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Abstract— This paper proposes a technique for automatic
gain tuning of a momentum based balancing controller for
humanoid robots. The controller ensures the stabilization of
the centroidal dynamics and the associated zero dynamics.
Then, the closed-loop, constrained joint space dynamics is
linearized and the controller’s gains are chosen so as to obtain
desired properties of the linearized system. Symmetry and
positive definiteness constraints of gain matrices are enforced
by proposing a tracker for symmetric positive definite matrices.
Simulation results are carried out on the humanoid robot iCub.

I. INTRODUCTION

Humanoid robotics is an undoubtedly flourishing field
of research. Locomotion and manipulation have received
a special attention from the control community, and the
results shown at the DARPA robotics challenge are both
stimulating and promising [1], [2]. Despite these advances,
robust controllers for balancing and walking of humanoids
still require a special focus of the robotics community.
Furthermore, when these controllers are implemented on real
platforms, the achievement of desired system performances
usually requires time consuming tuning of the (often very
numerous) gains characterizing the control laws. This paper
proposes a technique to tune automatically the gains of a
momentum based balancing strategy for humanoid robots.

A classical approach to the modelling and control of
humanoid robots is based on considering the robot attached
to ground, i.e. the robot is considered to be fixed-base [3]. In
this case, in fact, well-known classical control strategies for
manipulators can be directly applied for robot control. The
limitations of this approach arise when attempting to tackle
the general control problem of a humanoid interacting with
its surrounding environment. For instance, running involves
flight phases where the fixed-base approach clearly fails.
At the modelling level, the Euler-Poincarè equations pro-
vide singularity free equations of motion for the humanoid
robot [4, Chapter 13], and efficient algorithms can be applied
for determining the components of these equations [5].
When considering these equations of motion, the mechanical
system representing the humanoid robot is usually under
actuated, and this forbids the full feedback linearization of
the closed-loop system [6], [5]. The system underactuation
is usually dealt with by means of constraints that arise from
the contacts between the robot and the environment. This
requires a close attention to the forces the robot exerts on
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the environment since uncontrolled forces may break the
contacts, thus rendering the control of the robot critical.
To ensure that the contact forces respect some physical
constraints, different optimization procedures can be applied
[7], [8].

Task-based control strategies have proven to be an efficient
solution for balancing and walking of humanoid robots [9],
[10], [11]. The aim of these strategies is the achievement of
several control objectives, which are organized in a hierar-
chical structure. The possibility of defining different control
objectives with different priorities is an efficient way to deal
with manipulation tasks while balancing [12]. Furthermore,
high priority tasks may be used to control directly the contact
forces the robot exerts at the contact points, e.g. through the
control of the center of mass dynamics [13].

When the above control algorithms are implemented in
real applications, a long and tedious tuning of control gains
is often required to achieve desired system performances.
Despite the large number of gain optimization procedures
for classical dynamical systems (see, e.g., [14], [15]) gain
optimization techniques for floating base systems, and in
particular in the field of humanoid robots, still needs more
investigations. Preliminary results in this direction consist
in applying classical LQR approaches to the linearized
humanoid robot dynamics [16], [17]. In particular, LQR
based optimization techniques can be applied to the so-called
centroidal dynamics [16]. Another approach may consist of
considering simplified robot models, and then apply classical
gain scheduling procedures for balancing purposes [18].

In this paper, we propose a gain tuning method for the
momentum-based control strategy we implemented on the
iCub humanoid robot [19]. Contrary to [16], we optimize
the gains by imposing desired properties of the linearized
joint space dynamics. The approach handles any number of
contacts between the robot and the environment. Symmetry
and positive definiteness constraints of gain matrices are en-
forced via a nonlinear tracker for symmetric positive definite
matrices. Simulation results verify the presented approach.

The paper is organized as follows. Section II introduces
notation and system modelling. Section III recalls and com-
plements the momentum-based control strategy [19]. Sec-
tion IV presents the linearization and the gain optimization
procedure. Section V presents simulations results using the
iCub robot model. Conclusions and future works conclude
the paper.
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II. BACKGROUND
A. Notation

• I defines an inertial frame of reference, with its z axis
pointing against the gravity. The constant g denotes the
norm of the gravitational acceleration.

• Given a matrix A ∈ Rm×n, we denote with A† ∈ Rn×m
its Moore Penrose pseudoinverse.

• ei ∈ Rm is the canonical vector, consisting of all zeros
but the i-th component that is equal to one.

• We denote with m the total mass of the robot.

B. Modelling
The robot is modelled as a multi-body system composed

of n + 1 rigid bodies, called links, connected by n joints
with one degree of freedom each. We also assume that none
of the links has an a priori constant pose with respect to an
inertial frame, i.e. the system is free floating.

The robot configuration space is the Lie group Q =
R3 × SO(3) × Rn and it is characterized by the pose
(position and orientation) of a base frame attached to a
robot’s link, and the joint positions. An element q ∈ Q
can be defined as the following triplet: q = (IpB,

IRB, qj)
where IpB ∈ R3 denotes the position of the base frame with
respect to the inertial frame, IRB ∈ R3×3 is a rotation matrix
representing the orientation of a base frame, and qj ∈ Rn
is the joint configuration. The velocity of the multi-body
system can be characterized by the algebra of the group
defined as V = R3 ×R3 ×Rn. An element of V is a triplet
ν = (I ṗB,

I ωB, q̇j) = (vB, q̇j), where IωB is the angular
velocity of the base frame expressed w.r.t. the inertial frame,
i.e. IṘB = S(IωB)IRB. A more detailed description of the
floating base model is provided in [19].

We assume that the robot interacts with the environment by
exchanging nc distinct wrenches. The equations of motion of
the multi-body system can be described applying the Euler-
Poincaré formalism [20, Ch. 13.5]:

M(q)ν̇ + C(q, ν)ν +G(q) = Bτ +

nc∑
k=1

J>Ckfk (1)

where M ∈ Rn+6×n+6 is the mass matrix, C ∈ Rn+6×n+6

is the Coriolis matrix, G ∈ Rn+6 is the gravity term,
B = (0n×6, 1n)> is a selector matrix, τ ∈ Rn is a vector
representing the internal actuation torques, and fk ∈ R6

denotes an external wrench applied by the environment to
the link of the k-th contact. The Jacobian JCk = JCk(q) is
the map between the robot’s velocity ν and the linear and
angular velocity at the k-th contact link.

As described in [21, Sec. 5], it is possible to apply
a coordinate transformation in the state space (q, ν) that
transforms the system dynamics (1) into a new form where
the mass matrix is block diagonal, thus decoupling joint and
base frame accelerations. Also, in this new set of coordinates,
the first six rows of Eq. (1) are the centroidal dynamics1. As

1In the specialized literature, the term centroidal dynamics is used to
indicate the rate of change of the robot’s momentum expressed at the center-
of-mass, which then equals the summation of all external wrenches acting
on the multi-body system [22].

an abuse of notation, we assume that system (1) has been
transformed in this new set of coordinates, i.e.

M(q) =

[
Mb(q) 06×n
0n×6 Mj(q)

]
, H = MbvB, (2)

where Mb ∈ R6×6,Mj ∈ Rn×n, H := (HL, Hω) ∈ R6 is
the robot momentum, and HL, Hω ∈ R3 are the linear and
angular momentum at the center of mass, respectively.

Lastly, it is assumed that a set of holonomic constraints
acts on System (1). These holonomic constraints are of the
form c(q) = 0, and may represent, for instance, a frame
having a constant pose w.r.t. the inertial frame. In the case
where this frame corresponds to the location at which a
rigid contact occurs on a link, we represent the holonomic
constraint as JCk(q)ν = 0. Hence, the kinematic constraint
associated with all the rigid contacts can be represented as

J(q)ν=

 JC1(q)
· · ·

JCnc
(q)

 ν=
[
Jb Jj

]
ν = JbvB + Jj q̇j = 0, (3)

with Jb ∈ R6nc×6, Jj ∈ R6nc×n, and q̇j ∈ Rn the joint space
velocity. The base frame velocity is denoted by vB ∈ R6,
which in the new coordinates yielding a block-diagonal mass
matrix is given by vB = (ṗc, ωo), where ṗc ∈ R3 is the
velocity of the system’s center of mass pc ∈ R3, and ωo ∈
R3 is the so-called system’s average angular velocity. By
differentiating the kinematic constraint Eq. (3), one obtains

Jν̇ + J̇ν = Jbv̇B + Jj q̈j + J̇bvB + J̇j q̇j = 0. (4)

III. RECALLS AND COMPLEMENTS ON THE
MOMENTUM-BASED CONTROL STRATEGY

We recall and complement the momentum-based control
strategy implemented on our iCub humanoid robot [19].
The control objective is the stabilization of a desired robot
momentum and the stability of the associated zero dynamics.

A. Momentum Control

Recall that the rate-of-change of the robot momentum
equals the net external wrench acting on the robot, which
in the present case reduces to the contact wrench f :=
(f1, · · · , fnc) ∈ R6nc plus the gravity wrenches. Then, in
view of Eq. (2), the rate-of-change of the robot momentum
can be expressed as:

d

dt
(MbvB) = Ḣ(f) = J>b f −mge3, (5)

where e3 ∈ R6.
The control objective is defined as the stabilization of a

desired robot momentum Hd ∈ R6. Let H̃ = H−Hd define
the momentum error. Assuming that the contact wrenches f
can be chosen at will, then we choose f such that [19]:

Ḣ(f) = Ḣ∗ := Ḣd −KpH̃ −KiIH̃ (6a)

İH̃ =

[
JLG(qj)
JωG(qdj )

]
q̇j (6b)



Kp,Ki∈R6×6 two symmetric, positive definite matrices and

J̄G(qj):=−MbJ
†
bJj =

[
JLG(qj)
JωG(qj)

]
∈ R6×n, JLG, J

ω
G ∈ R3×n

If nc > 1, there are infinite contact wrenches f that satisfy
Eq. (6a). We parametrize the set of solutions f to (6a) as:

f = f1 +Nbf0 (7)

with f1 = J>†b

(
Ḣ∗ +mge3

)
, Nb ∈ R6nc×6nc the projector

into the null space of J>b , and f0 ∈ R6nc the wrench redun-
dancy that does not influence Ḣ(f) = Ḣ∗. To determine
the control torques that instantaneously realize the contact
wrenches given by (7), we use the dynamic equations (1)
along with the constraints (4), which yields:

τ = Λ†(JM−1(h− J>f)− J̇ν) +NΛτ0 (8)

with Λ = JjMj
−1 ∈ R6nc×n, NΛ ∈ Rn×n the projector

onto the nullspace of Λ, the vector h := C(q, ν)ν +G(q) ∈
Rn+6, and τ0 ∈ Rn a free variable.

B. Stability of the Zero Dynamics
The stability of the zero dynamics is attempted by means

of a so called postural task, which exploits the free variable
τ0. Partition the vector h as follows: h = (hb, hj), hb ∈
R6, hj ∈ Rn. A choice of the postural task that ensures the
stability of the zero dynamics on one foot is [19]:

τ0 = hj − J>j f + u0 (9)

where u0 := −Kj
pNΛMj(qj − qdj ) − Kj

dNΛMj q̇j , and
Kj
p ∈ Rn×n and Kj

d ∈ Rn×n two symmetric, positive
definite matrices. An interesting property of the closed loop
system (1)–(8)–(9)–(7) is stated in the following Lemma.

Lemma 1. The closed loop joint space dynamics q̈j does
not depend upon the wrench redundancy f0.

The proof of Lemma 1 is in the appendix. This result
implies also that the linearization of the closed-loop joint
dynamics does not depend on f0, thus rendering the gain
tuning procedure presented in this paper independent from
the choice of the contact wrenches redundancy. This redun-
dancy is exploited to minimize the joint torques τ in Eq. (8).
In the language of Optimization Theory, we can rewrite the
control strategy as follows:

f∗0 = argmin
f0

|τ∗(f0)|2 (10a)

s.t.

Cf0 < b (10b)
τ∗(f0) = argmin

τ
|τ(f0)− τ0(f0)|2 (10c)

s.t.

J̇(q, ν)ν + J(q)ν̇ = 0 (10d)
ν̇ = M−1(Bτ + J>(f1 +Nbf0)−h) (10e)
τ0 = hj − J>j (f1 +Nbf0) + u0. (10f)

The constraints (10b) ensure the satisfaction of friction
cones, normal contact surface forces, and center-of-pressure
constraints. The control torques are then given by τ=τ∗(f∗0 ).

IV. GAIN TUNING PROCEDURE
A. Problem Statement

The goal is to impose desired local properties of the joint
dynamics. The choice of focusing on the joint dynamics
over other output functions reflects the aim of choosing
stiffness and damping at the joint level, without perturbing
the task hierarchy of momentum control and stability of the
associated zero dynamics via postural control.

Assuming that (10b) is always satisfied, the control torques
obtained by solving the optimization problem (10) depend
only on the system state, i.e. τ = τ(q, ν). Since it is
assumed that the robot stands on (at least) one foot, one
can express the system state in terms of the joint position
and velocity, i.e. (q, ν) = (q(qj), ν(qj , q̇j)). Then, the joint
space dynamics depends only on joint position and velocity,
i.e. q̈j = f(qj , q̇j) and we can linearize this dynamics about
an equilibrium point (qdj , 0). The process of finding the
linearized joint dynamics is similar to that presented in [19],
which yields

q̈j = −Q1(qj − qdj )−Q2q̇j

where Q1, Q2 ∈ Rn×n are given by

Q1 = C1(qdj )KiC2(qdj ) + C3(qdj )Kj
pC4(qdj ) (11a)

Q2 = C1(qdj )KpC2(qdj ) + C3(qdj )Kj
dC4(qdj ) (11b)

and C1 = M−1
j Λ†JbM

−1
b , C2 = MbJ

†
bJj , C3 = M−1

j NΛ

and C4 = NΛMj . Now, let x ∈ R2n be defined as follows

x :=
[
x>1 x>2

]>
=
[
q>j − qd>j q̇>j

]>
. The linearized

joint space dynamics around an equilibrium point (qdj , 0) is
given by

ẋ =

[
∂qj ẋ1 ∂q̇j ẋ1

∂qj ẋ2 ∂q̇j ẋ2

]
x =

[
0n 1n
−Q1 −Q2

]
x = Ax. (12)

Then, the optimization problem we attempt at solving is
stated next.

Kj∗
p ,K

j∗
d ,K

∗
i ,K

∗
p = argmin
Kj

p,K
j
d,Ki,Kp

|A(Kj
p,K

j
d,Ki,Kp)−Ad|2 (13)

s.t.

Ki = K>i > 0 (14a)
Kp = K>p > 0 (14b)

Kj
p = Kj>

p > 0 (14c)

Kj
d = Kj>

d > 0 (14d)

where Ad is the desired state matrix of the following form:

Ad =

[
0n 1n
−Qd1 −Qd2

]
with Qd1, Q

d
2 ∈ Rn×n the desired stiff-

ness and damping matrices. The optimization problem (13)-
(14) may be solved with any nonlinear available optimizer.
Yet, finding numerical solutions to the optimization problem
may be time consuming, which may forbid the on-line use
of the optimizer when the desired stiffness and damping are
time-varying. In this case, the solutions to (13)-(14) may also
become discontinuous at some time instants. We propose
below a method for solving on-line the problem (13) that
provide continuous solutions for the control gains.



B. Solution to the unconstrained problem

Assume that the constraints (14) do not hold. When the
robot stands on one foot, intuition would suggest that the
joint space dynamics can be imposed at will, i.e. there always
exist control gains such that the matrices Qd1, Q

d
2 can be

chosen arbitrarily. This section shows, however, that this is
not possible because of the two strict stack-of-task control
strategy defined in section III.

To show this, we prove that there exist some matrices
Qd1 such that no choice of the control gains renders Qd1 =
Q1(Ki,K

j
p) satisfied.

Now, if the constraints (14) do not hold, then the opti-
mization problem (13) can be rewritten as

y1 = Γ

[
ki
kjp

]
(15a)

Γ =

[[
C>2 ⊗ C1

] [
C>4 ⊗ C3

]]
∈ Rn

2×(36+n2)(15b)

where y1, k
j
p ∈ Rn2

, ki ∈ R36 are the vectorization of ma-
trices Q1,K

j
p and Ki obtained by reordering their columns

into a single column vector, and ⊗ the Kronecker product.
Then, the following result holds.

Lemma 2. Assume that rank(J) = 6nc, and that n > 6nc.
Then, the matrix Γ is not full row rank, i.e. rank(Γ) < n2.

The proof of the above Lemma is in the Appendix. As a
consequence of the above Lemma, there exist some desired
matrices Qd1, i.e. y1, such that no control gain implies the
exact solution to Qd1 = Q1(Ki,K

j
p). On the other hand, the

least square solution to the problem (15a) is given by[
k∗i
kj∗p

]
= Γ†y1 (16)

Clearly, the gains K∗i ,K
j∗
p obtained by the above solution

do not in general satisfy the symmetry and positive definite-
ness constraints (14). A similar procedure can be applied to
find the gains Kj∗

d ,K
∗
p that do not in general satisfy (14)

but solve in the least square sense Qd2 = Q2(Kj∗
d ,K

∗
p ).

C. Enforcing symmetry and positive definiteness constraints

In the previous section, we solved the problem (13) by
assuming that the constraints (14) do not hold. Hence,
we are now given with a set of gains Kj∗

p ,K
j∗
d ,K

∗
i ,K

∗
p

that may not be symmetric and positive definite. Define
K∗ := {Kj∗

p ,K
j∗
d ,K

∗
i ,K

∗
p} a matrix of proper dimension.

Then, to enforce symmetry and positive definiteness con-
straints, we solve (on-line) a second optimization problem
for each of the unconstrained optimal gain. More precisely,
the problem we solve follows:

O∗, L∗ = argmin
(O,L)

|K∗ −X(O,L)|2 (17)

s.t.
OO> = 1

L diagonal matrix.

with X := O> exp(L)O, O an orthogonal matrix, and L a
diagonal matrix. The solution to the problem (17) are the
matrices O∗, L∗. Therefore, the constrained optimized gain
matrix is given by:

X∗ = O∗> exp(L∗)O∗ (18)

Clearly, at this point we just moved the problem from solving
the optimization problem (13) with the constraints (14) to
solving the problems (17) with the constraints of the kind
OO> = 1. Now, being O an orthogonal matrix, then Ȯ =
OS(v), with v a vector of proper dimension depending on
the dimension of O, and S(·) a skew symmetric matrix.
Assuming v and L̇ as exogenous control inputs, one can find
Lyapunov-like solutions to the problem (17). More precisely,
the following result holds.

Lemma 3. Let O,L ∈ Rm×m denote an orthogonal and a
diagonal matrix, respectively. Consider the following system:

L̇ = U (19a)
Ȯ = OS(v) (19b)

where the vector v ∈ Rm(m−1)/2 and the diagonal ma-
trix U are considered as exogenous control inputs. Define
K̃ = K∗ −X(O,L), and the operator S−1(v) such that
v = S−1(S(v)). Apply the control inputs

U = −KU exp(−L)diag(B1) (20a)

v = KvS
−1

(
B2−B>

2

2

)
(20b)

to system (19), where KU is a positive definite diag-
onal matrix, Kv is a symmetric positive definite ma-
trix, B2 = O> exp(L)OK∗> − K∗>O> exp(L)O,
B1 = exp(L)−OK∗O>, and diag(B1) defined as follows

diag(B1)(i,j) = B1(i,j) if i = j

diag(B1)(i,j) = 0 if i 6= j.

Then, the following results hold:
• If K∗ is symmetric and positive definite, the equilibrium

point of the closed-loop dynamics K̃ = 0 is stable;
• The system trajectories K̃(t) are globally bounded for

any K∗ ∈ Rm×m;
• |K̃(t)| ≤ |K̃(0)| for any K∗ ∈ Rm×m.

The proof of Lemma 3 is in the Appendix. The above Lemma
points out that the distance between the optimal, uncon-
strained solution K∗ (obtained in Section IV-B) and the con-
strained (symmetric, positive definite) gain X(O(t), L(t))
is non increasing, i.e. |K̃(t)| ≤ |K̃(0)|. Then, the control
laws (20) can be viewed as a tracker for symmetric positive
definite matrices even when the matrix has to track a non
symmetric positive definite matrix (i.e. it does not belong to
the same manifold). Let us remark that convergence of the
tracking error K̃ to zero is not ensured a priori. Simulations
we have performed, however, tend to show that the cases
when K̃ does not converge to zero are limited, and the
analysis on this convergence is currently being developed.



Note also that if the optimal, unconstrained solution K∗

varies in time slowly, the tracker preserves its properties
by continuity. Then, one may think of applying the so-
lution (16) (20) on-line for time-varying desired stiffness
and damping Qd1(t), Qd2(t). Let us finally observe that we
could have avoided to find the intermediate solution (16),
and define the optimization problem (13) in terms of the
parametrization X(O,L), and then apply the procedure
explained above to find time evolutions for the constrained
gains. Simulations we have performed tend to show that this
approach performs worse than the route we propose, and
further investigations in this direction are being conducted.

D. Desired matrix correction when two feet balancing
If the constraint (3) acting on the system represents more

than one robot frame fixed with respect to the inertial frame
(e.g. two feet balancing), the matrices Q1 and Q2 in (11) may
not be full rank. As a matter of fact, the minimal coordinates
describing the constrained mechanical system are fewer than
n in this case. Then, the ranks of the desired matrices Qd1
and Qd2 must be equal to those of the matrices Q1 and Q2. In
general, the desired matrices Qd1 and Qd2 must be corrected
according to the constraints acting on the system.

To do this, observe that the feasible joint accelerations
according to the constraints (3) are given by:

q̈j = −J†j J̇j q̇j +NJ q̈j0, (21)

where Jj = (16nc
− JbJ

†
b )Jj , J̇j is the time derivative

of Jj and NJ is the projector onto the null space of Jj .
In the above equation, we have used vB = −J†bJj q̇j and
its derivative. Then, given two desired matrices Qd1, Q

d
2, we

project them as follows

Qd1 = NJQ
d
1 (22)

Qd2 = NJQ
d
2.

to correct the ranks and structure of the desired stiffness and
damping according to the constraints (3) when nc > 1.

V. SIMULATIONS RESULTS
A. Simulation Environment

Simulations are performed on a 23 degree of freedom
robot model representing the humanoid iCub. The simulation
software is developed in MATLAB. The time evolution of
the dynamical system is obtained through the integration of
the system dynamics (1) subject to the constraints (4). We
parametrize the orientation of the base frame using a quater-
nion representation Q ∈ R4. The system state is then defined
as: χ := (pB,Q, qj , ṗB, ωB, q̇j), and the time derivative is
given by χ̇ = (ṗB, Q̇, q̇j , ν̇). The state is integrated through
time by means of the numerical integrator MATLAB ode15s.
For the purpose of this paper, both problems (16) (20) are
solved offline, before starting the state integration. Online
implementations of this tuning algorithm will be the subject
of a forthcoming publication. To integrate the variables L̇, Ȯ,
we use a fixed step integrator. The constraints (4), as well
as |Q| = 1 and OO> = 1, need to be enforced during the
integration phase, and we added correction terms to Q̇, Ȯ.
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Fig. 1. Matrix Q1 after the gain tuning procedure in case of one foot
balancing. Simulations run in MATLAB environment.
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Fig. 2. Matrix Q1 after the gain tuning procedure in case of two feet
balancing. Simulations run in MATLAB environment.

B. Results

Simulations are performed for both the robot balancing on
one foot and two feet. We choose Qd1 to be positive definite
and diagonal, and Qd2 = 2

√
Qd1. In this case, the desired

joint space dynamics aims at the following properties:
• The joint space dynamics be locally decoupled, i.e. each

joint can be tuned separately;
• The linearized system is critically damped. This will

avoid excessive overshoots in the joint space dynamics.
When the robot is balancing on two feet, the matrices Qd1, Q

d
2

are corrected as in (22).
Figures 1-2 show the shape of matrix Q1 after gain tuning.

Observe that in the case of one foot balancing, the matrix Q1

is close to a diagonal matrix, and this implies that the joint
space dynamics is almost locally decoupled. In case of two
feet balancing, it is interesting to observe the effectiveness
of the gain tuning procedure by looking at the difference
between the first 11 rows of Q1, and the last 12 rows, which
correspond to the closed chained formed by the legs.

To verify that the joint space dynamics is close to the
desired dynamics, we evaluate the dynamical response of
each joint to a step input. In particular, we focused on the
settling time ts. It is possible to approximate ts as ts ≈
−3

Re (λ) , where Re(λ) is the real part of system’s eigenvalues.
Figures 3-4 show the dynamics of torso pitch for both one
foot and two feet balancing. In both cases, ts ≈ tds , and the
system dynamics is then closed to the desired dynamics.
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Fig. 3. Response of torso pitch to a step input in case of 1 foot balancing.
The black dot indicates the desired settling time, while the red dot is
the real settling time. The dashed horizontal lines indicate ±5% of the
reference position. Simulations run in MATLAB environment.
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Fig. 4. Response of torso pitch to a step input in case of 2 feet balancing.
In this case, the real and desired settling time are almost coincident.
Simulations run in MATLAB environment.

VI. CONCLUSIONS

This paper has presented a gain tuning procedure
for constrained floating base systems controlled through
momentum-based control. The objective is the achievement
of a desired local dynamics for the system’s joint space.
The optimization is performed on the linearization around
an equilibrium point of the closed-loop system’s joint space.
The constraints on symmetry and positive definiteness of
gain matrices are enforced thanks to a tracker for symmetric
positive definite matrices. This allows fast resolutions of the
constrained optimization problem, which allows one for on-
line implementations of the presented algorithms. Simulation
results on the humanoid robot iCub show the effectiveness
of the gain tuning procedure for both the robot balancing on
one foot and two feet.

Further improvements on the gain tuning procedure may
be developed in future works. The gains optimization pre-
sented in this paper can be applied in different equilibrium
points along a joint reference trajectory, and may be an
efficient tuning strategy in case of humanoid walking. On
line implementations of the presented algorithm on the real
humanoid robot is being investigated.

APPENDIX

A. Proof of Lemma 1

Recall that M is block diagonal. The joint space dynamics
is given by the last n rows of Eq. (1):

Mj q̈j = J>j f − hj + τ. (23)

Moreover, we can rewrite the term JM−1(h− J>f) in the
control torques equations Eq. (8) as follows:

JM−1(h− J>f) = JbM
−1
b (hb − J>b f) + Λ(hj − J>j f)

In view of NΛ = 1n − Λ†Λ and (9), the control torques (8)
become:

τ = hj−J>j f+Λ†(JbM
−1
b (hb−J>b f)− J̇ν)+NΛu0 (24)

Substituting Eq. (24) into Eq. (23) gives:

Mj q̈j = Λ†(JbM
−1
b (hb − J>b f)− J̇ν) +NΛu0. (25)

The only term which contains the wrenches f in Eq. (25) is
multiplied by J>b . Since f = f1 + Nbf0, and by definition
J>b Nb = 06nc , we have that J>b f = J>b f1. Hence, vector f0

does not influence the joint space dynamics Eq. (25).

B. Proof of Lemma 2

Given two rectangular matrices A,B, recall the prop-
erties rk (AB) ≤ min(rk (A), rk (B)) and rk (B ⊗A) =
rk (A) rk (B), where rk (·) denotes the rank of a matrix.
We apply the above properties to evaluate the rank of the
matrices C1, C2, C3, C4 in Eq. (11a). It is straightforward to
verify that: rk(C1) ≤ 6, rk(C2) ≤ 6, rk(C3) ≤ n − 6nc,
rk(C4) ≤ n−6nc. It is now possible to evaluate the rank of
matrix

Γ =

[[
C>2 ⊗ C1

] [
C>4 ⊗ C3

]]
∈ Rn

2×(n2+36),

i.e.

rk(Γ) ≤ rk(C>2 ⊗ C1) + rk(C>4 ⊗ C3) ≤ 36 + (n− 6nc)
2.

The condition for Γ to be full row rank is rk(Γ) = n2. This
condition may be verified if 36+(n−6nc)

2 = n2. Recall that
n, nc must be positive integers, and that n > 6nc. Assume
that n = 6nc + k, with k ∈ N. Then, one can verify that
36+(n−6nc)

2 < n2 yields 36(n2
c−1)+12knc > 0, which

is always satisfied for any nc, k ∈ N. As a consequence,
rk(Γ) < n2.

C. Proof of Lemma 3

Using Frobenius matrix norms, one has that |K̃|2 =
|K∗−X|2 = tr ((K∗ −X)>(K∗ −X)), where tr(·) denote
the trace operator. Consider now the candidate Lyapunov
function

V = |K̃|2 = tr ((K∗ −X(O,L))>(K∗ −X(O,L))) (26)

Observe that V is always positive, and V = 0 iif K̃ = 0.
Then, to prove the three statements in Lemma 3, it suffices
to show that V̇ ≤ 0. To do this, recall that O is an orthogonal



matrix, i.e. OO> = 1. Also, observe that Eq. (26) can be
rewritten as:

V = tr (K∗K∗> − 2K∗>O> exp(L)O + exp(2L)) (27)

where we used the properties tr(K∗>O> exp(L)O) =
tr(O> exp(L)OK∗) and tr(O> exp(2L)O) =
tr(OO> exp(2L)). To compute the time derivative of
V , recall that Ȯ = OS(v), with S(v) a skew-symmetric
matrix, and L̇ = U . Then, V̇ becomes:

V̇ = 2 tr(B1 exp(L)U) + 2 tr(B2S(v)),

with B2 = O> exp(L)OK∗> − K∗>O> exp(L)O, and
B1 = exp(L) − OK∗O>. Observe that V̇ ≤ 0 if both
tr(B1 exp(L)U) ≤ 0 and tr(B2S(v)) ≤ 0. Now, note that
tr(B1 exp(L)U) can be rewritten as

∑n
i=1 e

>
i B1 exp(L)Uei.

Since the product exp(L)U is diagonal, then∑n
i=1 e

>
i B1 exp(L)Uei =

∑n
i=1 e

>
i B1ei exp(li)ui, where

we indicate with exp(li)ui the i-th element along the
diagonal of exp(L)U . The trace can then be rewritten as∑n
i=1 e

>
i B1ei exp(li)ui =

∑n
i=1 b1i exp(li)ui where b1i

is the i-th element along the diagonal of B1. A possible
choice of ui that ensures tr(B1 exp(L)U) ≤ 0 is:

ui = −kUi exp(−li)b1i kUi > 0. (28)

Since ui is the i-th element along the diagonal of U , (28)
implies U = −KU exp(−L)diag(B1) with KU a diagonal
matrix of positive constants.

Now, recall that the matrix B2 can be decomposed as
follows:

B2 =
(B2+B>

2 )
2 + S(ω) (29)

where ω = S−1

(
(B2−B>

2 )
2

)
. Recall also that the trace of a

product between a symmetric and a skew-symmetric matrix

is zero. Then, tr

(
(B2+B>

2 )
2 S(v)

)
= 0. We are now left

to evaluate tr(S(ω)S(v)). The trace of a matrix product
can also be written as tr(X>Y ) = vec(X)> vec(Y ), where
vec(·) is the vectorization operator. Then tr(S(ω)S(v)) =
− tr(S(ω)>S(v)) = − vec((S(ω))> vec(S(v)). Note that
vec(S(x)) = Tx ∀x, where the matrix T satisfies T>T

2 = 1
due to the skew-symmetry of S(·). Hence,

tr(S(ω)>S(v)) = −ω>T>Tv = −2ω>v

and this suggests that a possible choice of v is

v = KvS
−1(S(ω)) = KvS

−1

(
(B2−B>

2 )
2

)
.
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