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Efficient Self-Collision Avoidance based on Focus of Interest for
Humanoid Robots

Cheng Fang, Alessio Rocchi, Enrico Mingo Hoffman, Nikos G. Tsagarakis and Darwin G. Caldwell

Abstract— This paper deals with the self-collision avoidance
problem for humanoid robots in an efficient way. Self-collision
avoidance is introduced as a constraint for each task in a
hierarchical Inverse Kinematic (IK) problem. Since the number
of link pairs which needs to be updated and checked for self-
collision, in every control loop, is large, the novel concept of Self-
Collision Avoidance Focus of Interest (SCAFoI) is proposed.
SCAFoIs permits to predict and dynamically select the neces-
sary link pairs to be checked on-line to improve the computation
efficiency. For each of the several SCAFoIs, which corresponds
to the related pairs of kinematic chains of the whole body,
the status of the relative positional relationship is predicted.
The prediction is done using a Support Vector Machine (SVM)
which is a widely used classifier from the machine learning
field. Moreover, techniques are proposed to guarantee and
improve the prediction performance of the trained classifier.
The effectiveness of the framework is verified using the whole-
body motion control library OpenSoT by simulation on the
model of the recently developed humanoid robot WALK-MAN.

I. INTRODUCTION

Recently, as robots have moved from traditional factory
applications to the potential use in service and domestic
environments, researchers have increasingly been focusing
on humanoid robots which have potential capabilities to
effectively execute and complete the realistic tasks that are
central to our daily lives. To do this, one of the most
important capabilities for humanoid robots is to be able to
detect and avoid obstacles and self-collisions, the latter is the
subject considered and discussed in this paper.

Self-collision avoidance methods for humanoid robots can
be roughly classified into two categories: global offline me-
thods and local on-line methods. The most popular approach
in the first category is the sampling-based method, such as
Rapid-exploring Random Trees (RRT) [1], which tries to
explore the feasible configurations (considering all of the
constraints) as much as possible in the configuration space
and search for the best path connecting the initial configu-
ration and the target configuration. It is proved very suc-
cessfully in complex motion planning in high-dimensional
situations like humanoid robots. However, when it comes to
the practical application on real robots, some drawbacks are
pointed out in [2]: complexity of transforming the planned
path to practicable trajectory and discontinuity of path in C1.
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Fig. 1. SCAFoI activation while executing a valve turning task on the
simulated humanoid robot WALK-MAN.

For the second category, earlier researchers [3], [4] em-
ployed some fast on-line collision detection methods to stop
the motion of the robot when the next generated reference
joint angle data is predicted to result in a possible collision.
In this case, the stability of the robot would be heavily
influenced due to the abrupt stop behaviour, which is not
desirable during task execution. To react to the potential
collision several steps ahead, researchers [5], [6] usually
establish a potential field based on the minimum distance
between the most closest link pairs of a humanoid robot
and try to control the distance to be as large as possible.
Specifically, the gradient of the minimum distance with
respect to the joint vector is calculated and projected into the
null space of a main task with higher priority by using the
task priority framework. In this case, the main shortcoming
is that the priority of the self-collision avoidance is low and
the corresponding task only works in the null space of a
higher priority task. For example, the robot can only use self-
motions to avoid self-collisions when the main task is set in
Cartesian space. This implies that no effective self-collision
avoidance motions will be performed if the main task is
wrongly guided to a self-collision pose for some reason [5].
Another problem is that the robot might be stuck at a certain
threshold distance because the self-collision avoidance task



could be only activated when the minimum distance is
smaller than the threshold [7]. To overcome these limitations,
Mansard et al., [8], [9] proposed a framework called “Stack
of Tasks (SoT)”, which is a general and hierarchical fra-
mework in nature for fast humanoid robot motion generation.
Compared to the traditional task priority framework, the tasks
and the constraints are able to be described by equalities or
inequalities flexibly [10]. The strict satisfaction of the tasks in
the stack is replaced by a sequence of optimization problems
where tasks are achieved as much as possible while subject to
some constraints, which means that some task errors would
be allowed properly. In this framework, the self-collision
avoidance could be deployed as an inequality constraint
for every task, and the optimization of minimizing the task
error is only conducted inside the feasible scope of the self-
collision avoidance constraint. In this way, the inequality
constraint should be always obeyed in any situations as a
global constraint, even if this implies corresponding tasks
could not be fully achieved because of it. In the meantime,
this kind of constraint would never influence other tasks if
the constraint is not violated, on the contrary, the generated
virtual repulsive force based on the potential field could
always take effect to actively change the configuration of
robot in the traditional framework. Obviously, all these new
features make the self-collision avoidance functionality more
reasonable. The SoT framework is considered to realize the
self-collision avoidance in this paper.

In order to realize the self-collision avoidance constraint,
the position information of every link pair of a humanoid
robot is usually updated to calculate the minimum distance
and further to find out several closest link pairs to be
constrained in every control loop. Since humanoid robots
are usually composed of many links, the number of all the
link pairs to be inspected would be excessively large for a
control cycle, during which much time is spent completing
the corresponding computation [2], [11]. There are two
common approaches to reduce this computation effort. One
is to decrease the number of the necessary link pairs to be
checked according to an thorough analysis of the kinematic
structure or/and the practical experience. Through heuristic
and exhaustive search or sampling methods, a table of link
pairs which would never collide with each other can be
precomputed and removed from the list of pairs for which
to compute the minimum distance information [1], [2], [3].
However, the number of remaining necessary link pairs to
be checked is still large. Another approach is to try to use
Exhaustive Attack method to find out the collision-free joint
angle motion range for a certain joint to form a look-up table
for on-line use. The problem of this approach would be that
the data-set for the complete table is too large to fully apply
in practice, so this look-up table method can be only used
for some compound joints or some specified link pairs of
interest [4], [12].

In this paper, we propose a novel concept called Self-
Collision Avoidance Focus of Interest (SCAFoI) to indicate
the body segments where we should focus to check for poten-
tial self-collisions when the robot is at a certain posture. The

basic idea of this new method is that since the mechanical
structure and kinematic chains of a robot are invariant, it is
possible for the robot to obtain some experience/knowledge
about potential self-collisions after observing a large number
of its configurations. That implies that the robot will have the
capability of locating the SCAFoIs immediately when a set
of joint angles is given. We implement this concept using
machine learning techniques with the purpose to speed up
the computation of the on-line link pair checking.

The overall method and the details of its implementation
together with results from simulation verification on WALK-
MAN humanoid robot are introduced in the following
sections.

II. SELF-COLLISION AVOIDANCE FRAMEWORK

In our work, OpenSoT [13], a robotics library which is
inspired and derived from SoT, is used to deal with the
kinematic inversion problem. The concept of the library is to
maximally decouple the tasks/constraints description and the
solvers implementation. OpenSoT provides base classes and
standard interfaces to specify tasks, constraints and solvers
and is distributed with a library of already implemented
components that allows to write and solve IK problems. The
architecture of OpenSoT encourages collaboration and helps
integration and code maintenance.

In the default IK solver of OpenSoT, based on QP Op-
timization, a generic IK Problem is described as follows
[13]:

q̇i = argmin
q̇

‖Jiq̇ − ėi‖

s.t. Aiq̇ ≤ bi
(1)

where Ji denotes the Jacobian matrix of the link frame
which we want to control with respect to a certain base frame
for task i(i = 1, 2, ...n). q̇ is the joint velocity vector which is
the optimization variable of the problem. ėi is the derivative
of the task error with respect to time. At last, the optimal joint
velocity should satisfy the inequality constraint Aiq̇ ≤ bi.
As a result of the aforementioned formulation, a series of QP
problems are going to be solved in cascade to generate the
(locally) optimal whole-body motions according to the set of
tasks with the specified priorities [14]. Finally, the solution
to the last task in the stack can be written as follows:

q̇d = argmin
q̇

‖Jnq̇ − ėn‖

s.t. J1q̇ = J1q̇1

··
·

Jn−1q̇ = Jn−1q̇n−1

A1q̇ ≤ b1

··
·

Anq̇ ≤ bn

(2)

where q̇d is the final joint velocity to be commanded. From
the formulation of (2), it is clear that the final solution to task
n is only optimized inside the intersection of null spaces of
all the tasks with higher priorities, i.e., equalities Jiq̇ =
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Fig. 2. Schematic diagram of the collision avoidance constraint on a capsule
pair representing the collision model for a link pair.

Jiq̇i(i = 1, 2, ..., n − 1) and inequalities Aiq̇ ≤ bi(i =
1, 2, ..., n− 1) must be satisfied.

In our framework, the self-collision avoidance constraint
will be formulated as an inequality constraint for each task
in the IK Problem, as shown in (1), to guarantee the safety
of the robot. The basic idea is to calculate the minimum
distance between every link pair in every control loop and
obtain a list of several closest link pairs according to these
minimum distances. For each of these link pairs of interest,
we try to control the relative velocity of the one link with
respect to the other in the direction connecting the closest
points on the two links respectively, which is called velocity
damping firstly introduced in [15] and reformulated inside
the SoT [16], to avoid the potential collision between them.

So, to accelerate the computation of minimum distance
of each link pair, we should employ some simpler collision
model for each link first. In our paper, the capsule, sphere-
swept line, is chosen among a lot of types of bounding
volumes because of the convenience of the computation. As
shown in Fig.2, the minimum distance of the link pair can be
just considered as the minimum distance between the inner
line segments minus the sum of the radii of the capsules
for the two links respectively. The method proposed in [2]
is employed to generate the minimum bounding capsule for
each of exact link body geometries represented by mesh.
Furthermore, the minimum distance between a capsule pair
and the shortest points on them can be easily obtained by
using the Flexible Collision Library (FCL) [17]. FCL is
a fully templated library which aims at general proximity
calculation and collision detection on various types of colli-
sion geometries such as axis-aligned bounding box (AABB)
and oriented bounding box (OBB). As of version 3.0 of the
library, the capsule collision geometry has been added [18].

Once the closest points are computed, for instance, cp1

and cp2 shown in Fig. 2, the relative motion of the capsule
pair is going to be restricted in the direction:

n =
cp2 − cp1

‖cp2 − cp1‖
(3)

Where the distance ‖cp2−cp1‖ is calculated according to
the Euclidean L2-norm. So, the relative velocity constraint
in this direction can be formulated as follows:

nT [J(cp1, q)− J(cp2, q)]q̇ ≤ εd− ds
∆t

(4)

In (4), J(cp1, q) and J(cp2, q) refer to the Jacobian
matrices of the frames located at the closest points cp1 and
cp2 respectively with respect to the base frame. Since the
relative location of the capsule relative to the corresponding
link frame is fixed, these two Jacobians can be obtained
based on the Jacobians of their link frames by some simple
transformation. It is worth noting that only the linear velocity
component of the Jacobian (the first three rows) is taken
into account in this case. Then, the formula [J(cp1, q) −
J(cp2, q)]q̇ can be considered as the relative velocity of the
capsule pair. In addition, ds is the safety distance which is
the shortest distance allowed for the capsule pair, ∆t denotes
the control loop period, and ε indicates the gain value which
is used to smoothly reduce the relative approaching velocity
at which the threshold distance is reached. So, the inequality
in (4) means the velocity projected from the original relative
velocity of the capsule pair onto the direction connecting
the closest points on the capsules would never make the
distance between them smaller than the safety distance ds,
which is then used to avoid potential collision between the
corresponding link pair. Furthermore, for multiple link pairs,
the constraint formulation evolves to: n1

T J̄1

··
·

nk
T J̄k

 q̇ ≤

 d̄1

··
·

d̄k


N q̇ ≤ D

where J̄i = J(cp1,i, q)− J(cp2,i, q)

and d̄i = εi
di − ds,i

∆t

(5)

In this case, in order to add the self-collision avoidance
constraint for k pairs of links in the IK Problem, the
inequality constraint of every task in (1) should be replaced
by Nq̇ ≤D in (5).

III. SELF-COLLISION AVOIDANCE FOCUS
OF INTEREST

As introduced in the previous section, in order to guarantee
the safety of the robot, the natural idea is to check the
relative position information of every link pairs, which has
the potential to collide with each other, and then to add the
collision avoidance constraint for each pair in every loop.
However, for a humanoid robot with many links, the number
of link pairs to be checked is usually very large as it grows
quadratically with the number of links, resulting in a heavy
computational burden for a very limited control period. The
commonly used method is to remove some link pairs which
would never collide with each other for any configurations
or at least for the specified task, and some other link pairs
which are connected by joints because this kind of collision
can be avoided by adjusting the joint limits [1], [2], [3]. But,



generally speaking, the number of the remaining necessary
link pairs is still large. For instance, in our case, the WALK-
MAN humanoid robot with 31 DOFs has 383 link pairs
which needs to be inspected on-line after removing some
unnecessary link pairs by using the collision checking tools
in Moveit! offline [19].

A. Concept

The concept of Self-Collision Avoidance Focus of Interest
(SCAFoI) is proposed in this paper to describe and indicate
the most likely place(s) where the self-collision of humanoid
robot could happen. There are two reasons for introducing
the SCAFoI notion: first, it is noticed in practice that the self-
collision avoidance constraint would not be active most of
the time during task execution because of the joint velocity
constraint. That means the limited joint velocities would
restrict the linear velocity in the direction of the shortest
distance of link pair, which is not able to cause any collision
in the feasible space of joint velocity vector when the relative
distance of link pair is still quite far. Second, the kinematic
structure of the humanoid robot is usually fixed and the robot
would complete a large number of repetitive or similar tasks
frequently. To make it more intelligent, a natural idea is to
endow the robot with the capability of predicting the most
dangerous parts of its body when a configuration is specified
by using previous experience as a human being does. So,
the SCAFoI model is introduced as an attention control tool
to quickly identify and locate the most dangerous places
around the body of the robot where the potential collision
is likely to occur. In this way, we can selectively update the
position information of some links and compute the shortest
distances between these link pairs of interest and add the
corresponding constraints to speed up the on-line calculation
of self-collision avoidance. As far as we know, this is the first
time that the concept of Self-Collision Avoidance Focus of
Interest is proposed.

B. Design

The basic idea of SCAFoI is to design a classifier to
identify the binary status of the robot about self-collision,
safe or dangerous, given a certain joint angle vector. Since
the whole joint space of humanoid robot is too complicated
to classify, we suggest dividing the robot into six parts or
kinematic chains: head, torso, left arm, right arm, left leg
and right leg. In this way, for each two of the six parts, one
classifier would be designed to recognize the status between
the two parts. According to our practical experience, the
success rate of prediction of the classifier would increase
significantly due to the reduction of dimensionality of the
relevant joint space. There might be some exceptions for
several part pairs which would never collide with each other
inside the feasible joint space of the whole body. In our
case, the part pairs, head - left arm, head - right arm, head
- left leg, head - right leg, head - torso, torso - left leg
and torso - right leg (there is a protective frame around
the head), are excluded from the checking list. So, we have
8 pairs of parts left which needs to be checked on-line in
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Fig. 3. Whole procedure of the SCAFoI model.

every control loop. Consider that only the collisions between
different kinematic chains are taken into account in this paper
because we assume that the collisions between the adjacent
links and the links from the same kinematic chain could be
avoided by suitable joint limits.

So, one classifier is responsible for one pair of kinematic
chains, which is actually one SCAFoI. In every control loop,
these classifiers would be run to indicate which pairs of parts
should be paid attention to, and the necessary link pairs for
each active SCAFoI would be retrieved. The link pairs to
check are the remaining pairs after subtracting the link pairs
which would never collide with each other, which is obtained
by the offline collision checking tool in Moveit!, from all
of the possible link pairs from the corresponding pair of
kinematic chains. After that, a whitelist is created to include
all the necessary link pairs from all the active SCAFoIs. The
position information of all the links in this whitelist would be
updated immediately and the shortest distance between each
pair of links would be calculated subsequently. In this way,
we can guarantee that only a minimum set of link pairs are
updated. Finally, in order to further simplify the calculation,
several self-collision avoidance constraints as the inequality
in (4) would be computed and added only for the link pairs
whose shortest distances are lower than a certain threshold
distance set in advance. The whole procedure is presented in
Fig. 3.

C. Implementation

In this paper, we employ the Support Vector Machine
(SVM) [20], [21], which is a very popular binary classifier in
machine learning field (SVM can be also extended to apply
to multi-class classification problems), to implement the
classification. In the classical binary classification problem,
given training vectors xi ∈ Rn, i = 1, ..., l, in two classes,
and a target indicator vector t ∈ Rl such that ti ∈ {1,−1}, a
linear model is used as a hyperplane to try to separate these
training vectors as much as possible:

y(x) = wTφ(x) + b (6)

where φ(x) denotes a mapping function which is re-
sponsible for transforming the original data into a feature
space which is supposed to classify these data easier, and
b is the bias parameter. Then, the classification problem is



converted to an optimization problem where we optimize the
parameters of this linear model, w and b, to maximize the
shortest distance (margin) between the two classes of data:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

s.t. ti(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l.

(7)

where ξi indicates the slack variable for each training data
to allow some of them to be misclassified, and parameter
C > 0 is used to control the trade-off between the slack
variable penalty and the margin. After the optimization (7)
is solved, the decision function below can be used for
prediction:

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

yiαik(xi,x) + b

)
. (8)

where k(xi,x) = φ(xi)
T
φ(xi) is called kernel function

in SVM, and αi is the Lagrange multiplier term for the
constrained optimization problem (7). The vectors whose
corresponding αi satisfy αi 6= 0 are named as Support
Vectors which make actual contribution to the classification
decision function above.

In our case, the training vectors xi are from different
degenerated joint spaces of the humanoid robot depending
on the various SCAFoIs. For instance, if the SCAFoI refers
to the pair of left arm and right arm, the xi is the vector
from the joint space spanned only by the 2× 7 joint angles
from the two arms because the other joint angles are not
able to change the relative position of the arms. In addition,
the target value for the training vector, ti = 1, when the
two parts are too close, otherwise, ti = −1 meaning the
current posture is safe for collision. Here, we employ the
shortest distance between kinematic chains to measure the
positional relationship of two parts, which can be defined
as the minimum of all the minimum distances between any
pairs of links from the two chains. In this way, a target value
ti is supposed to be set to be 1 when the shortest distance
is lower than a lower threshold distance, dtl , as shown in
Fig. 4, while ti = −1 when the shortest distance is larger
than another upper threshold distance, dtu . So, the task of
the designed classifier is to predict the value of ti given a
configuration. It is worth noting that we employ two different
threshold distances to classify the data in order to increase
the success rates of classification and prediction. The data
inside the transition area between the two threshold distances
could be regarded as any one of the two classes. This design
is going to be explained in detail in the next section.

As the rate of correct prediction for a classifier can never
reach up to 100% in practice, it would cause serious damage
to the robot if the designed classifier could not predict
the dangerous status of the robot successfully. So, taking
this situation into account, the SVM classifier is combined
with a quadratic interpolation function based on three most
recent actual shortest distances to predict the status of two
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Algorithm 1 SCAFoI prediction algorithm
1: Initialize d1 = d2 = d3 = 0
2: /* d1, d2 and d3 are the three most recent real shortest

distances, which would be set to be 0 when they are
larger than the upper threshold distance dtu*/

3: while (!timeout()) do
4: if (d1 6= 0 && d2 6= 0 && d3 6= 0) then
5: dp ← predict QLI(d1, d2, d3);
6: if (dp < dtu) then
7: dr ← update shortest distance(q);
8: if dr < dtu then
9: add constraints(dtl);

10: store(dr);
11: else
12: store(0);
13: end if
14: else
15: store(0);
16: end if
17: else
18: t← predict SVM(q);
19: if (t = 1) then
20: dr ← update shortest distance(q);
21: if (dr < dtu) then
22: add constraints(dtl);
23: store(dr);
24: else
25: store(0);
26: end if
27: else
28: store(0);
29: end if
30: end if
31: end while

parts more precisely in order to avoid misclassification in
dangerous areas as much as possible. Specifically, the SVM
classifier is only in charge of predicting when the status of the
corresponding SCAFoI start changing from inactive to active,
and then the actual shortest distance can be updated normally
when the robot enters into the area where the target value is



1, then the quadratic interpolation function can predict the
next shortest distance by using previous distance data until
the robot goes back to the safe area again. The idea is that
the real shortest distances for the previous configurations in
the neighborhood of the current configuration could be used
for more accurate prediction if these local information have
already been updated before. That means the continuity of
the joint trajectory could be utilized to compensate for the
natural inaccuracy of the general classifier to guarantee the
success rate of prediction especially for the dangerous area.

For each SCAFoI, the detailed algorithm for this is shown
in Algorithm 1, where predict QLI(d1, d2, d3) is the Qua-
dratic Lagrangian Interpolation Function which is used to
predict the shortest distance for the next time step based
on the three most recent actual distances, d1, d2 and d3.
Since the control period is a constant, this function would
be simplified to:

dp = l3(t)d3 + l2(t)d2 + l1(t)d1 = d3 − 3d2 + 3d1 (9)

and function predict SVM(q) would be implemented by
using LIBSVM which is currently one of the most widely
used SVM libraries [22], [23]. add constraints(dtl) would
compute and add the collision avoidance constraints for the
link pairs of which the shortest distances are lower than dtl .

IV. IMPROVEMENT TO THE PREDICTION
ACCURACY OF SVM

Since it is found in practice that it is very hard for the
designed classifier to classify the two-class data set which
is divided by one exact shortest distance in our case, we
finally choose to employ a transition area as a ”soft” partition
instead of one single distance to train the classifier to separate
the data as much as possible. As shown in Fig. 4, the
transition area is defined as an area between the dangerous
area where the shortest distances of the robot’s configurations
inside are lower than dtl , and the safe area where the
corresponding shortest distances for the postures inside are
larger than dtu . Please note that the term area is actually
a concept of joint space here, but we use a rectangular
area instead of the complicated high-dimensional space for
the convenience of visualization in Fig. 4. In this way, we
just focus on the performance of the designed classifier in
the safe area and dangerous area, and do not care about
the transition area. This area could be regarded as a buffer
area or protective area before the dangerous area to give
the classifier more opportunities to successfully judge if the
robot is entering a non-safe area.

To train the classifier, a set of training data needs to be
generated in some way. For the design of the transition area,
we have more choices for the strategy of generating training
data. Any two distances between dtu and dtl , which are
visualized by the dashed dividing lines in Fig. 4 for instance,
could be selected to be used to generate the training data.
Specifically, a joint angle vector q is generated randomly
from the related joint space, and then, the shortest distance of
this configuration is going to be calculated. the target value
of vector q would be considered to be −1 if the shortest

distance is larger than the bigger one of the two chosen
distances, while the target value equals to 1 if the distance
is lower than the smaller distance. In this way, we can get
a large number of sample training vectors in two classes.
The amounts of training data in the two classes is specified
manually to make sure the balance of the two classes of
data and to guarantee the number of random samples are big
enough to describe or represent the spatial characteristics of
safe area and dangerous area well. We are going to illustrate
later that the number of training data is an important factor
to affect the performance of the designed classifier.

After we obtain the generated training data set, a predic-
tion model could be produced by using LIBSVM library.
So, an important thing is to find a way to evaluate the
trained model. In order to check the distribution of the
misclassification rate in safe area and dangerous area, these
two areas are divided into several subareas with the same
interval in terms of the shortest distance and the same number
of test data in each subarea would be collected for test.
Finally, the misclassification rate for each subarea can be
obtained after the prediction by the trained model. The profile
of error rate is proved to tend to be a unimodal, bell-shaped
curve, in which the error rates of the subareas close to the
transition area are relatively high, while those of the subareas
far away from the transition area are relatively low. Since the
role of the designed classifier is to predict when the robot
starts entering the non-safety area as precisely as possible,
the average misclassification rate of the classifier is expected
to be as low as possible and the shape of the error rate
profile is required to be more peaked at the same time. So,
a criterion, ICl

, (l = 1, 2, ..., k) for trained classifier Cl, is
designed to measure the performance of classifier as follows:

ICl
= wl

saI
l
sa + wl

svI
l
sv + wl

daI
l
da + wl

dvI
l
dv,

plsa =
1

m

m∑
i=1

plsi , I
l
sa =

plsa −min
l

plsa

max
l

plsa −min
l

plsa
,

vlsv =
m∑
i=1

i
pl
si

mpl
sa
, I lsv =

vlsv −min
l

vlsv

max
l

vlsv −min
l

vlsv
,

plda =
1

n

n∑
j=1

pldj
, I lda =

plda −min
l

plda

max
l

plda −min
l

plda
,

vldv =
n∑

j=1

j
pl
dj

npl
da

, I ldv =
vldv −min

l
vldv

max
l

vldv −min
l

vldv
,

(10)

where plsi is the error rate of trained classifier Cl in the
subarea i from the safe area. The number i means the subarea
is the i–th subareas in the safe area counting from the
distance, dtu . And pldj

refers to the misclassification rate
in the subarea j from the dangerous area counting from the
distance, dtl . The whole criterion ICl

consists of four indices.
I lsa is used to measure the average error rate of the classifier
in safe area, and I lsv is employed to measure the extent to
how the distribution of the error rate in safe area is close to
the borderline of the safe area, dtu , and indices I lda and I ldv



IC

Group of 1500 samples Group of 3000 samples Group of 6000 samples

Fig. 5. The influence of the number of training data on the performance
of trained classifier.

are the counterparts in the dangerous area. It is worth noting
that all the four indices are relative indices which are already
normalized to the range [0, 1] to eliminate the influence of
different magnitudes of various indices. Variables wl

sa, wl
sv ,

wl
da and wl

dv are the corresponding weighting factors for
the four indices respectively, which holds the relationship
wl

sa + wl
sv + wl

da + wl
dv = 1. Finally, the value of whole

criterion ICl
would be in the closed interval [0, 1], and

the smaller the value is, the better the performance of the
classifier is considered.

We are going to use the SCAFoI for the pair of left arm
and right arm as an example to present how to select the
best trained classifier. In this SCAFoI, dtu and dtl are set
to be 20cm and 15cm respectively, and then 15 pairs of
borderlines which are used to generate the training data can
be chosen: 15-16, 16-17, 17-18, 18-19, 19-20, 15-17, 16-
18, 17-19, 18-20, 15-18, 16-19, 17-20, 15-19, 16-20, 15-20
(unit:cm). The numbers of subareas for classifier testing in
the safe area and the dangerous area, m and n, are both
equal to 10. The distance interval for each subarea is 1cm
and the number of test data in each subarea is 1000. We
set the total number of training data to be 1500, 3000, and
6000 for three groups of tests, and the ratio of training data
of class +1 to those of class -1 is always 1 to 2 to try to
make the training data to some extent uniformly distributed
throughout the whole space. For the weighting factors of the
criterion, wl

sa = wl
da = 0.3 and wl

sv = wl
dv = 0.2. The

overall performance of the 15 trained classifier models are
presented in Fig. 5:

In Fig. 5, each point represents one classifier trained by
different training data set. It can be easily found that the num-
ber of training data would directly affect the performance of
the classifier in terms of the criterion, IC . So, we choose
the group of trained classifiers of 6000 samples for further
selection. The misclassification rate distribution profiles for
this group of classifiers are shown in Fig. 6:

Based on the criterion, IC , the best classifier is the one
which is trained by the training data generated by the pair
of borderlines, 15cm and 19cm. In Fig. 6, we can see that
its shape of distribution profile of misclassification rate is
relatively peaked and the performance of the classifier in
dangerous area and safe area are balanced and relatively
good, and all of the features would be very beneficial to
identify the moment more precisely when the robot starts
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Fig. 6. Distribution profiles of misclassification rate for various trained
classifiers of 6000 samples.

moving from the safe area to dangerous area. Since there
are some distances between subareas, we can assume that
the error rates in the subareas are independent of each other.
So, the probability of the classifier failing in prediction

to lead to a collision is at most
n∏

j=1

pldj
, which is very

small. Once the classifier succeeds in predicting the status
of the robot in the dangerous area, the quadratic Lagrangian
interpolation function would take over the prediction task
which should be more accurate and stable. Therefore, in this
way, the misclassification rate of the selected classifier model
is acceptable. In the next simulation section, we are going
to show that this framework would work well in practice.

V. SIMULATION

In this section, we are going to show some simulation
results by using the model of Self-Collision Avoidance Focus
of Interest on our humanoid robot, WALK-MAN. A sequence
of screenshots are shown in Fig. 1 when the robot executes
a valve turning task in the air, more details can be found in
the attached video:

where the red points mean the shortest distance points
between link pairs, the yellow lines indicate the link pairs
which are from the activated SCAFoIs according to the
prediction results, and the red lines denote the link pairs the
shortest distance of which are smaller than lower threshold
distance, which are constrained by the self-collision avoidan-
ce constraint in (4). Please note that the SCAFoI of left leg
and right leg is removed because walking is not considered
in this case. The prediction accuracy and the computation
efficiency for this task are presented in Fig. 7 and Fig. 8.

In Fig. 7, the performance of the designed predictor in
terms of prediction accuracy is pretty good because the
configurations in this task are quite normal and are probably
close to or even equal to some samples in the training
set. The accuracy here is only considered and calculated
in the safe area and the dangerous area. In Fig. 8, the
full computation time refers to the time which were spent
on updating all the link pairs and calculating their shortest
distances. Computation was performed on a 64-bit Intel
Xeon X5667 3.07GHz processor running Gazebo and Rviz
together. It is obvious that the less SCAFoIs are activated, the



Fig. 7. Prediction accuracy for each SCAFoI in valve turning task.

Fig. 8. Computation efficiency comparison in valve turning task.

less time it would take. So, the advantage of the framework
in computation efficiency relies on the reduced number of
the activated SCAFoIs, which would be the fact in most of
normal tasks.

VI. CONCLUSIONS
In this paper, the concept of Self-Collision Avoidance

Focus of Interest (SCAFoI) for humanoid robots was pro-
posed to dynamically select the necessary link pairs to be
checked online to accelerate the computation of a self-
collision avoidance constraint. A predictor, designed by using
Support Vector Machine combined with a Quadratic Lagran-
gian Interpolation function, was employed to estimate the
status of any pair of kinematic chains of the humanoid robot.
The prediction accuracy and the computational efficiency
are verified by whole-body motions in simulation on the
humanoid robot WALK-MAN. Future work will include the
implementation of the method on the real robot and will also
theoretically study the factors which are able to guarantee the
accuracy and efficiency in any situations to make the whole
predictor more robust and reliable.
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