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Abstract—1In this work we present a framework for the
estimation of the Cartesian position of stationary sound sources
in reverberant environments and under the influence of heavy
clutter based on binaural bearing measurements. We employ
a particle filter (PF) on binaural measurements to estimate
the position of the sound sources in a bearing only tracking
(BOT) formulation and investigate how the estimation accuracy
can be improved in reverberant environments by applying a
gating method that is inspired by the precedence effect. We
evaluate the interaural coherency in order to identify time
frequency units of the received signals that show a high linear
dependency and therefore are potentially dominated by the
direct sound emitted by sound sources. We use a particle filter
for state estimation and lay out the theoretical model for state
representation, propagation and estimation. The feasibility of
the presented methods is evaluated in simulations and we give
first results of tracking performance when applied to real world
binaural localization measurements of a sound source in a
typical reverberant scenario. Our results show that gating the
binaural bearing measurements with the interaural coherency
can improve localization accuracy to a large degree.

I. INTRODUCTION

The challenge in BOT problems is that the Cartesian
position of potential sound sources has to be estimated
without knowing the distance to the target by taking into
account the control input, position and orientation of the
robot and bearing measurements. Furthermore, binaural mea-
surements of sound source localization are heavily affected
by reflections in the environment - regarded as reverberation
in this work - and by disturbances caused by arbitrary noise
sources and false detections which we will regard as clutter.
Overlapping sounds of multiple sources can lead to the
detection of phantom sound sources. Therefore, the challenge
of solving the BOT problem in binaural sound localization
is that all these effects combined lead to a high variance of
the probability distribution and to a high degree of clutter in
the bearing only measurements.

Interaural time difference (ITD) and interaural intensity
difference (IID) can be evaluated in order to localize sounds
in the horizontal plane, while binaural localization in the
median plane is possible when IID and ITD are analyzed
together with the filter effects that are introduced by reflecti-
ons in the pinna, head and torso of the binaural receiver [1],
[2], [4]. In the literature there exist several approaches to
computational binaural sound localization, for example [3],
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Fig. 1: Experimental setup in reverberant environment with
the binaural dummy head KU 100 on a mobile platform
and a coaxial speaker for the simulation of a stationary
point source. The ground truth was acquired with an optical
tracking system.

[4], [8], [9], [16]. Keyrouz et al. [16] presented a method that
is based on applying principal component analysis reduction
techniques to a known dataset of head related transfer
functions (HRTF) and used a reduced HRTF representation in
order to localize sound sources by applying inverse filtering
with the reduced data and cross correlation. It was also shown
that localization is possible with machine learning methods
by Deleforge et al. in [8], [9] by means of binaural manifold
learning. In the here presented work we rely on the cross
channel approach which is proposed by MacDonald in [3].
Experiments have shown that humans localize sound sources
mainly according to the directional information contained
in the direct sound. This effect has been experimentally
investigated in [10], [11] and is known as the precedence
effect. Promising results have been shown for using models
of the precedence effect in computational auditory scene
analysis systems in [5]. Multitarget tracking solutions with
PF have been presented in several works, for example by sol-
ving the joint probabilistic data association problem (JPDA)
[15], [17] or by estimating the joint multitarget probability
density (JMPD) [18]. In this work we rely on the latter.
Bearing only tracking problems of multiple moving targets
with PFs have been investigated specially in the application
of radar detection and possible solutions are given in [14],
[19]. The signal model of the PF we present in this work
is similar to earlier works, as for example presented in [22],
where its feasibility has been shown with the application
on localization of moving sound sources (for example with
GCC [23], AEDA [24] ) in reverberant environments with
a stationary and widely spaced microphone array. Another



more recent work by Evers et al. describes an approach of
BOT acoustic tracking of moving speakers for robot audition
based on an extended Kalman filter. In the aforementioned
work the authors evaluate the performance of their proposed
system with simulations of direction of arrival measurements
directly without taking into account real world conditions
[20]. Our contribution in this work is that we investigated a
PF formulation when applied to bearing only measurements
that result from binaural sound source localization with a
moving observer and that we evaluate it with real data
when combined with methods that can improve accuracy and
robustness in reverberant environments.

In this work we will first lay out the theoretical foundations
regarding binaural sound source localization in reverberant
environments. See Fig. 2 for an overview of the presented
methods. We will explain how we solve the BOT problem
with a PF and give the formulations of the state space
representation, the state propagation and sensor model. Next,
we will show the results of the evaluation of our proposed
methods in simulation and with real world measurements in
a usual reverberant environment. Finally, we will conclude
with a discussion of the results and possible fields of applica-
tion. We will also give an outlook on possible and necessary
improvements and shortly discuss interesting insights which
we gathered during experiments.
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Fig. 2: Structure and dataflow of the localization methods.

II. THEORETICAL FOUNDATIONS
A. Binaural Sound Source Localization

In the literature the commonly used model for binaural
localization of sound sources relies on the evaluation of the
Interaural Time Difference (ITD) and Interaural Intensity
Difference (IID) between the two ears of a binaural sensor.
These features are mainly accounted to the localization in
the azimuthal plane of the binaural sensor. When combined
with the spectral filtering effects due to reflections on the
torso, head and pinna of the ears ITD and ILD form a head
related transfer function (HRTF) which makes localization
in the median plane possible, too. In this work we assume
a robotic system with two microphones which are placed in
the ear canals of artificial pinna on the right and left side of
the robots head. In the following all formulations are given in
the frequency domain and we describe the angle dependent
binaural signal model under anechoic conditions as:

Yi(jw, k) = HRTF,,,(jw,0) x S(jw, k) + V (jw, k)

m € [l,7] &

S(jw, k) is the Short Time Fast Fourier Transformed
(STFT) monoaural source signal of time instance k in depen-
dency of complex frequency jw. HRT Fy,(jw,0);m € [l,r]
are the head related transfer functions of the left and the
right ear which are unique for every possible bearing 6 of
a sound source relative to the binaural sensor. Here 6 is an
azimuth and elevation pair in spherical coordinates for each
possible direction of arrival of a wavefront relative to the
sensor. Yy, (jw, k);m € [l, ] are the signals that are received
at the left and right ear at each time instance. V (jw, k) is an
additional noise term due to the characteristics of the sensor.
We use the binaural sound source localization algorithm as
proposed by MacDonald [3] in order to estimate the filter
pair and therefore bearing of the measured sound source at
time instance k.

B. Interaural Coherence

The interaural coherence (IC) is inspired by the precedence
effect which has been experimentally investigated in human
hearing [10], [11]. The precedence effect describes the
phenomena that human listeners localize sounds mainly due
to the directional information contained in the direct sound
wavefronts and directional information of reflections and
diffuse sounds is suppressed. In reverberant environments the
signal model of Eq. (1) changes because sounds received at
the left and right ear are composed of the direct wave front
and delayed wavefronts due to reflections in the environment.
Furthermore, the delayed wave fronts are arriving the bin-
aural sensor from arbitrary directions and are filtered with
different head related transfer functions, hence:

Yin(jw,t) = BRTF,,(jw,0) * S(jw, k) + V (jw, k)

m € [l,7] @

Here, the binaural room transfer functions
BRTF,,(jw,0);m € [l,r] are modeled as the combination
of a Room Transfer Function (RTF) and the angular
dependent HRTFs for direct wavefronts and reflections.
The signal that is received at the ears is a superposition
of the direct sound filtered with a HRTF and time delayed
reflections that have been filtered with HRTFs of arbitrary
bearings depending on the position of the observer and
the source. Late reflections in reverberant environments
are assumed to be diffuse. The superposition of a received
sound with early and late reflections leads to a decrease
in the coherency of the signals that are received by both
ears. Therefore, valid and mostly undisturbed localization
is possible when the direct sound signal portions of the
measured signals at the ears are evaluated. In order to do
so, one can evaluate the linear dependency of the signals
received at the ears. The IC is a measure of the linear
dependency of the received signals and determined for each
frequency bin in the STFT frames. Hence, the IC [5] can
be evaluated in order to determine whether a received time
frequency (TF) representation is originating from the direct
sound. The IC is defined as follows:
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®; . (jw,t) represents the cross-power spectral density
(CPSD) and @ ;(jw, t) and ®, ,(jw, t) the auto-power spec-
tral density (APSD) of the time aligned signals received at
the left and the right ear, respectively. In our experiments
we discovered that a time alignment is not necessarily
required and can be neglected. In the actual implementation
a recursive smoothing is applied to the calculation of the
CPSD and APSDs, hence:

Oy (jw, k) =B, (jw, k — 1) + (1 — B)|Yi(jw, k)|
D), (jw, k) =P ,(jw, k — 1) 4)
+ (1= B)Yi(jw, k) * Y. (jw, k)

The smoothed IC @, ,.(jw, k) is calculated according to
Eq. (4) where [ represents the smoothing parameter. In
this work a pair of TF units is regarded containing direct
sound and therefore valid by thresholding the mean IC of all
frequency bins:

D (k) = N 5)

. 1if ST r(jw,k) > a
0 else

This is a valid assumption for wideband signals that are
dense with regards to the time frequency representation,
which is the case for white noise. Narrowband signals require
more elaborate methods of evaluation of the IC which are
beyond the scope of this work. In our experiments we
evaluated every received pair of TF units received at the ears
with Eq. (5) and gated the frames indicated by I'(¢) = 1 into
the binaural localization algorithm and then into the BOT PF
for further processing. A side effect of this approach is that
the computational burden of the binaural localization with
the cross channel algorithm can be avoided when the IC is
low by discarding the respective TF units.

C. Binaural Bearing only Tracking

Measurements of a binaural sensor consist only of relative
bearings to potential sound source locations. The distance
to the target is usually unknown. Simple triangulation, ho-
wever, is infeasible in real applications due to measurement
uncertainty. Moreover, binaural measurements contain a high
degree of clutter which violates the assumption of a purely
Gaussian probability density. The BOT problem can be
tackled with a PF in order to achieve robust tracking in
the presence of noise and non-linearities like clutter. One
drawback of PFs is that they are usually computational
demanding due to the large amount of simulated particles
required.

1) State space representation: We used a PF in order
to track multiple stationary sound sources. In multitarget
applications with a PF the data association problem has
to be solved in order to identify which target has to be
associated with a received measurement. In the literature
this is known as the data association problem, where the

joint probability data association (JPDA) is estimated with
the PF [15], [17]. In our work we avoid the data association
problem by approximating the joint multitarget probability
density with the PF as presented in [18]. The advantage
of this method is that the computational complexity of
solving the data association problem can be avoided and
the implementation complexity is modest. Moreover, the
estimation of the overall system state, like for example the
estimated count of targets, is a comparably simple operation.
In this work we implemented the JMPD PF without the
optimizations for coupled and independent partitions that are
presented in [18]. Accordingly the true multitarget state of
the system for T targets is defined as:

X =[r1,22,....,07-1,77] (6)

Therefore, the JPMD representation in Eq. (7) is related
to Eq. (6) so that a particle consists of a variable count of
states, hereby called partitions of the multitarget state vector:

Xp = [xp,17xp,27'-"7xp,Tpflaxp,Tp} (7)

where T}, can be an arbitrary positive integer. Every z, ; =
[x,y, z] denotes a potential state of cartesian coordinates of
a target j relative to the observer in particle p. Let dp denote
the Dirac delta:

0 if T+ Tp

(X —-Xp) ©

(X —-X,)) =
( p) { otherwise

It follows the weighted JMPD approximation by a set of
particles X, and weights w,,:

Npart
PXTI|Z)~ > wyd(x — xyp) 9)

p=1

where Z is a measurement and ) w, = 1. N4, is the count
of particles used in the filter. For details about the theoretical
foundations of the JMPD please refer to [18].

2) State Propagation: In order to model the system dyna-
mics the motion of the target and of the observer have to be
taken into account. The observer’s rotation in the azimuthal
plane is assumed to be small, so the motion between two time
steps is assumed to be nearly linear. Since the aim of this
work is to track stationary targets, a partition’s state vector
is reduced to a position in Cartesian coordinates. Changes in
the state are now only the result of the observer’s motion and
the influence of the process noise. The state dynamics of a
partition are modelled according to the well known constant
velocity (CV) model:

x:(k) = Axy(k—1)—Bu(k—1)+v(k—1) (10)
Here A is defined simply as a 3X 3 identity matrix:
1 00
A=1(0 1 0 (11)
0 0 1



We define the control matrix B as:

AT 0 0 O
B=|(0 AT 0 o0 (12)
0 0 AT O
and
u= (j/'obs» yobm zobsa ¢obs)T (13)

models the control input at time step k—1 and v is zero-mean
Gaussian process noise with covariance R as in Eq. (19).
Tobss Yobs and Zops are the observer’s velocities in Cartesian
coordinates and ¢.s the observer’s viewing direction in
the azimuthal plane. The possibility for the appearance and
disappearance of a target is modeled with a birth/death model
taking into account the possibility that a partition is born or
dies with probabilities p;, and p, and the possibility of staying
alive or dying 1 — pg4, 1 — py, respectively.

At each time step only one partition can be born in
a particle. But each partition may die independently from
other partitions contained in the particle. A newly generated
partition is created following a uniform distribution in a
measurement volume around the observer.

3) Measurement Model: The binaural localization algo-
rithm provides one bearing measurement from the sensor to
a potential sound source per time instance. In order to solve
the BOT problem the non-linear measurement equation takes
into account bearing measurements in spherical coordinates:
h(xy,n;) = hy(xz) + n(k) where n(k) is assumed to be
zero-mean Gaussian noise with covariance matrix Q, and
ﬁk(xk) is defined as:

(14)

flk(xk):( arctan(y/z) — ¢ )

arccos(z//x? + y% + 22)

Instead of rotating the particles in the propagation step we
subtract ¢ from the azimuth in the measurement equation.
In our case the observer is able to rotate around the z axis.

Since each particle represents multiple targets (partitions),
we have to consider that at each time-step k the active
target is n (out of the 7' possibilities). Therefore, to obtain
the measurement likelihoods for the particles we need to
marginalize over n, and consider that the measurement could
come from clutter as well (so n = 0), with probability p..:

T
> p(n=j) p(ZIX,,n=j) (15

Jj=0

T
= pe+ Y p(n=7j) p(Zlx,;) (16)
j=1

p(z |van) =

7)

T
1
pet 7 E 1P(Z\Im')
]:

where we assume a uniform prior for which target is active
(1/T), uniform distribution of clutter in the measurement

volume V' (p. = 1/V), and p(Z|z, ;) = N'(h(x)—Z;0,Q).

Until this point we worked in the observer’s coordinate
system, so the tracked states have to be transformed into
global positions, through the known control inputs.

III. EXPERIMENTS

We evaluate the proposed method with simulated and real
binaural bearing measurements.

A. Distributions

In order to verify the assumptions about measurement
noise, reference measurements were taken in a reverberant
room without any acoustical treatment. During the measu-
rement both the observer and the target were stationary.
The measured reverberation time (RT60) value is 0.693s on
average. There were two computers running inside the room.
These computers may result into additional noise sources.
The observer stood approximately 1 m away from the target
at a height of approximately 1.5 m.

The parameters of the multivariate Gaussian distribution
of the measurements and the process noise were empirically
estimated. Resulting from this estimation, a multivariate
zero-mean Gaussian measurement noise with covariance

matrix
0.981 0
Q= ( 0 2.949)

and zero mean is used for the simulations and the evaluation
of real data. We used a process noise covariance of

(18)

0.0001 0 0
R=| 0 00001 0 (19)
0 0  0.0001

B. Simulations

The method is first evaluated in simulations. The target
position z; is (0,2,0)7 . According to the dynamics of the
state transition in Eq. (10) the observer moves the first 50
time instances with v = (0.05,0,0,0). The observer moves
the next 50 time steps with v = (0,0.05,0,0) and the
last 100 steps with v = (—0.05,0,0,0). This results in the
trajectory shown in Fig. 5.

The green dots represent the observer trajectory, the red
dot is the starting point and the red x marks the position
of the target. The birth rate p, and the death rate py
were set to 0.3, since it produced the best results in the
experiments. The performance of a PF is dependent on a
good initial distribution. We distributed 10000 particles on
a cubic space of V' = 6m x 6m x 6m centered around the
simulated observer. Fig. 3 shows simulated measurements
with Gaussian noise with a covariance according to Eq. (18)
and 45% uniformly distributed clutter between azimuth range
[—180°,180°] and elevation range [0°, 180°].

The convergence behavior of the particles’ partitions is
shown exemplarily for the x coordinate of the partition states
in Fig. 4. The RMS error of the estimates which are shown
in Fig. 5 is 0.344m. One has to keep in mind that the
velocity of the observer can be too small in comparison to
the process noise R of the system. This results in a violation
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Fig. 3: Simulated measurements according to the trajectory
in Fig. 5, with zero-mean Gaussian noise with covariance
matrix as in Eq. (18) and 45% uniformly distributed clutter
between [—180°, 180°] for azimuth and [0°, 180°] for eleva-
tion.

x(m)

0 50 100 150 200
time
Fig. 4: Visualization of the density of the x coordinate of
all particle partitions and new born partitions between +3m
as light grey dots over time resulting from simulation with
measurements of Fig. 3. The red line marks the ground truth
trajectory.

of the observability criterion for the BOT problem [21]. It
causes the process noise to lie in the same magnitude as the
movement speed. As a result the PF will not converge. We
solve this by applying a threshold in our implementation. The
measurement step and the addition of process noise during
the propagation step will only take place if the observer
moves a certain distance. Another simulation shows that
the PF is in principle able to track multiple targets. The
first target is at position (), = (0,2,0)” and the second
target is at (2, = (2,3,0)”. The signals from the targets
are interleaved, hence every second measurement originates
from the same target. In our tests with two targets we
simulated bearing measurements that contained no clutter. In
the experiments with two targets we found that measurements
with clutter require more elaborate measures to solve the
permutations that can occur due to the JMPD representation.
This will be a topic of future work and here we only show
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*]
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Fig. 5: Estimated positions at each time step for the simulated
measurements shown as the projection of the 3D estimates

on the x - y plane. The red x marks the real position of the
target.

that in theory the JMPD can track two targets in the simulated
scenario in Fig. 6.

x(m)

Fig. 6: Visualization of the density on the x coordinate of all
particle partitions and new born partitions between £3m as
light grey dots for simulated measurements of two potential
targets. The red lines marks the ground truth trajectories.

C. Real Measurements in Reverberant Environment

The observer for the acquisition of real data was a Neu-
mann KU 100 dummy head. The head was moved with a
mobile platform. Tracking the position for acquisition of the
ground truth data (the position of the observer and of sound
sources) was done with a system from Advanced Realtime
Tracking GmbH. In the future we plan to use localization
data for obtaining the egomotion. We used white noise
bursts as a test signal which were played back on coaxial
Geithain RL 906 speakers in order to simulate point sound
sources in the environment. The sampling rate of the used
head related impulse response database was 48 kHz and we
chose not to apply resampling to the filters. Consequently,
audio was sampled with a rate of 48000 Hz, too. The
sample buffer size was 1024 samples with no overlap and
the data was windowed with a Hanning window prior to



the STFT. The HRTF database [12] we used for binaural
localization has a angular resolution of 2°. Measurements
were taken in a typical reverberant room. The room was
not acoustically treated. The dummy head was fixed to the
mobile non-holonomic platform. Fig. 7 shows the trajectory
of the observer in the experimental setup.
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Fig. 7: Motion of the observer and position of the target (red

%) acquired as ground truth with the optical tracking system

during the acquisition of real world data.

The difference between the expected measurements based
on the ground truth of the positions of observer and target
and the actual binaural localization measurements is shown
in Fig. 8. As shown in Fig. 9, the particle partitions do not

Frequency of occurrence

=)

-150 -100 =50 0 50
Azimuth(degree)

Frequency of occurrence

0
Elevation{(degree)

Fig. 8: Deviation of expected measurements based on the
positions of observer and target in the ground truth data and
the actual bearings resulting from binaural localization with
no IC gating applied

converge well. With a RMS error of 1.764m, the estimates
have a large error compared to the distance between target
and observer. We reason that the large error is the result
of the large amount of reverberations and the influence of
clutter.

In the next experiment we evaluated the proposed method
of gating measurements with the IC. The IC threshold for
validating a measurement was set to « = 0.8 in the localiza-
tion algorithm. We used a smoothing parameter 5 = 0.5. The

0 5 lb 15 2‘0 25 30

time(s)
Fig. 9: Visualization of the density of the x coordinate of
all particle partitions with real data and observer motion
according to Fig. 7 when no IC gating was applied. The
red line marks the ground truth.

2t -.
o "- '..
z L LI
>—l— . ‘: . ® %
-3 .e® J.
-4 -2 0 2 4

x(m)

Fig. 10: Estimated positions at each time step for real
measurements without IC gating shown as the projection of
the 3D estimates on the x - y plane. The red x marks the
real position of the target.

differences between the angle from the ground truth and the
measured angles are shown in Fig. 11. It is clearly evident
that the amount of clutter is drastically reduced.

The variance of the measurements is reduced as well.
These improvements lead to a good convergence of the PF,
as exemplarily shown in Fig. 12. With an RMS error of
0.402m it yields results comparable to the simulations. If
only measurements after convergence of the PF are taken into
account the RMS error is reduced to approx. 0.157m. The
time period necessary for the PF to converge is empirically
determined to be approx. 2 seconds. The estimates are
shown in Fig. 13. The red dots mark the estimates before
convergence.

In order to emphasize the impact of the gating method
with the IC, the RMS error of each Cartesian component
with and without IC is compared in Table I. It can be seen
that the RMS error of the x and y axis for the measurements
without IC after convergence is a factor of approx. 15 times
larger than that of the measurements with IC. For the RMS
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Fig. 11: Deviation of expected measurements based on the
positions of observer and target in the ground truth data and
the actual bearings resulting from binaural localization with
an IC gating threshold of o = 0.8.
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Fig. 12: Visualization of the density of the x coordinate of
all particle partitions with real data and observer motion
according to Fig. 7 with an IC gating threshold of o = 0.8.
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Fig. 13: Estimated positions at each time step for real
measurements with an IC gating threshold of o = 0.8 shown
as the projection of the 3D estimates on the x - y plane. The
red X marks the real position of the target. Red: Estimates
before convergence, Blue: Estimates after convergence.

with IC | without IC
RMSe x(m) 0.171 1.011
RMSe y(m) 0.329 1.372
RMSe z(m) 0.154 0.453
[|[RMSe| (m) | 0.402 1.764

(a) All estimates

with IC | without IC
RMSe x(m) | 0.064 1.001
RM Se y(m) 0.087 1.329
RM Se z(m) 0.114 0.371
||[RM Sel|| (m) | 0.157 1.705

(b) Estimates after convergence

TABLE I: Comparison of the RMSe of the same measure-
ment with and without IC for all estimates (a) and estimates
after the convergence (b).

error on the z axis the factor is 3. This can be accounted
to the fact that the observer did not move along the z axis.
The overall RMS error of estimates after convergence when
using the IC results in a 10 times higher accuracy compared
to when IC gating is not used.

IV. CONCLUSIONS AND OUTLOOK

In this work we show first results of applying a PF to the
BOT problem in the context of binaural sound localization
for robots in real world reverberant environments. We laid
out the fundamentals of binaural sound source localization
and its application in Sec. II-A and described a gating
method based on the precedence effect. We showed the
performance of the proposed PF in simulations and evaluated
the feasibility of gating real binaural measurements that were
acquired in a standard reverberant room with no acoustic
treatment with the IC. Additionally, we are able to show
that the PF formulation of the JMPD is able to track two
targets in simulations.

In real reverberant environment the large amount of clutter
and phantom sources due to reflections resulted in estimates
with an RMS error of 1.764m. Compared to the distance
between target and observer this error is comparably large.
Inspired by the precedence effect in human hearing we
applied a gating to the localization measurements. With
a threshold of the IC of o = 0.8 the estimates of real
measurements had an RMS error of 0.402m for all estimates.
Taking only the estimates after the convergence into account
the RMS error was reduced to 0.157m. From these results we
conclude that it is possible to binauraly locate a sound source
in a reverberant environment with moderate noise taking into
account only bearing measurements and knowledge about the
observer motion. Compared to the works in [22], our binaural
method shows a significant accuracy, specially when gating
with the IC is used. When comparing the results we have to
take into account that we tracked a stationary sound source
with a moving binaural sensor while the authors in [22]
show results of tracking moving sources with a stationary
and widely spaced microphone array. Therefore, we reason



that our results are very promising specially when taking into
account the mobility and reduced system complexity.

Since the PF is restricted to stationary targets it could be
improved through the use of a more elaborate CV model
for the target dynamics in order to track moving targets
as well. Furthermore, it should be determined whether the
use of modified polar coordinates can yield better results.
More tests about the observability should also be conducted
in order to improve the convergence time and accuracy of
the PF by optimizing the motion of the observer. In future
works we will apply the methods taking into account self-
localization of a real robot, like for example DLR’s Justin,
instead of using tracking data for the acquistion of egomotion
for the control inputs. Further work needs to be done in order
to determine the IC for narrowband signals. Unlike white
noise which was used in our experiments natural sounds (e.g.
voices) are sparse in the frequency domain. Therefore, not
all of the frequency dependent IC bins show a high value for
the first wave fronts. This needs to be taken into account in
order to gate measurements into the presented PF in arbitrary
environments with arbitrary sound sources. Additionally, the
IC can also be incorporated in the measurement model of the
filter as a measure for the confidence of a particular bearing
measurement.

Further investigation will be required for a robust estima-
tion of the locations of multiple sound sources. Due to the
possibility of permutations to occur in the partitions’ states
of the JMPD representation clustering methods are required
in order to sort the target states. In our experiments the
sound source was in the close vicinity of the binaural dummy
head. However, in real scenarios this will not necessarily
be the case. Hence, signal processing techniques like for
example an auto gain controller need to be applied to the
measured raw audio signals in order to amplify or reduce
the volume of the signals depending on the distance and
volume of the sound sources as well as the conditions in the
environment. In summary, we are confident that an acoustic
mapping of multiple stationary sound sources is possible.
The presented results are promising for a range of appli-
cations like for example the localization of victims buried
under rubble that are calling for help in disaster recovery
scenarios, multimodal data fusion and acoustic mapping for
environment modelling in robotics, acoustic sound source
detection in industrial scenarios and multimodal interfaces
for human robot interaction. We also reason that auditory
sound source localization is a promising field of research
with a large benefit for perceptional modelling in robotics.
There are many unanswered questions for the application
of auditory robotic perception outside of laboratory environ-
ments, making it an interesting topic for international robotic
benchmarks like for example the DARPA challenge. This is
specially the case having multimodal environment modeling
in disaster recovery scenarios in mind. Our results show that
testing under real conditions is crucial for determining the
robustness of sound source localization methods and one can
not simply rely on results of simulation or on experiments
under laboratory conditions.
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