
Fina
l D

raf
t

Incremental Bootstrapping of Parameterized Motor Skills

Jeffrey Frederic Queißer1, René Felix Reinhart2 and Jochen Jakob Steil1,3

Abstract— Many motor skills have an intrinsic, low-
dimensional parameterization, e.g. reaching through a grid to
different targets. Repeated policy search for new parameteri-
zations of such a skill is inefficient, because the structure of the
skill variability is not exploited. This issue has been previously
addressed by learning mappings from task parameters to policy
parameters. In this work, we introduce a bootstrapping tech-
nique that establishes such parameterized skills incrementally.
The approach combines iterative learning with state-of-the-art
black-box policy optimization. We investigate the benefits of
incrementally learning parameterized skills for efficient policy
retrieval and show that the number of required rollouts can be
significantly reduced when optimizing policies for novel tasks.
The approach is demonstrated for several parameterized motor
tasks including upper-body reaching motion generation for the
humanoid robot COMAN.

I. INTRODUCTION

Advanced robotic systems face non-static environmental
conditions which require context-dependent adaptation of
motor skills. Approaches that optimize motions for a given
task by reinforcement learning, like object manipulation [6]
or walking gait exploration [1], deal only with a single
instance of a potentially parameterized set of tasks. In many
cases, a low-dimensional parameterization that covers the
variance of a task exists. For example, consider reaching
and grasping under various obstacle positions and object
postures [20], [25], throwing of objects at parameterized
target positions [3] or playing table tennis using motion
primitives that are parameterized with respect to the current
ball trajectory [11]. A full optimization for each new task
parameterization from a reasonable initialization, which was
acquired by e.g. kinesthetic teaching, means that many
computations and trials need to be performed before the task
can be executed. This impedes immediate task execution and
is highly inefficient for executing repetitive tasks under some
structured variance.

Recent work addresses this issue by introducing parame-
terized motor skills that estimate a mapping between the pa-
rameterization of a task and corresponding solutions in policy
parameter space [3], [11], [16]–[18], [20], [25]. Generation
of training data for the training of such parameterized skills
requires the collection of optimized policies for a number

1Jeffrey Frederic Queißer & Jochen Jakob Steil are with
the Research Institute for Cognition and Robotics (CoR-Lab),
Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
jqueisse@cor-lab.uni-bielefeld.de

2René Felix Reinhart is with the Fraunhofer IEM Research Institution for
Mechatronic Systems Design, Zukunftsmeile 1, 33102 Paderborn, Germany
felix.reinhart@iem.fraunhofer.de

3Jochen Jakob Steil is with the Institute for Robotics and Process
Control, Technical University Braunschweig, Mühlenpfordtstr. 23, 38106
Braunschweig, Germany jsteil@rob.cs.tu-bs.de

Fig. 1: Constrained reaching scenario with a humanoid upper
body and a grid-shaped obstacle. End effector trajectories
for different reaching targets retrieved from the learned
parameterized skill are shown by black lines.

of task parameterizations. In previous work, each training
sample is based on a full optimization for a new task param-
eterization starting from a fixed initialization [3], [19], or
gathered in demonstrations e.g. by kinesthetic teaching [16],
[18], [20], [25]. On the one hand, requesting demonstrations
from a human teacher for many task parameterizations is not
only time-consuming, but also includes the risk of collecting
very different solutions to similar tasks due to the redundancy
of the problem. Solutions on a smooth manifold are a
prerequisite to allow for generalization for unknown tasks.
On the other hand, full optimization from a single initial
condition requires many rollouts and neglects the already
acquired knowledge about the motor skill.

In this paper, we follow the idea of [3], [19] to apply
dedicated policy optimization for new task parameterizations
instead of gathering demonstrations from a tutor. We pro-
pose an incremental algorithm to establish parameterized
skills that reuse previous experience to successively im-
prove the initialization of the optimization process. Thereby
we are able to incorporate state-of-the-art optimization of
the policy, e.g. by CMA-ES, instead of optimizing meta-

Fina
l D

raf
t

parameters of policies [11] and do not rely on library based
approaches [17]. In contrast to [3], [19], the optimizer is
initialized with the current estimate of the iteratively trained
skill and allows for generalization of policy parameters to
unknown task parameters. We show that this leads to a sig-
nificant reduction of the number of required rollouts during
skill acquisition. We refer to the process of incremental skill
acquisition as bootstrapping.

We systematically show that the optimization process
benefits from the initial condition proposed by the not yet
fully trained parameterized skill and how this benefit depends
on the model complexity of the learning algorithm. To cope
with redundancy and to support the exploration of smooth
manifolds in the policy parameter space, we introduce an
additional cost term for optimization that we refer to as
regularization of policy parameterization. In addition we
apply ridge regression with regularization for estimation of
a smooth parameterized skill representation. The proposed
algorithm for bootstrapping of parameterized skills results
in a significant speed-up of the optimization processes for
novel task parameterizations. We evaluate these properties of
the proposed approach on a via point task with a planar 10
DOF robot arm (see Fig. 5). The scalability of the approach
is demonstrated by bootstrapping a parameterized skill for
a reaching task incorporating the upper body kinematics of
the humanoid robot COMAN (see Fig. 1).

II. BOOTSTRAPPING OF PARAMETERIZED
SKILLS

We consider policies πθ that are parameterized by θ ∈
RN . We further assume that tasks are parameterized by
τ ∈ RM . Tasks τ are distributed according to the probability
density function P (τ). The task parameterization τ reflects
the variability of the task, e.g. position of obstacles, target
positions or load attached to an end effector. With reference
to Da Silva et al. [3], we introduce the notion of a param-
eterized skill, which is given by a function Θ : RM → RN
that maps task parameters τ to policy parameters θ. The
goal is to find a parameterized skill Θ(τ) that maximizes∫
P (τ)J(πΘ(τ), τ)dτ where J(π, τ) = E

{
R(πθ, τ)|π, τ

}
is the expected reward for using policy πθ to solve a task τ .
The reward function R(πθ, τ) assesses each action of the
robot defined by the policy πθ with respect to the current
task parameterization τ .

We propose an algorithm to build up a parameterized skill
Θ(τ) by consolidating optimized θ for given τ . For this
purpose, we assume that some sort of policy representation,
e.g. a motion primitive model, and policy search algorithm,
e.g. REINFORCE [26] or CMA-ES [7], is available. The idea
is to incrementally train the parameterized skill Θ(τ) with
task-policy parameter pairs (τ ,θ∗), where θ∗ are optimized
policy parameters obtained by executing the policy search
algorithm for task τ . The key step is that the current estimate
Θ(τ) of policy parameters is used as initial condition for
policy optimization of new tasks τ . The central outcome of
this procedure is that policy search becomes very efficient
due to incrementally better initial conditions of the policy

Parameterized
Skill (PS)

e.g. ELM [17]

Policy
e.g. DMP [14]

Rollout Execution
on

Simulation or
Real Robot

Optimizer
e.g. CMA-ES [11]

Task

Dataflow Graph Algorithm

Reward
e.g. Eq. 5/7

Train/Test

Fig. 2: Dataflow and pseudocode of the proposed bootstrap-
ping algorithm. The parameterized skill (PS) estimates a
policy parameterization θstart. In case of training, successive
policy optimization (PO) by reinforcement learning results
in an update of the parameterized skill. The shading of
the background highlights nested processing loops of the
system (from outer to inner): (1) Iteration over all tasks; (2)
Optimization of θ by the PO algorithm; (3) Execution and
estimation of the reward by iterating over all T timesteps of
the trajectory p∗t .

search. Ultimately, Θ(τ) directly provides optimal policy
parameters and no further policy optimization needs to be
conducted.

The algorithm for the parameterized skill acquisition is
outlined in Fig. 2. For each new task τ , the parameterized
skill provides an initial policy parameterization θstart =
Θ(τ) (line 8). After collecting a sufficient number of pairs
(τ ,θ∗), the proposed parameterization θstart can achieve
satisfactory rewards such that no further policy optimization
(PO) by reinforcement learning is necessary. In case the
estimated policy parameters can not yet solve the given task
or further training is desired, the optimization from initial
condition Θ(τ) is initiated (line 10). To ensure that only
successful optimization results are used for training of the
parameterized skill, an evaluation of the optimization process
(e.g. reward ropt exceeds a threshold rth) is performed
(line 11). If the optimization was successful, the pair (τ ,θ∗)
with optimized policy parameters θ∗ is used for supervised
learning of Θ(τ) (line 12).

Finally, lines 14-18 serve evaluation purposes during
incremental training. The evaluation was performed on a
predefined set of evaluation tasks in τev ∈ Tev that are
disjunct from the training samples.

In the following, the chosen policy representation and
algorithm for policy optimization are briefly introduced.

Fina
l D

raf
t

A. Selection of Policy Representation

The proposed method does not rely on a specific type
of policy representation. Many methods for compact policy
presentation have been proposed, e.g. based on Gaussian
Mixture Models (GMM) [5] or Neural Imprinted Vector
Fields [13]. We decided for Dynamic Motion Primitives
(DMP, [10]), because they are widely used in the field
of motion generation. DMPs for point-to-point motions are
based on a dynamical point attractor system

ÿ = kS(g − y)− kDẏ + f(x,θ) (1)

that defines the output trajectory as well as velocity and ac-
celeration profiles. The canonical system is typically defined
as ẋ = −αx or in our case as a linear decay ẋ = −α as
in [12]. The shape of the primitive is defined by

f(x,θ) =

∑K
k=1 exp(−Vk(x−Ck))θk∑K
k=1 exp(−Vk(x−Ck))

, (2)

where a mixture of K Gaussians is used. Ck are the
Gaussian centers and Vk define the variance of the Gaussians.
The DMP is parameterized by the mixing coefficients θk.
We assume fixed variances Vk and a fixed distribution of
centers Ck as in [18].

B. Selection of Policy Optimization Algorithm

For optimization of DMP parameters θ given a task τ ,
we apply the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES, [7]). Stulp et al. [21] have shown that
the black-box optimization by CMA-ES is very efficient
and reliable in combination with DMPs. In comparison to
other reinforcement learning methods like PI2 [23] or RE-
INFORCE [26], which evaluate the reward at each time step,
CMA-ES is a black-box-optimization algorithm and operates
only on the total reward of an action sequence. Stochastic
optimization by CMA-ES evaluates Nλ rollouts of policy
parameters per generation, which are drawn from a Gaussian
distribution centered at the current policy parameter estimate.
For each generation the current estimate gets updated by
a weighted mean of all Nλ rollouts. The final number
of rollouts R required for optimization is given by the
number of generations times the number Nλ of rollouts per
generation.

C. Selection of Learning Algorithm

For learning of parameterized skills Θ(τ) we apply an
incremental variant of the Extreme Learning Machine (ELM,
[8]). ELMs are feedforward neural networks with a single
hidden layer:

θi(τ) =

H∑
j=1

Wout
ij σ(

M∑
k=1

Winp
jk τk + bj) ∀i = 1, ..., N (3)

with input dimensionality M , hidden layer size H and output
dimensionality N . Hidden Layer size was set to H = 50 for
generalization in joint space and N = 20 in case of Cartesian
end-effector space. Regression is based on a random projec-
tion of the input Winp ∈ RH×M , a non-linear transformation

σ(x) = (1 + e−x)−1 and a linear output transformation
Wout ∈ RN×H that can be updated by incremental least
squares algorithms. The incremental update scheme of the
ELM was introduced as Online Sequential Extreme Learn-
ing Machine (OSELM) [14] that incorporates the ability
to perform an additional regularization on the weights [9]
or exponential forgetting of previous samples [27]. Since
we expect to deal with a small number of training data,
regularization of the network can help to prevent over-fitting
and foster reasonable extrapolation.

III. EXPERIMENTS
In the following, we demonstrate the applicability of our

proposed bootstrapping algorithm. Therefore we designed
two scenarios to test the bootstrapping of parameterized skills
according to the algorithm from Sec. II.

A. 10 DOF Planar Arm Via-Point Task

The goal is to optimize the parameters of a DMP pol-
icy to generate joint angle trajectories such that the end-
effector of the actuator passes through a via-point in task
space at time step T

2 of the movement with duration T .
For this task we modeled the kinematics of a 10 DOF
planar arm. Motions start at initial configuration qstart =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)ᵀ and stop at configuration qend =
(π2 , 0, 0, 0, 0, 0, 0, 0, 0, 0)ᵀ. The task parameterization τ is
given by the 2D via-point position τ = (vx,vy) of the end
effector at timestep T

2 .
Since there exists no unique mapping between task and

policy parameter space in this example, infinite action param-
eterizations can be found that sufficiently solve a given task
(e.g. exceed a reward threshold). To reduce ambiguities in the
training data for parameterized skill learning, we add a policy
regularization term to the reward function. This regulariza-
tion punishes the deviation of the policy parameters Θ(τ)
from the initial parameters θinit and additionally rewards
small jerk of the end effector trajectory. The initial and
final arm configurations are shown in Fig. 3a. We utilize a
minimum jerk trajectory [22] in joint angle space to generate
the initial policy parameters θinit. The overall reward is
given by:

R(θ,v) = −α1

T∑
t=2

(
∂3px

t

∂t3

)2

+
(
∂3py

t

∂t3

)2

︸ ︷︷ ︸
Jerk (a)

−α2‖pT/2 − vp‖2︸ ︷︷ ︸
Via Point (b)

−α3‖θinit − θ‖︸ ︷︷ ︸
Regularization (c)

(4)

The reward depends on the DMP parameters θ that result in a
10 dimensional joint trajectory transformed by the kinematics
of the robot arm to the end-effector trajectory pt. The jerk
is based on the third derivative of the end-effector trajectory
pt as proposed in [4] and is represented as one objective
in the reward function Eq. 4(a). In addition the reward
function refers to the distance to the desired via-point v of
the end-effector trajectory Eq. 4(b) and the regularization
term Eq. 4(c).

Fina
l D

raf
t-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
[m

]

Start/End
Configuration
Target Plane
Via-Point
EE-Trajectory
Achieved
Via-Point

(a) Scenario Overview

1e 0 1e -1 1e -2 1e -3 1e -4

Regularization γ

-0.5

-0.4

-0.3

-0.2

M
ea

n
R

ew
ar

d

ELM
KNN
Linear
95% Conf. Interval

1 2 3 4 5
Neighbors for KNN

(b) Comparison of learner

-0.23

-0.23

-0.25

-0.27

-0.33

-0.41

-0.22

-0.21

-0.22

-0.22

-0.23

-0.24

-0.21

-0.19

-0.19

-0.19

-0.20

-0.23

-0.36

-0.28

-0.23

-0.20

-0.20

-0.20

-0.91

-0.95

-0.59

-0.36

-0.37

-0.29

1e 0 1e -1 1e -2 1e -3 1e -4

Regularization γ

1.0

0.98

0.94

0.9

0.86

0.82

Fo
rg

et
tin

g
Fa

ct
or

λ

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(c) Forgetting factor evaluation

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
[m

]

Start/End
Configuration
Target Plane
Target
EE-Traj.:
1 Sample
15 Samples

(d) Case I

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
y

[m
]

Start/End
Configuration
Target Plane
Target
EE-Traj.:
1 Sample
15 Samples

(e) Case II

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
[m

]

Start/End
Configuration
Target Plane
Target
EE-Traj.:
1 Sample
15 Samples

(f) Case III

Fig. 3: (a) Experimental setup including start/end configuration as well as an optimized solution for one task. (b) Comparison
of the generalization of Θ(τ) to unseen tasks by linear regression, KNN and ELM depending on the regularization γ. The
evaluation shows the mean reward and confidence interval for all test samples τev . (c) Forgetting factor evaluation: Mean
reward on test samples for θstart after bootstrapping depending on regularization γ and forgetting factor λ. At the bottom
(d)-(f), three exemplary test cases for τ are shown. They show the content of the learned parameterized skill in relation to
the number of training samples. The gray scale indicates the number of consolidated training samples.

-30

-25

1

-20

-15

-10

1

Po
lic

y
Pa

ra
m

et
riz

at
io

n
θ 4

-5

0

5

Task Param. Y

0.5

Task Param. X

0.5

0 0

(a)

-25

-20

0

-15

-10

1

Po
lic

y
Pa

ra
m

et
riz

at
io

n
θ 1

7 -5

0

Task Param. X

0.5

Task Param. Y

0.5

1 0

(b)

1-30
0

-20

-10

Po
lic

y
Pa

ra
m

et
riz

at
io

n
θ 5

7

0

Task Param. Y

0.5

Task Param. X

10

0.5

01

Parameterized Skill
Training Samples
Test Samples

(c)

Fig. 4: (a)-(c) show three exemplary dimensions of the parameterized skill Θ(τ) output in relation to the task parameterization.
Task parameterization is the 2D position of the via-point, i.e. τ = (vx,vy).

The coefficients αi are fixed for all experiments to α =
(102, 15, 10−3)ᵀ. The selection of α results in a magnitude
of the regularization of ca. 10% of the overall reward of an
optimized task. For the training phase we selected Ntrain =
15 random tasks τ , i.e. via-point positions, drawn from the

green target plane in Fig. 3a. Evaluation was done on a fixed
test set τev including Ntest = 16 via-points arranged in a
grid on the target plane. For each of the 10 joints of the robot
we selected a DMP with K = 6 basis functions, resulting in
a M = 60 dimensional policy parameterization θ. Fig. 3d-

Fina
l D

raf
t2 4 6 8 10 12 14

of Presented Training Samples

-3

-2.5

-2

-1.5

-1

-0.5

0
M

ea
n

R
ew

ar
d

Mean Reward
95% Conf. Interval

(a)

2 4 6 8 10 12 14
of Presented Training Samples

-50

0

50

100

150

200

250

#
of

R
ol

lo
ut

s

of Rollouts
95% Conf. Interval

(b)

Fig. 5: This figure reveals the mean reward of the initial
guess θstart = Θ(τ) of the parameterized skill in relation
to the number of presented training samples (a) and the
mean number of rollouts that are necessary to solve (reward
exceeds a threshold) the test tasks (b). Results and confidence
interval are based on ten repeated experiments.

3f shows solutions for three exemplary tasks τ from the test
set. The gray scale of the end effector trajectories refers to
the number of consolidated training samples and shows that
the parameterized skill improves as more optimized samples
have been used for training. In addition we evaluated the
overall performance that can be achieved by the ELM learner
in comparison to KNN Regression and Linear Regression as
well as the effect of regularization. Those results are shown
in Fig. 3b and reveal that the ELM, a non-linear, global
learner for Θ(τ), is able to gain the highest rewards on the
test set.

The effect of an exponential forgetting of training data
can be seen in Fig. 3c. The forgetting factor is implemented
by weighted linear regression of the readout weights of
the learner of Θ(τ). By forgetting earlier training samples
(λ < 1), higher rewards can be achieved after bootstrapping.
As the parameterized skill provides a better initialization
for the policy search, better solutions can be found since
a better initialization reduces the risk of getting stuck in a
local minimum. Therefore it is beneficial to forget earlier
solutions in favor of new policy search results. In case not
all tasks can be solved by policy search due to local minima
(as in Sec. III-B), an improved initial guess Θ(τ) can affect
the rate of solvable tasks as well.

Fig. 5(a) shows the mean initial reward for all tasks τev
in the test set for the estimated policy parameters Θ(τ) as
function of the number of incorporated training samples.
Fig. 5(b) shows that policy optimization benefits from the

improved initial policy parameters Θ(τ) by reducing the
number of required rollouts to solve novel tasks (exceed
a certain reward threshold). A significant reduction of the
required number of rollouts compared to the initialization
with the first training sample θinit, e.g. baseline, can be seen.

B. Reaching Through a Grid

In this scenario we optimize a reaching task defined by end
effector trajectories to reach certain points on a plane behind
a grid-shaped obstacle. The scenario shows the scalability of
the purposed approach to more complex tasks. The goal is
to reach points on a 2D target plane behind the grid-shaped
obstacle without collisions. The experiments are performed
in simulation with the humanoid robot COMAN [2] as shown
in Fig. 1. We utilize 7 DOF of the upper body including
waist, chest and right arm joints. Motions are represented in
Cartesian space utilizing 3 DMPs with K = 5 basis functions
(as in Eq. 2), resulting in a M = 15 dimensional optimization
problem. The policy parameters are transformed by DMPs to
desired Cartesian end effector trajectories p∗t . The kinematics
as well as reachability of the robot lead to executable end
effector trajectories pr,t in Cartesian space. For each time
step t of the desired end effector trajectory p∗t , an inverse
Jacobian controller tries to find a configuration of the robot
that complies with p∗t and maximizes the distance to all
obstacles in the null-space of the manipulator Jacobian [15]:

q̇ = J†
(
p∗t − pr,t

)
+ α

(
I− J†J

)
Z (5)

Z =

L∑
l=1

−Jᵀ
p,l · dmin,l (6)

where p∗t − pr,t is the distance between the desired end
effector trajectory p∗t and the trajectory pr,t reached by the
robot. The term Z maximizes the distances ||dmin,l|| of all
L links to the grid obstacle in the null-space I− J†J . The
maximization of the distance to the closest point can be
achieved by following the direction −dmin,l in joint space
by the point Jacobian Jᵀ

p,l of the closest point to the obstacle.
For policy optimization, the reward function is given by

R(θ,vp) = −α1

T∑
t=2

‖p∗t − p∗t−1‖︸ ︷︷ ︸
Length of Trajecory (a)

−

α2

T∑
t=1

‖p∗t − pr,t‖︸ ︷︷ ︸
Reproducibility (b)

+ α3

T∑
t=1

rd,t︸ ︷︷ ︸
Dist. to Obstacles (c)

− α4‖θ‖︸ ︷︷ ︸
Regularization (d)

(7)

where T is the duration of the trajectory. The reward in Eq. 7
is a weighted sum of four parts with weighting factors αi:
(1) The length of the desired end effector trajectory pd,t
that is defined by policy parameter θ; (2) In addition to the
punishment of long trajectories (Eq. 7(a)), the reward takes
the reproducibility of the trajectories into account. Therefore,
Eq. 7(b) punishes deviations of the reached end effector
position pr,t in relation to the desired end effector position
p∗t ; (3) The distance maximization of all links to the grid

Fina
l D

raf
t5 10 15 20

of Presented Training Samples

-30

-25

-20

-15

-10

-5

M
ea

n
R

ew
ar

d

Mean Reward
95% Conf. Interval

(a)
5 10 15 20
of Presented Training Samples

60

80

100

120

140

160

180

200

of

 R
ol

lo
ut

s

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

R
at

e
of

 S
ol

va
bl

e
Ta

sk
s

Rollouts
95% Conf. Interval
Task Fulfillment Rate

(b)

Fig. 6: This figure reveals the mean reward of the initial guess θstart = Θ(τ) of the parameterized skill in relation to the
number of presented training samples (a) and the mean number of rollouts that are necessary to solve the test tasks (reward
exceeds a threshold) (b). The dashed line in (b) shows the mean rate of solvable task in the test set. Results and confidence
intervals are based on ten repeated experiments.

obstacle rd,t is considered in Eq. 7(c). The optimization
criterion representing the maximization of the distance to
the grid-obstacle rd,t is given by:

rd,t = −
L∑
l=1

min
(
0, ‖dmin,l‖ − dB

)2
(8)

It represents a quadratic relationship to the minimum
distances dmin,l over all L links to all obstacles in the
scene in case the distance falls below a given threshold dB .
This criterion refers to the the work presented by Toussaint
et al. [24] where it was used in the context of null-space
constraints for humanoid robot movement generation; (4) An
additional normalization for small policy parameterizations
as given by Eq. 7(d).

Results: We evaluated the bootstrapping of the parameter-
ized skill as described in Sec. II. For training, we selected
Ntrain = 20 random target positions on the target plane in
front of the robot. For evaluation, we created a fixed regular
grid for point sampling of Ntest = 39 positions on the target
plane. Fig. 6 reveals that the reward of the initial guess
θstart = Θ(τ) of the parameterized skill increases with the
number of presented training samples. In comparison to the
previous experiment in Sec. III-A, the optimization algorithm
does not always succeed to find a solution for all tasks of the
test set. Fig. 6(b) shows an increasing success rate in relation
to the number of consolidated samples and thereby the
reward of the initial parameters θstart of the policy search.
This indicates that increasingly better initial conditions Θ(τ)
for policy optimization reduce the risk to get stuck in local
minima during optimization. In terms of number of rollouts
that are required to fulfill a new task, we observe similar
results as in the 10 DOF arm experiment: The number of
required rollouts necessary for task fulfillment decreases
the more training data were consolidated. This results in
a bootstrapping and acceleration of the parameterized skill
learning.

IV. CONCLUSION
We introduced a bootstrapping algorithm to incrementally

train parameterized skills. Since we have to operate on a

small number of training samples, we assumed smoothness
of the mappings between task and policy parameter spaces.
Our results indicate that the DMP space is well suited
for parameterized robot trajectory generation and a smooth
mapping between task parameterization and DMP space is a
valid assumption. We verified that the incremental learning
of parameterized skills is possible and that the incremental
update can significantly speed up policy search for novel
task parameterizations. Moreover, we showed that initializa-
tion of the optimization process with successively improved
solutions (i.e. with higher rewards) extends also the number
of successfully solved tasks (i.e. exceed a reward threshold).
To support consistent training samples without ambiguities
caused by the redundancy of the parameterized skill formula-
tion, we introduced additional cost terms in the optimization,
which we call regularization of the policy parameterization.
To investigate the deeper connection between regularization
of the parameterized skill learner and the reward function
remains future work.

ACKNOWLEDGMENT

J. Queißer received funding from the Cluster of Excel-
lence 277 Cognitive Interaction Technology. F. Reinhart
received funding from the European Community’s Horizon
2020 robotics program ICT-23-2014 under grant agreement
644727 - CogIMon.

REFERENCES

[1] C. Cai and H. Jiang. Performance Comparisons of Evolutionary
Algorithms for Walking Gait Optimization. In IEEE Intern. Conf. on
Information Science and Cloud Computing Companion, pages 129–
134, 2013.

[2] L. Colasanto, N. G. Tsagarakis, and D. G. Caldwell. A Compact Model
for the Compliant Humanoid Robot COMAN. In BioRob, pages 688
– 694, 2012.

[3] B. C. da Silva, G. Baldassarre, G. Konidaris, and A. Barto. Learning
parameterized motor skills on a humanoid robot. In IEEE Intern. Conf.
Robotics and Automation, pages 5239–5244, 2014.

[4] N. Fligge, J. McIntyre, and P. van der Smagt. Minimum jerk for
human catching movements in 3D. In Proc. IEEE Intern. Conf. on
Biomedical Robotics and Biomechatronics, pages 581–586, 2012.

[5] F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforcement
learning for imitating constrained reaching movements. Advanced
Robotics, Special Issue on Imitative Robots, 21(13):1521–1544, 2007.

Fina
l D

raf
t

[6] F. Günter. Using reinforcement learning for optimizing the reproduc-
tion of tasks in robot programming by demonstration. PhD thesis, STI,
Lausanne, 2009.

[7] N. Hansen. The CMA evolution strategy: a comparing review. In
J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a
new evolutionary computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer, 2006.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine:
Theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[9] H. T. Huynh and Y. Won. Online training for single hidden-layer
feedforward neural networks using RLS-ELM. In IEEE Intern. Symp.
on Comp. Intelligence in Robotics and Automation, pages 469–473,
2009.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Computation, 25(2):328–373, 2013.

[11] J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning
to adjust parametrized motor primitives to new situations. Autonomous
Robots, 33:361–379, 2012.

[12] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Wrgtter. Join-
ing movement sequences: Modified dynamic movement primitives
for robotics applications exemplified on handwriting. IEEE Trans.
Robotics, 28(1):145–157, 2012.

[13] A. Lemme, K. Neumann, R. Reinhart, and J. Steil. Neural learning of
vector fields for encoding stable dynamical systems. Neurocomputing,
141:3–14, 2014.

[14] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A
fast and accurate online sequential learning algorithm for feedforward
networks. IEEE Transactions on Neural Networks, 17(6):1411–1423,
2006.

[15] A. Liegeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Trans. Systems, Man and
Cybernetics, 7(12):842–868, 1977.

[16] T. Matsubara, S.-H. Hyon, and J. Morimoto. Learning parametric
dynamic movement primitives from multiple demonstrations. Neural
Networks, 24(5):493–500, 2011.

[17] K. Mülling, J. Kober, and J. Peters. Learning table tennis with a
mixture of motor primitives. Proc. of the 10th IEEE-RAS Intern. Conf.
on Humanoid Robots (Humanoids 2010), pages 411–416, Dec. 2010.

[18] R. F. Reinhart and J. J. Steil. Efficient policy search in low-
dimensional embedding spaces by generalizing motion primitives with
a parameterized skill memory. Autonomous Robots, 38(4):331–348,
2015.

[19] B. D. Silva, G. Konidaris, A. G. Barto, and B. Castro. Learning
Parameterized Skills. In Intern. Conf. on Machine Learning, pages
1679–1686, 2012.

[20] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud. Learning
compact parameterized skills with a single regression. In IEEE-RAS
Intern. Conf. on Humanoid Robots, pages 417–422, 2013.

[21] F. Stulp and O. Sigaud. Policy Improvement Methods: Between Black-
Box Optimization and Episodic Reinforcement Learning, Oct. 2012.

[22] N. H. Tamar Flash. The Coordination of Arm Movements: An
Experimentally Confirmed Mathematical Model. The Journal of
Neuroscience, 5(7):1688–1703, 1984.

[23] E. A. Theodorou, J. Buchli, and S. Schaal. Learning policy improve-
ments with path integrals. In Intern. Conf. on Artificial Intelligence
and Statistics, pages 828–835, 2010.

[24] M. Toussaint, M. Gienger, and C. Goerick. Optimization of sequential
attractor-based movement for compact behaviour generation. In IEEE-
RAS Intern. Conf. on Humanoid Robots, pages 122–129, 2007.

[25] A. Ude, M. Riley, B. Nemec, A. Kos, T. Asfour, and G. Cheng. Synthe-
sizing goal-directed actions from a library of example movements. In
IEEE-RAS Intern. Conf. on Humanoid Robots, pages 115–121, 2007.

[26] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3-4):229–
256, May 1992.

[27] J. Zhao, Z. Wang, and D. S. Park. Online sequential extreme learning
machine with forgetting mechanism. Neurocomputing, 87:79–89,
2012.

