa-
rameters. The LIPMF manages to estimate the COM but
with significant delay (up to 100ms) as shown in the bottom
plot of Figure 4. This delay is the result of using simplified
dynamics and was unimproved by tuning LIPMF parameters.

The fact that the OE can track the COM and linear mo-
mentum offsets despite the unmodeled angular momentum
offset suggests robustness to unmodeled errors. In order to
analyze this we estimate offsets for five different sets of
link mass parameters. Each was generated by adding to
every mass-weighted link COM position mixCOMi

an offset
drawn from a zero-mean Gaussian having standard deviation
n(mixCOMi) with n = 1, 2, 3, 4, 5. Figure 5 shows the

generated configuration-dependent COM offsets throughout
the walking task, with red denoting the most perturbed
parameters (n = 5). The COM offset is as large as 4cm in x
and nearly twice that in y for n = 5. Each perturbed model
also results in offsets in cz and momentum but these are
not shown to save space. Figure 6 shows the performance of
the OE for the different models; black denotes ground truth.
Note that angular momentum estimation is poor yet COM
and linear momentum estimation remain relatively accurate
even for larger values of n, demonstrating OE robustness.
C. COP-Based Offset Estimator

It is clear that performance of the OE is degraded for
significant modeling errors due to the unmodeled angular
momentum offset. By including the force-based COP mea-
surement and tuning rCOP against rk, we achieve accurate
COM and linear momentum estimation for n = 5 as shown
in Figures 7 and 8. Also shown are the corresponding LIPMF
estimates; the LIPMF estimates the COM fairly well but with
significant delay while linear momentum estimation is poor
due to the unmodeled offset which is significant for n = 5.
D. External Wrench Estimator

We first estimate a constant external force equal to half the
robot’s weight as was done in [6]. This is applied at the
left hip of the robot in the y-direction, creating associated
torques about the COM in x and z. The top row of Figure 9
shows that the EWE quickly converges to the true external
force and COM torque. The LIPMF converges to the wrong
value, likely because unlike in [6], the force is physically
applied in simulation and there is realistic noise on the COP
measurement. This could not be improved with tuning.

The second row of Figure 9 shows estimation of a 10N
force applied in the same manner during the walking task.
Despite the fact that the robot is subject to impulsive forces
throughout, the EWE provides accurate estimates of both
external force and the small, configuration-dependent COM
torques. The LIPMF has difficulty estimating the value of
the force due to impulses resulting from contact switching.

Finally, the bottom row of 9 shows estimation of a 50N
disturbance applied at time 10s for 0.5s during the walking
task. The EWE overshoots the force value but performs
much better than the LIPMF overall, exhibiting a fast rise
time. As shown in blue, EWE estimation during the transient
disturbance is improved by increasing the external torque
process noise. However, this comes at a price - estimates are
seen to be much noisier.

VI. DISCUSSION

We summarize the results of the previous section below.
• The ME and LIPMF both estimate the COM well but

the ME performs better at estimating linear momentum.
• LIPMF performance degrades much more rapidly than

ME performance for decreasing update rates.
• The ME filters the COM and momentum with much

less delay than a typical low-pass filter.
• Both the OE and LIPMF estimate a constant COM

offset well but the OE performs much better for
configuration-dependent offsets since it estimates ∆l.
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Fig. 9: External wrench estimation for a constant external force in global y-direction while stationary (top row), while
walking (middle row) and for an impulsive force (bottom row) while walking (with process noise values of 0.1 and 1.0)

• The COE estimates offsets more accurately than the OE
in cases of large modeling errors.

• The EWE accurately estimates constant, configuration-
dependent and impulsive external wrenches even during
the walking task.

Overall, the momentum-based filters perform better than
the corresponding LIPM-based filters with only the disad-
vantage of being slightly more complicated to implement.
The estimator to use depends on the application, though in
practice we expect both offsets and external wrenches to exist
on the real robot. Based on the analysis of Section IV-E we
expect that a combined estimator may work well with proper
tuning as long as the external COM torque is approximately
zero. Alternatively, we may run both an offset estimator
and an external wrench estimator in parallel and tune them
accordingly. We plan to implement these approaches on the
real robot and evaluate their performance in combination
with the momentum control framework introduced in [4].

VII. CONCLUSIONS

The momentum-based filter presented in this work estimates
the COM and momentum of the system accurately and can
be formulated into different filters depending on whether a
COM offset or external wrench is affecting the robot. Other
than the COE, none of the filters use the COP and are thus
valid for any contact configuration (whereas the LIPMF as-
sumes coplanar contacts). The momentum-based filter states
were proven to be observable and were additionally shown
to be robust to modeling errors as well as to slow update
rates. These estimators are simple to implement and can be
applied in a wide range of scenarios as demonstrated.
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