
HAL Id: hal-01521583
https://hal.science/hal-01521583

Submitted on 12 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative SLAM-based object transportation by two
humanoid robots in a cluttered environment

Antoine Rioux, Claudia Esteves, Jean-Bernard Hayet, Wael Suleiman

To cite this version:
Antoine Rioux, Claudia Esteves, Jean-Bernard Hayet, Wael Suleiman. Cooperative SLAM-based
object transportation by two humanoid robots in a cluttered environment. 15th IEEE International
Conference on Humanoid Robots (Humanoids 2015), Nov 2015, Séoul, South Korea. pp.331-337,
�10.1109/HUMANOIDS.2015.7363563�. �hal-01521583�

https://hal.science/hal-01521583
https://hal.archives-ouvertes.fr


Cooperative SLAM-Based Object Transportation by Two Humanoid
Robots in a Cluttered Environment

Antoine Rioux, Claudia Esteves, Jean-Bernard Hayet and Wael Suleiman

Abstract— In this work, we tackle the problem of making
two humanoid robots navigate in a cluttered environment while
transporting a very large object that simply can not be moved
by a single robot. We present a complete navigation scheme,
from the incremental construction of a map of the environ-
ment and the computation of collision-free trajectories to the
control to execute those trajectories. We present experiments
conducted on real Nao robots, equipped with RGB-D sensors
mounted on their heads, moving an object around obstacles.
Our experiments show that a significantly large object can be
transported without changing the robot’s main hardware, and
therefore enacting the capacity of humanoid robots in real-life
situations.

I. INTRODUCTION

One of the advantages of having arms on a robot is
that it can manipulate a load. This capacity can be useful
for a wide range of actions, including transporting objects
from one place to another. This can be particularly useful
for automated construction and rescue missions situations.
However, using one robot only, the maximum payload is
generally low and the size of transported objects limited.
One way to deal with this issue is to distribute the weight
to multiple robots. In this work we deal with the problem of
having two humanoid robots cooperating to handle a bulky
object among obstacles.

This problem has been tackled in previous works using
mainly two approaches: (1) a leader-follower control, or
(2) a synchronized control. In the first approach [1] [2],
one of the robots, the leader, based on its position and its
surrounding, computes the plan for the system or is directly
guided by a human operator. The second robot follows the
leader. This technique is easy to implement, but does not
allow closed-loop cooperation easily, because, as the follower
only responds to the leader movement when it has already
started, a significant time delay is introduced.

Most human-robot cooperative system use this ap-
proach [3] [4] since these problems are alleviate by adding a
human into the loop, which instinctively correct both micro
and macro errors in the system.

In the second approach [5] [6], an external centralized con-
troller computes the motion for all the robots simultaneously,
based on the information of the environment provided by the
robots. As a result, the synchronized motions can start and

A. Rioux and W. Suleiman – Electrical and Computer
Engineering Department, Faculty of Engineering, University of
Sherbrooke, Canada; C. Esteves – Department of Mathematics.
Universidad de Guanajuato, México; J-B. Hayet – Centro de
Investigación en Matemáticas (CIMAT), Guanajuato, México.
{antoine.rioux, wael.suleiman}@usherbrooke.ca,
{cesteves, jbhayet}@cimat.mx

Fig. 1. The Nao robots holding an object together

stop together. However, both synchronization system rely on
”step synchronization” instead of position synchronization.
While easier to synchronized, this process slows down the
system significantly and increased lateral instability as the
entire system swing from side to side in harmony. Fur-
thermore, the transported object is held rigidly and cannot
be articulated to improve the footprint and motions of the
system. In this work, which belongs to the latter approach,
a framework for synchronized cooperative autonomous hu-
manoid robots navigating in a cluttered environment while
manipulating an object in closed-loop is presented.

Our main contributions are: (1) a low dimensional multi-
robot motion planning algorithm to find an obstacle-free
trajectory using a map of the environment autonomously
constructed by the robots, (2) a continuous and consistent
odometry system integrating the robots visual data and actu-
ators information, (3) a synchronization strategy that uses the
projection of the robots, and (4) an efficient real-time whole-
body control scheme that generates the motions of the closed-
loop robot-object-robot system. The remainder of the paper
is organized as follows: Section II presents the proposed
planning algorithm. In Section III, a brief description of
how the map of the environment is constructed is given.
Section IV details the proposed synchronization approach
and Section V describes the control scheme to execute
the planned trajectories. Finally, in Section VI, results of
simulation and real world experiments are presented and
discussed.



II. PLANNING A VALID PATH

To navigate through a cluttered environment, the compu-
tation of a collision-free path for both robots is essential. For
this, we chose a lattice-based graph planning with an ARA*
search [7], motivated by the use of motion primitives ensur-
ing feasible robot-object-robot configurations and transitions.
The environment is modelled by a 2D grid cost-map that
discriminates obstacles from free space at a fixed threshold
and allows obstacles inflation to increase the security margin.

A. State representation

Each node of the search graph needs a representation of
the complete robots-object state. To achieve this, it is possible
to model the state in R2 × S1 × R2 × S1 × R2 × S1:

s = (xr1, yr1, θr1, xob, yob, θob, xr2, yr2, θr2), (1)

where xri, yri and θri (i = 1, 2) are the positions and
orientation of the i-th robot, and xob, yob and θob are those
of the object. As the working space of our robot’s arms
is too small to fully take advantage of both rotation and
translation, the system is simplified by setting a pivot point at
the middle of the pair of hands for both robots shown in Fig.
2. The closed-loop grasping of the robot on the table is shown
in Fig. 1. The pivot points positions maximize the rotation
range within the robot workspace, resulting in a smaller 5
dimensions state space R2 × S1 × S1 × S1:

s = (xr1, yr1, θr1, θob, θr2). (2)

Fig. 2. Top view: Pivots position

Even though the above simplification removes the ability
of the object to translate on the plane, the robot retains
enough manipulability to minimize the robot-object-robot
collision area around obstacles. The simplified state repre-
sentation of equation (2) is shown in Fig. 3.

In a lattice-based graph planner, transitions between nodes
are triggered by actions chosen within a finite fixed-set
of motion primitives. An important feature of the lattice
representation is that all connections are feasible paths.
Therefore, it is really suitable for highly constrained systems,
such as a system of two robots transporting an object, in
contrast to other commonly used forms of graph search,
including Von Neumann or Moore neighborhood.

The set of motion primitives used for this problem is
showed in Fig. 4. It includes (a) forward, backward, sideway
motion and every diagonal motion, (b) rotations around each
robot and the object center and special movements such as

Fig. 3. Simplified state representation.

(a) Linear (b) Rotation (c) C-turn (d) S-turn
Fig. 4. Set of possible motion primitives.

(c) C-turns and (d) S-turns. The last two are more complex
and make use of the hands articulations to increase agility
around obstacles. Executing complex motions specific to a
system in a coherent and logical way is the main reason
we use motion primitives over homogeneous sampling of
the system DOFs. The joints of the system that allow these
configurations are the aforementioned pivot points.

B. Path Cost Function

The cost of a transition from state s to s′ is based on the
time to execute that transition and is computed as follows:

g(s, s′) =


√

(∆xr1)2+(∆yr1)2

ṙ1
+ ×DF if ∆xr1 6= 0 or ∆yr1 6= 0√

(∆xr2)2+(∆yr2)2

ṙ2
+ ×DF otherwise

(3)
where ∆xri, ∆yri are the variations of the x and y

coordinates of the i-th robot pelvis, between states s and s′,
DF is a difficulty factor associated with each primitive, ṙ+

is the robot maximal linear velocity. This ratio gives us the
approximate time to execute the primitive. Since the state
representation does not contain any information about the
position of the second robot, we must determine ∆xr2 and
∆yr2 with the first robot position. To do so, we compute the
projection of the object by rotating the first robot by θr1,
given a hand rotation of θob. Then, we project the second
robot around the object given a hand rotation or θr2.

The difficulty factor DF is a special value set by the
system expert in order to prioritize or penalize certain mo-
tions. For example, turning in place then going forward takes
longer to execute than moving in diagonal. For relatively long



distance, however, moving in a straight line has a smaller tra-
jectory footprint, is more natural looking, minimizes walking
oscillation and causes less drift and slippage than moving
in diagonal. For those reasons, all the diagonal primitives
have higher DF than turning in place and moving forward.
The difference in cost will still, however, favor a diagonal
movement where turning in place is not worth it, i.e. for
short diagonal movements.

C. Search Algorithm

A* is one of the most popular search algorithms. In
addition to the use of a path cost function, a heuristic biases
the search towards the most promising states. Even though
A* is optimal when it finds a solution, that solution does not
always exist or cannot be found within a reasonable time.
The Anytime Repairing A* (ARA*) focuses on delivering
a suboptimal solution as fast as possible; this solution is
then optimized iteratively within a predefined limited time.
Also, the states are expanded from goal to start, so that the
heuristic costs remain valid after replanning and do not need
to be recomputed. The cost function takes the form of:

f(s, s′) = g(s, s′)∗max(Costcells(s, s
′))+εh, ε >= 1 (4)

where g(s, s′) is the path cost of equation (3), h is the
heuristic that uses a 2D grid containing all the Dijkstra
distance costs from the goal to the start states and

Costcells(s, s
′) =


1 free space
2 to 99 inflation
∞ obstacles

(5)

includes the cost of cells between s and s′. The search is
biased towards states closer to goal and returns a solution
that is, at worst, ε times the cost of the optimal solution.

The inflation is a zone around obstacles where all the cells
have a higher cost. It is used as a security margin to bias the
search farther from obstacles and reduce danger of collisions.
It can be set as a decreasing gradient from the obstacles or
a fixed value in the range above.

III. SIMULTANEOUS LOCALIZATION AND MAPPING

To navigate in a cluttered environment, robust and precise
sensing is primordial to determine the position of obstacles,
detect collisions and to plan valid paths. Also, odometry drift
must be constantly corrected by an accurate localization to
ensure that planned paths are closely followed. However, the
Nao robot has only two cameras in its head for sensing and
using them for localization has proven to be a very difficult
task [8], because of the robot sway motion and the low
resolution pictures. Furthermore, in our case, the field of
view of the Nao is greatly obstructed by the object being
transported and by the other robot.

A. Real-Time Appearance-Based Mapping (RTAB-Map)

We chose to add a depth camera on the top of each
Nao’s head for mapping [9], based on RTAB-Map [10],
[11]. RTAB-Map provides a robust odometry system based
on visual information. It can also create 3D maps of the

environment as well as constructing a 2D occupancy grid
map by projecting the obstacles on the ground plane.

B. Odometry fusion

A problem that occurs when using the visual odometry
produced by RTAB-Map is that it may lose track of the
position for multiple reasons, such as lack of detected
features in the observed environment, rapid movements of the
camera or intense oscillations. When this occurs, we could go
back to where the tracking was lost, but this is not efficient
and may even be impossible. For this reason, a fusion of
the visual odometry, the robot’s internal odometry and the
error between those reference frames is used to improved the
overall odometry.

Since the camera is rigidly linked to the robot by a
transformation T va , we can write T oa = T va ∗ T ov , where
T oa , T

o
v are the homogeneous transformation matrix between

the map frame and, respectively, the robot frame and the
camera frame. The previous equation can be rewritten to
include the encoders-based robot odometry T or , that does not
take into account slipping, drift and other real world errors,

T oa = T va ∗ T ov ∗ T or
−1 ∗ T or

= T va ∗ T rv ∗ T or ,
(6)

where T vr is the error between the encoders odometry and
the visual odometry. Since this equation only holds while the
visual odometry is valid, the last valid T rv at time t = tlost
is used when a loss occurs at t = tlost,

T oa (t) =

{
T va ∗ T rv (t) ∗ T or (t) if T o

v exists,

T va ∗ T rv (tlost) ∗ T or (t) otherwise.
(7)

This approach consistently provides smooth odometry.
Even when the visual information is abruptly discontinued,
it continues to generate sufficiently accurate localization data
until an adequate image or a reset command is processed by
RTAB-Map and the visual odometry is restored.

IV. SYNCHRONIZATION

A. Object Stability and Hand Stabilization

At low speed, a humanoid robot CoM moves horizontally
from one support foot to the other in order to stay in
balance. This lateral motion causes the entire upper body to
oscillate laterally at an amplitude proportional to the distance
between the center of its feet, which, in our case, causes the
transported object to move by the same amplitude.

Since the object to carry is fully controlled by the robots’
hands, it is possible to reduce this effect so as to improve the
closed-loop stability. On the one hand, if both robots swing at
the same time, synchronization is maintained without effort,
but the object and anything on it would swing dangerously.
On the other hand, if the robots swing in any other way, the
force generated by this movement will be transmitted to the
other robot and cause instability or fall.

Our solution to compensate this instability without chang-
ing the walking gait is to use the robots’ hands and keep
them at a fixed position in space, relatively to the planned



trajectory. This position is determined at the starting position
of the robot and corresponds to the transformation between
feet and hands. Those transformations will be the input of
the whole-body control scheme described in Section V.

B. Synchronized trajectories

Even if both robots are independent and receive their own
trajectory to follow, these trajectories are lined up in such a
way that they are at a constant distance from each other.
However, real robots being imperfect, do not necessarily
move at the exact same speed given the same command.
For this reason, the trajectory is segmented into waypoints,
each waypoint being a state of the graph plan. To progress
to the next waypoint, both robots have to agree that they are
close enough to their current waypoint in term of position
and orientation. If only one robot is near its waypoint, it
will slow down while converging to it, until the other robot
agrees that they can proceed to the next waypoint.

C. Synchronized projections

Now that the whole system is more stable with regards
to the individual swing added by both robots, the position
of each robot needs to be synchronized with the other one
along the planned trajectory. To do so, the projection of
each robot with respect to the other is computed by using
their respective hands, world frames and transported object
properties. First, the position of the center of the object with
respect to a robot i can be found by:

T riob = midpoint(T rihr
∗ Thr

ob , T
ri
hl
∗ Thl

ob ) (8)

where T riob , T rih(r,l)
, T

h(r,l)

ob are respectively the current trans-
formations between the robot and the object frames, the robot
and its hands and the object center. The function midpoint
computes the midpoint of two points.

With these transformations, we find the projection syn-
chronization position for each robot as follows:

T opi = T orj ∗ T
rj
ob ∗ T

ri
ob
−1 for i, j ∈ {1, 2} : i 6= j, (9)

where T opi is the projected robot i position in the world
frame and T oric is the odometry data from the other robot
ic. Other points different from the center could be used
instead, such as the pivot points. However, a constant offset
transformation would need to be taken into consideration in
the previous equation. We can finally compare this projected
position to the actual position of each robot in order to find
the projection synchronization error epi

epi = T opi ∗ T
o
ri
−1. (10)

D. Synchronization as Kinematics tasks

Our objective is to express the synchronization between
the two robots as kinematics tasks that can be solved using
a whole-body control scheme:
• The hands synchronization can be expressed as a kine-

matics task on the hands positions of each robot.
• The synchronized projection can be expressed as a

kinematics task on the chest frame of each robot. More

precisely, this kinematic task is on the horizontal posi-
tions (x and y) and the orientation around the vertical
axis (z) of the chest frame.

V. CONTROL

Once a collision-free trajectory is found by the ARA*
algorithm, a set of footprints are defined along the trajectory
as shown in Fig. 5. The second step is to define a Zero
Moment Point (ZMP) trajectory. A trajectory of the Center of
Mass (CoM) of the robot is then obtained using the preview
control algorithm proposed in [12]. This algorithm, widely
used in humanoid robotics, is simple to implement, yet
efficient and yields a smooth CoM trajectory by minimizing
the CoM jerk trajectory. The feet trajectories are obtained
by spline interpolation between the footprints and the hands
trajectories and orientations are defined in order to minimize
the walking swing effect as well as to follow the object
orientation.

Initial position and 
orientation

Final position and
orientation

footprints
obstacle

obstacle

obstacle

obstacle

hands trajectories

ZMP trajectory

Fig. 5. Overview of the motion planning procedure

To obtain the joint trajectories for each humanoid robot, a
whole-body control scheme with prioritized tasks is formu-
lated as follows:



min
q̇

q̇TQq̇

subject to

First priority

 Jc q̇ = ṙc
Jlf q̇ = ṙlf
Jrf q̇ = ṙrf

Second priority

 Jlh q̇ = ṙlh
Jrh q̇ = ṙrh
Jch q̇ = ṙch

Joint velocity limits q̇− ≤ q̇ ≤ q̇+

(11)

where q̇ ∈ Rn is the joint velocity vector, Q is a positive
semi-definite matrix, Jc ∈ R3×n, Jlf ∈ R6×n, Jrf ∈
R6×n, Jlh ∈ R6×n, Jrh ∈ R6×n, Jch ∈ R3×n are the Jaco-
bian matrices of CoM, left foot, right foot, left hand, right
hand and chest, respectively. ṙc, ṙlf , ṙrf , ṙlh, ṙrh, ṙch are
the linear and angular velocity of CoM, left foot, right foot,
left hand, right hand and chest, respectively. Since we are
only interested in the horizontal velocity and angular velocity
around the vertical axis for the chest frame, ṙch ∈ R3, and
q̇− and q̇+ are the joint velocity limits.

The optimization problem (11) can be transformed into a
standard Quadratic Programming (QP) problem [13], which
can be solved in real-time by using an appropriate QP solver.

Initial position and 
orientation

Final position and
orientation

obstacle

obstacle

obstacle

obstacle

Deformed trajectory 

Collision 

tc

Fig. 6. Replanning in case of collision detection: tc is the instant at which
a collision is foreseen, the new collision-free trajectory is in dashed-blue
line, the deformed trajectory is in red line.

A. Dynamic collision avoidance and Replanning

It is important to check frequently for collision in case an
obstacle has moved from its original position, the robots drift
away from their planned trajectory or the synchronization
process of the robots requires a replanning of the whole

trajectory. Hence, the future trajectory is always monitored
for potential collisions with obstacles in the 2D occupancy
grid. When a collision is foreseen, a replanning is necessary
and the trajectory is deformed as shown, for the purpose
of clarity for a single robot, in Fig. 6. Even though, at first
glance, the support polygon seems increased by including the
robot-object-robot closed loop, the robots’ support polygons
are still defined by the contact between the feet and the
ground. This is because the robots’ arms are not fully bended,
therefore the robots could fall forwards or backwards.

The new collision-free trajectory is found by the ARA*
algorithm from the goal to the point at which the collision
has been predicted. If the potential collision is due to drift
and the environment has not changed, the Dijkstra grid does
not need to be recalculated, therefore greatly accelerating the
replanning. As the humanoid robot walking pattern cannot be
changed instantly, a time interval tc is required to change the
planned footprints. In the implementation of ZMP preview
control, a finite time horizon of 2 steps is used to compute
the CoM trajectory. Therefore, if a collision is foreseen at
instant tc, the new collision-free trajectory provided by the
ARA* algorithm is deformed to keep the next two footprints
unchanged as shown in Fig. 6. The robot will however stop
if the deformed trajectory is in collision. Contrary to what
Fig. 6 might suggest, 2 steps do not represent a significant
distance. Since the robots are very small and the feet tend
to slide, 2 steps are only a few centimetres or less.

VI. RESULTS

Experiments were conducted on Nao humanoid robots
(Fig. 1), manufactured by Aldebaran Robotics [14]. Their
dimensions are 573mm of height, 311mm of width and
275mm of depth for a total weight of 5.2kg. The two arms
as well as both legs have 5 DOF each, while the head has 2
DOF and the pelvis and hands have 1 DOF each. An IMU
provides odometry data and 36 magnetic rotary encoders
give joint angle information with a precision of 0.1◦. On
top of their heads, we have added an Asus Xtion Pro Live
consumer-level depth camera (see Fig. 1).

A. Articulating the arms

Without any correction, the average oscillation peak-to-
peak position movement of the hands is 47.6 mm. However,
with the whole body control, the average hand distance from
desired position has been reduced to 16.4 mm, reducing
the hand error by 65.5%. As a result, significantly less
oscillations are transmitted to the table, leading to a safer
and enhanced carrying ability and load stability. However, the
error cannot be completely cancelled, this is mainly because:
I) the hands trajectories are second priority tasks, II) Nao has
only 4 DOFs in each arm.

B. Navigating in a cluttered environment

To test the system as a whole and to validate the proposed
algorithms, we conducted two series of 5 experiments. In
each experiment, the robots starting and goal positions are
chosen in such a way that the robots have to navigate



among objects on the ground. Each of them serves as an
obstacle to be avoided by the robots and the object. They
are placed to form various feasible paths and force tight
turns in order to take advantage of the additional degrees
of freedom (the rotation of the object θob and θr2 ). The two
series include the same experiments, except for one series
that has the active projection correction and the trajectory
synchronization while the other has only the latter.

Fig. 7 shows the start and end positions for each type
of experiment. In this figure, the obstacles are in yellow,
while the red areas around them are inflation zones where
the cost is higher than in free space, to prevent the robots
from passing too close to obstacles. These zones are used as
a security buffer and the center of the robots and the object
should avoid, if possible, planning to pass inside it. The cyan
zone is a forbidden zone, because if the center of the object
or the robots enters it, it means that an edge is in collision
with an obstacle.

The ARA* planner parameter initial value ε = 3 means
that the suboptimal solution cannot be worse than 3 times the
optimal solution cost. A time limit of 5 seconds was chosen
and within that time, ε was successfully decreased to 1 on
every run, which corresponds to the optimal solution. For
each generated path, we measured the total time to execute
the trajectory, the trajectory length, the initial solution and
optimal solution times. These results are summarized in
Table I.

No With
Sync Sync

Total time (s) 83.38 81.82
Total time Std (s) 9.48 9.00

Trajectory length (m) 2.36 2.28
Trajectory length Std (m) 0.30 0.22

Average velocity (m/s) 0.0283 0.0278
Initial solution time (ε = 3) (s) 0.026 0.028

Initial solution time Std (s) 0.036 0.04
Optimal solution time (ε = 1) (s) 0.352 0.322

Optimal solution time Std (s) 0.305 0.361

TABLE I
STATISTICS ABOUT THE EXPERIMENTS

We observe that the average speed is nearly the same,
which is surprising because it was expected to be signifi-
cantly slower with the projection synchronization. Indeed,
for the robots to properly stay synchronized, they try to
match their speed and relative position while following their
respective trajectory. This means that the fastest robot slows
down to accommodate the other while the slowest tries to
speed up. Since the difference in average velocity is only
about 1.8%, it could also be explained by other factors, such
as different battery level and motors temperature.

The slowest robot was most likely already slowing down
the fastest one by not agreeing to pass the waypoints, forcing
a slow down. The projection synchronization forced the slow
one to move through these waypoints faster, causing the slow
down on the fastest to be mostly cancelled by these faster
waypoint transitions.

Even though in our case the trajectories are quite small, the

use of sub-optimal solutions has proven to be significantly
faster. Indeed, for our experimental settings, it is about 12.5
times faster to compute the solution for ε = 3 as opposed
to the optimal solution. This could be especially useful for
real life large scale distances and experiments where quick
reactions and planning are necessary.

In Table II, the errors in X, Y and Yaw for both robots
were measured at 10 Hz during each experiments.

Robot 1 Robot 2
X Y Yaw X Y Yaw

No proj (m) 0.032 0.024 -0.009 0.033 0.0175 0.009
No proj Std (m) 0.0025 0.007 0.013 0.002 0.011 0.013
Projection (m) 0.010 0.003 0.006 0.011 0.007 -0.006

Projection Std (m) 0.001 0.004 0.0125 0.002 0.007 0.0125
Error reduction (%) 68.75 87.50 33.33 66.67 60.00 33.33

TABLE II
ERRORS STATISTICS

The error is significantly reduced on every axes for both
robots. More importantly, the errors in Y and Yaw converge
to zero. However, we still have some error in the X axis,
because it is the main direction of movement and the system
wants to follow the planned trajectories as a main priority.
The focus here is to reduce the errors, but not necessarily
cancel them completely if it means that it will prevent normal
motion or highly impair it. As shown previously, the average
velocity barely changes, while the error reduction has been
greatly improved.

Fig. 7. Map of the starting and ending positions with obstacles, lethal and
security inflation zones around them, the Nao and object footprints and goal
position/orientation.

It is important to note that the ground in the testing room
had sufficient texture and patterns to produce reliable data for
the SLAM library. When tested on a plain ground, RTAB-
Map could not, however, extract enough features for visual
localization with the obstacles only.



Fig. 8. Snapshots of the Naos navigating with an object

With the table linking the too robots together, significant
drift cause by the visual odometry imperfection can make
the Nao drift when navigating as shown in Fig. 8.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a system capable of
carrying a long table with two humanoid robots while
navigating in a cluttered environment; we also gave practical
insights into the implementation of the proposed approach
on a real humanoid robot. When moving throughout the
environment, a depth camera and a SLAM library map
the obstacles in real-time and provide a visual odometry.
This information is then fused with each robot odometry to
provide a consistent, continuous and reliable odometry data.
Moreover, by controlling the hands adequately by using a
whole-body control scheme, we were able to articulate the
object in tight turns and to significantly reduce the lateral
swing from propagating to the object and between robots.

In future works, in order to make the system more reactive
and human-like, the arms should be used to absorb a part of
the error instead of having to quickly move in fear of being
unbalanced. In addition. the cameras in front of the Nao
could be used to look at the other robot’s relative position,
instead of relying on hand position. As it is now, each robot
can never really verify its relative position with respect to
the other robot, and, as a result, it cannot detect drift errors
in the visual odometry.

ACKNOWLEDGMENT

This research is supported by Natural Sciences and En-
gineering Research Council of Canada (NSERC), and par-
tially by a collaborative research project funded by “XIVe
GROUPE DE TRAVAIL QUÉBEC-MEXIQUE” and a Mitacs
Globalink research internship.

REFERENCES

[1] Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba. Cooperative trans-
portation system for humanoid robots using simulation-based learning.
Applied Soft Computing, 7(1):115–125, 2007.

[2] Meng-Hung Wu, Atsushi Konno, and Masaru Uchiyama. Cooperative
object transportation by multiple humanoid robots. In System Inte-
gration (SII), 2011 IEEE/SICE International Symposium on, pages
779–784, 2011.

[3] Kazuhiko Yokoyama, Hroyulu Handa, Takakatsu Isozumi, Yutaro
Fukase, Kenji Kaneko, Fumio Kanehiro, Yoshihim Kawai, Fumiaki
Tomita, and Hirohisa Hirukawa. Cooperative works by a human and
a humanoid robot. In Conference on Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International, volume 3, pages 2985–
2991, 2003.

[4] Antoine Bussy, Pierre Gergondet, Abderrahmane Kheddar, François
Keith, and André Crosnier. Proactive behavior of a humanoid robot in
a haptic transportation task with a human partner. In RO-MAN, 2012
IEEE, pages 962–967, 2012.

[5] Stephen G McGill and Daniel D Lee. Cooperative humanoid stretcher
manipulation and locomotion. In Humanoid Robots (Humanoids),
2011 11th IEEE-RAS International Conference on, pages 429–433,
2011.

[6] Tomoaki Yoshikai, Takahiro Akimoto, Kaoru Kobayashi, Jumpei Tsuji,
Hiroaki Yaguchi, and Masayuki Inaba. Achievement of ‘mikoshi’with
multiple humanoid robots as coordinated navigation problem based
on real-time 3d space recognition in a dynamic environment. In
Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International
Conference on, pages 859–866, 2012.

[7] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems, volume 16, 2004.

[8] S. Oßwald, A. Hornung, and M. Bennewitz. Learning reliable and
efficient navigation with a humanoid. In IEEE Int. Conf. on Robotics
and Automation, pages 2375–2380, 2010.

[9] D. Maier, A. Hornung, and M. Bennewitz. Real-time navigation in
3D environments based on depth camera data. In 12th IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), pages 692–697, 2012.

[10] M. Labbe and F. Michaud. Online global loop closure detection for
large-scale multi-session graph-based slam. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 2661–2666, 2014.

[11] M. Labbe and F. Michaud. Rtab-map project on ros.org., 2014.
[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,

and H. Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 1620–1626, 2003.

[13] Antoine Rioux and Wael Suleiman. Humanoid navigation and heavy
load transportation in a cluttered environment. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2015.

[14] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier. Mechatronic design
of NAO humanoid. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 769–774, 2009.


