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Abstract— This paper presents a methodology for controlling
dynamic bipedal walking in a compliantly actuated humanoid
robotic system. The approach is such that it exploits the natural
leg dynamics of the single and double support phase of the
gait. The present approach avoids to close a torque control
loop at joint level. While simulation implementations of torque
based walking for series elastic actuator (SEA) humanoids
display very promising results, several robustness issues very
often appear in the experiments. Therefore we introduce here
a minimalistic controller, which is based on feedback of control
input collocated variables, with the only exception of zero
joint torque control. Reshaping of the intrinsic elasticities by
control is completely avoided. In order to achieve a coordinated
movement of swing and stance leg during single support phase,
an appropriate one-dimensional manifold of the motor positions
is designed. This constrained behavior is experimentally shown
to be compatible with the intrinsic mechanical oscillation mode
of the double support phase. The feasibility of this methodology
is experimentally validated on a human-scale, anthropomorphic
bipedal robotic system with SEA actuation.

I. INTRODUCTION

In contrast to quasi-static walking, where the vertical
projection of the center of mass is always inside the support
polygon, dynamic walking implies mechanical robustness
of the hardware against impacts and high peak forces due
to dynamically changing contact situations. Since motors
and feasible control loops are not sufficiently fast to react
safely against high-frequency impacts, real springs have to be
introduced in the power-train between motors and links [1]
which together with damping present in any physical system
act as low-pass filters on the external forces. In addition to
the robustness properties resulting due to the introduction
of springs, the elastic energy storages can be exploited to
increase the performance and efficiency by exploiting intrin-
sic resonance properties of the plant. However, besides the
beneficial properties, the elastic elements double the order
of the dynamics compared to rigid robots which particularly
turns the control of dynamical locomotion into a challenging
task.

Classical approaches based on the inverted pendulum
model and the zero moment point (ZMP) [2], [3], [4]
are mainly intended for quasi-static walking gaits. These
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Fig. 1. The DLR C-Runner. A human-scaled bipedal robot with series
elastic actuator used for experimental validation of our approach.

approaches apply to fully actuated rigid robots which cannot
handle high peak forces as potentially appearing in dynamic
walking gaits. In order to be able to evolve from static to
dynamic walks, the introduction of elastic actuation elements
helps to reduce the impact forces and offers energy saving
capabilities for weight bearing and the swing motions of
the legs [5]. On the basis of these insights, the conceptual
spring loaded inverted pendulum (SLIP) models [6], [7],
[8], [9] or the compliant hybrid zero dynamics framework
[10] have been introduced. Thereby, the template dynamics
such as the SLIP model or the hybrid zero dynamics need
to be implemented via virtual constraint. These dynamics,
substantially differ from the dynamics of a humanoid robot
with segmented legs having non-negligible mass. Therefore,
the desired SLIP behavior has to be imposed to the plant,
e.g., by feedback linearization [10] or virtual model control
[11], [12], [13]. These robotic control implementations of
legged locomotion hence require to substantially change
the dynamics of the plant, which is restricted by actuator
limitations.

In this work, we first identify and then excite the natural
dynamics of the system during the stance phase. The energy
efficient input into the system along the dominant intrinsic
oscillation mode is then exploited in the single support phase



which is designed by the concept of a one-dimensional man-
ifold. These constraints achieve a coordination of the stance
and swing leg dynamics only by feedback of the control input
collocated motor positions. Thereby, the required motion
of the dynamic walk can be generated without the need
of link-side stiffness reshaping which is shown to usually
result in positive torque feedback. As a result, the dynamic
walking controller is practically feasible as exemplified by
experiments.

The paper is structured as follows: Sect. II introduces the
basic idea of the controller based on simple examples. In
Sect. III the considered model is introduced and the problem
of controlling compliantly actuated systems in highly dynam-
ics tasks is stated. The dynamic walking control algorithm
is introduced in Sect. IV and experimental validation is
provided in Sect. V. Finally, Sect. VI briefly concludes the
work.

II. IDEA

The basic idea of this paper is to exploit the mechanical
robustness and energy efficiency properties of compliant
actuators to achieve dynamic and fast bipedal walking in
a human-like scaled robotic system.

A. Compliant actuators

The basic principle of compliant actuators is to connect
the load to the motor via an elastic element. Thereby, the
assembly is such that the motor including gear-box acts via
a spring on the link inertia. The simplest model representing
a single compliantly actuated joint (in the absence of gravity)
can be expressed as

Mg+ D¢ =K (0 —q) + Text- (D

Herein, M > 0 denotes the inertia of the link, KX > 0 is
the stiffness of a linear spring, € R and ¢ € R represent
the positions of motor and link, respectively, and Tex € R
is an external torque. Since the elastic element of compliant
actuators transmits energy from the motor to the link, an
efficient design avoids friction as much as possible such that
the dissipative torque D¢ (where D > 0) can be assumed to
be concentrated at the link-side.

Note that this simple model (1) will be considered to
explain the basic mechanisms of mechanical robustness and
energy efficiency which are of paramount importance for
dynamic bipedal walking, while the full nonlinear model is
addressed in the controller design and evaluation.

B. Robustness against impacts

Quasi-static walking implies that the zero moment point
(ZMP) is always inside the support polygon, i. e., all trajecto-
ries of the gait are such that the system is statically balanced.
In contrast, dynamic walking consists of stable and unstable
phases. The latter is a result of a transitional under-actuated
rigid-body dynamics during the single support phase which
corresponds mainly to the inverted pendulum dynamics. The
changing contact situations of the dynamic gait lead to im-
pacts which the robotic hardware needs to resist. Compliant

actuators are intrinsically robust against corresponding high
frequency external torques without requiring the motor to
move. This can be seen by inspecting the dynamics (1) under
the change of coordinate 7 = K (6 — ¢), where the motor
position is assumed to be constant, i.e., § = const.:

MK+ DK™ ' 4+ 7 = —Tex . 2

The resulting relation represents the dynamics of a second
order low-pass filter for the external torques 7.. Peaks of
impact forces above the cutoff frequency w. = /K/M
are suppressed such that joint torques 7 reaching the gear-
box do not contain the high peaks of the impact. Thus
robustness against impacts is achieved automatically by the
elastic elements of compliant actuators.

C. Principles of energy efficient motion generation

To achieve energy efficient motion generation, we exploit
very basic control principles which excite the natural dy-
namics of the plant rather than reshaping it by feedback
control. Note that the walking task can be subdivided into the
single support phase (i. e., one foot in contact) and the double
support phase, each displaying a different dynamics. The
former is dominated by the rigid body motion of an inverted
pendulum in the gravity field. The latter basically displays
a multi degree of freedom dynamics structurally equivalent
to the one degree of freedom compliant actuator (1), i.e.,
dominated by the inertial and compliance effects. Switching
the motor position 6 by a constant amount 6 triggered by a
threshold €, on the generalized force 7 which corresponds
to the first oscillation mode of the system [14], i.e.,

9 — sign(7)0  if |7| > e,
0 otherwise

3)

excites and sustains an asymptotically stable limit cycle
of a mass-spring-damper dynamics [15]. The basic idea of
this paper is to exploit this fundamental principle for the
excitation of a natural oscillation in the double support phase
of the gait and then use the gained energy of the oscillation to
”overcome the gravity” of the rigid body motion in the single
support phase. Thus a coordinated transfer of energy between
the two phases is achieved, where each phase performs a
natural motion.

D. Static equilibrium control of intrinsic elasticities

Besides the advantageous properties of mechanical robust-
ness and energy efficiency, the introduction of elasticities
entails an increase in the order of the plant dynamics com-
pared to rigid robot joints which can be taken into account
by considering the motor dynamics'

BO+K(@O—q) =u 4)

in addition to the link dynamics (1). Herein, B > 0 is the
constant inertia of the rotor and the motor torque u € R is
the control input. The additional dynamics® (4) due to the

I'This model implies the classical assumption that the motor and link
inertia are not coupled [16], which is valid for common compliantly actuated
robots with rotational motors and high gear ratio.

21f the control variable of interest is g, the relative degree is four instead
of two as for classical rigid robots.



compliant actuation appearing between the control input u
and the link side states ¢, ¢ makes the control of compliantly
actuated robots a challenging task.

In particular, most of the bipedal locomotion control
approaches such as [3], [11], [12], [2], [4], [13], [17],
[10] etc. assume a high bandwidth control input either
on joint position or joint torque level. However, due to
actuator limitations, model parameter uncertainties, noise,
and unmodeled dynamics, providing such control inputs in
compliantly actuated systems is mainly limited to tasks of
slow dynamics (i.e., low frequency tasks). Since we are
interested in highly dynamic locomotion, the basic idea of
the presented methodology is the use of only control input
collocated variables, i.e., 6, 9, in the feedback loops.

III. PROBLEM STATEMENT
A. Modeling

We consider compliantly actuated bipedal robotic systems
satisfying the free-floating base dynamics

0
oUy(z)"
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00
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Herein, M € R(%+2m)x(m+2m) represents the inertia ma-
trix and Cx € R™12% the generalized Coriolis/centrifugal
forces. The total potential energy of the system comprises the
gravity potential U, € R and the elastic potential U, (0, q) €
R. The latter is assumed to be a convex function in each of
its arguments. The configuration variables of the dynamics
(5) at position level

h

z=|gq (6)
0

are composed of the configuration of the free-floating base
h € R™, the joint positions ¢ € R™ and the motor positions
6 < R", where n, denotes the number of floating base
degrees of freedom and n; the number of (single degree
of freedom) joints. Only the states of the motors 0,9 are
directly actuated via the motor torques u, which are the only
control input of the system. The free-floating base and the
link dynamics can be subject to contact forces A, where J.
is the corresponding Jacobian matrix of the contact points?.
Finally, the term d € R?"% accounts for the generalized
dissipative forces (i.e., friction and damping) which are
present in any mechanical system. They are assumed to
satisfy

(47 6")d(.0.4.6)>0,v4,6 &Y.

The model (5) is introduced in a very general form since
the basic control concepts proposed in this paper apply to

3Note that the size of the contact quantities depend on the number and
dimension of the contact points.

such a general model. To simplify the description, we will
focus on the specific case of our robotic hardware system in
the following. In that case n, = 3 (i.e., the base is free to
translate and rotate in the plane), nj = 6 (i.e., single degree
of freedom joints for the hip, knee, and ankle of each of the
two legs), and the elastic potential is quadratic and such that
each joint is actuated via one motor, i.e.

1
Ue=75(a-0)" K(g-9), )

where K € R6%% is a diagonal and positive stiffness matrix.

B. Avoiding joint torque control

Many locomotion control approaches [12], [13], [17], [10]
could be directly applied to plants satisfying (5), if the
joint torque 7 = K (60 — q) would be a control input of
the system. Since this is not the case, some methods [18],
[19] have been investigated to provide a joint torque input
by closing an inner control loop. However, as conceptually
discussed in Sect. II, closing an inner joint torque control
loop could lead to an unstable behavior or limitations in the
control performance especially for fast impacts and highly
dynamic motions. In the following, this state of affairs will
be exemplified formally for the case of reshaping the stiffness
seen from the joint outputs.

Assume that we want to reshape the intrinsic joint stiffness
of the plant K to the value K4 to match a desired task
dynamics, which is different from the intrinsic one. This
would be achieved by desired joint torques of the form

Tdes = K (edes - Q) = _Kdesq (8)
or equivalently by desired motor positions of the form
Oaes = (I - K 'Kues) q.- ©)

Since Oy depends on g, where g is a system state, Ogeq
varies over time. Therefore, a motor position controller of
the form

u=—Kp (0 — O4e) — Kpb + n(Oges, Oacs,...)  (10)

would be required to achieve a tracking of @4, where
Kp, Kp € RS%S are positive definite controller gains and
n summarize additional feedforward terms. Inspecting the
first term of the control (10):

u:—er-i-Kp(I—Kilees)qa (11)

where (9) has been substituted, it can be immediately seen
that feedback of the control input non-collocated variable g
appears. In particular, if the desired stiffness is chosen higher
than the joint stiffness, i. e., K45 > K, the coefficient of g in
(11) becomes negative, which has the same effect as positive
torque feedback.

The implementation of control input non-collocated feed-
back and in particular positive torque feedback is very
sensitive to unmodeled dynamics and sensor noise. High
frequency disturbances as appearing in dynamic locomotion
tasks drive the systems to their limits which in turn could
lead to an unstable behavior. As such, the approach presented



here will be based mainly only on feedback of control
input collocated states 0,6. The only exception will be
’zero torque” control, i.e., Tg,; = 0, for some 4, which
is uncritical as can be seen from the discussion above.

IV. DYNAMIC WALKING CONTROLLER DESIGN

The dynamic walking controller design is a joint result
of an appropriate double and single support phase control
which both exploit the natural dynamics of the plant on the
one hand, but also take into account the limitations available
in any hardware system on the other hand.

A. Task coordinates

Fig. 2. Task-oriented coordinates for the legs.

Due to the leg segmentation, bipeds and also quadrupeds
are able to move in almost every terrain. As a result of
this leg structure also the actuation takes place in the joints
of the articulated chains of limb segments. However, the
locomotion task can be described and analyzed more con-
veniently in different coordinates than the joint coordinates
(cf. the classical inverted pendulum model [3] or the spring
loaded inverted pendulum model [6], [7], [8], [9]). Thus, we
introduce new task-oriented coordinates which are intended
to simplify the synthesis of the walking controller rather than
to reshape the original dynamics of the plant. This set of
task-oriented coordinates have already partly been used in
our previous work [20], but here a simpler representation is
introduced, which can be chosen in a singularity free way. A
particular extension for the description of bipedal locomotion
tasks is presented.

For a single leg with three segments, we identify the
following relevant leg task-oriented coordinates as shown in
Fig. 2, where the human-inspired assumption of equal thigh
and shank segment lengths is made:

1) the angle of the leg y1 = q1 + g2/2 which represents
the angle between the upper body and the leg axis
connecting the center of rotation of the hip and ankle
joints,

2) the length of the leg axis yo = {(g2), where [ : R — R
is a function of ¢o and which represents the distance
of the hip and ankle joint rotation axis,

3) the angle of the foot w.r. t. the leg axis y3 = g2/2+qs.

Note that the length of the leg axis could be parameterized
by the knee angle itself, i.e., {(¢g2) = ¢o. In that case, the

coordinate transformation y = y(q) is linear and of course
singularity free.

left leg

right leg

Fig. 3. Bipedal task-oriented coordinates for the hip joints which decouple
upper body orientation and the relative leg angle. The angle of the stance
leg w.r.t. the vertical line 3 parameterizes the single support manifold.

On the basis of this leg configuration representation, we
can introduce coordinates for the bipedal system which
decouple the step length (i.e., the relative leg angle) and
orientation of the legs w.r.t. the upper body (see, Fig. 3).
Therefore, assume as a first step that the right leg configu-
ration is described by the coordinates (y1,ys2,ys) and the
left leg configuration by (y4,ys,ys). These configuration
variables can be composed as the change of coordinates

(41 Q1+ %QQ
Y2 ) q2
_ |y _ |22t g 12
v(@) Y4 4+ 30 (12)
Ys a5
Yo %% + g

between the joint angles g and the leg task-oriented coor-
dinates y. Note that in this representation, the coordinate
transformation for each leg can be considered separately, i. e.,
Y1.3=Y1.3(q1. 3) and y, s =94 _6(q4._) for the right
and left leg, respectively. Then in a second step, we introduce
task-oriented coordinates at a bipedal level. Therefore, we
define the relative angle between the leg axes as

a:y4—y1
2

and the angle between the upper body and the mean angle
of the two leg axes as

13)

v = Y —;—y4 . (14)
The transformation between the leg and bipedal task-oriented

coordinates then takes the form

o Ya—Y1
¥ y1§y4
V4
zw=|2= 5 (15)
25 Y5
26 Y6



The leg task-oriented coordinates (12) are only introduced
as an intermediate derivation step. The complete transforma-
tion between the joint and bipedal task-oriented coordinates
results by the composition of the mappings (12) and (15):

3 <Q4 +i—q1 — le)

Y 5 (fh + 59 +q+ 5(]5)
z3 q2
z(q)=zoylg)=| | = Lo + g3
2
z5 qs
26 %% +ge
(16)

These coordinates will form the basis for the controller
design presented in the following.

B. Modal motion identification and control

In the double support phase, if the motors hold a constant
position, the compliantly actuated system can be deflected
w.r.t. its equilibrium position such that a natural oscillation
occurs. The oscillation modes exist, in the form defined in
linear theory, only for small deflections. However, the first
oscillation mode proves to be stably excitable in practice
also for oscillations reaching far into the nonlinear regime.
Therefore, given an appropriate double support phase con-
figuration [21], and given a stiffness and inertia distribution,
the system displays a first oscillation mode which can be
exploited to initiate the swing phase of the walking task (see
the attached video for an intuitive visualization).

The dominant oscillation modes of the system can be
identified by an experiment as described above, where the
motors hold a constant position and the motion of the joints
is observed. Then, a principal component analysis of the
observed data in response to an external perturbation*

q(1)”

q2)”
Q=] |. (17)

a(N)*
where each of the N rows represents an observation of the
oscillation, reveals the averaged direction of the intrinsic
mechanical oscillation modes [22]. Thereby, each of the
principal vectors corresponds to an oscillation mode. The
principal direction with the highest variation, which will
be denoted by wy € R™, corresponds to the dominant

oscillation mode of the plant. This modal motion can be
excited and sustained by the adaptive switching law [23]:

O4es = 00 + wh, (18)

where 0 represents the initial configuration of the motors
and the generalized modal coordinate

_ sign(n)by if 7| > €y |
bw = { 0 otherwise (19)

4The oscillation modes are an intrinsic property of the plant. Thus, all the
following procedures can also be performed in the task-oriented coordinates.

switches with the amplitude O, if the generalized modal
force 7, = w’ T overshoots the threshold e, > 0. Note
that thereby given the initial guess wg, the modal weights
can be adapted based on the dynamical law
w = ky, (qu) [q — (qu) w] , (20)
where w(t) and q(t) both depend on time and 0 < ky, < 1
represents an adaptation gain [24].
This fundamental principle of natural oscillation excitation
can be used to input the kinetic energy required to perform
the initial step of the walking gait in a portion wise manner.

C. Single support phase manifold

The single support phase of the walking gait has two main
functionalities: (i) the total center of mass has to be borne via
the stance leg and transported forward in walking direction
and (ii) the swing leg has to be brought to the configuration
of the stance leg at the beginning of the double support
phase. While (i) can be represented by the dynamics of an
inverted pendulum, (ii) could be described by the dynamics
of a regular pendulum with the same swing frequency as the
inverted pendulum of the stance leg. The coordination of the
stance and swing leg motion can be achieved by introducing
a constraint which determines the swing leg configuration
by means of a parameter describing the state of the stance
leg inverted pendulum at position level. Such a parameter
could be the absolute angle of the stance leg axis (i.e.,
the angle between the leg axis and the vertical line, see,
Fig. 3). If it is assumed that the stance foot stays flat on
the ground, then the angle of the position of the ankle joint
can be chosen as parameter. Due to the general concept of
avoiding feedback of control input non-collocated variables
as discussed in Sect. III-B, the manifold is designed in terms
of motor positions which will be denoted by putting a bar on
the transformed variables (cf. Sect. IV-A), i.e., z := 2(0).
Thus, the parameter of the one-dimensional submanifold
of RS is either f = 24(0) = 24 or B = 2(0) = %
depending on whether the right or the left leg is the stance
leg, respectively. The resulting constraints take the following
form:

Qdes = ﬂ
'_Ydes = *hS,des
_right Z3.des = PO
z = _ 21
des Z4des = 24t upg @D
25,des = pOj’ ,0(5)
Z6,des = _6

if the right leg (with joint variables (g1, g2, ¢3)) is in stance
and

Qes = _B
"_Ydes = *hS,des B
left Z3des = po+p(B)
Zi. = > = 22
des Z4,des = - @2)
Z5.des = PO
Z6,des = 26 T Up



if the left leg (with joint variables (g4, g5, ¢¢)) is in stance. In
(21) respectively (22), there appear several constants which
parameterize the step:

e N3 ges is the absolute desired orientation of the upper
body,
e po > 0 is the initial knee flexion, and
e up is a constant torque offset of the stance foot ankle
joint which is realized by a constant deflection of the
springs.
Moreover, in (21) respectively (22) the function

p(B) = Phiexion COS (max (min (Bozoﬂ'/2, ao) , —ao)) (23)

which is responsible to ensure ground clearance of the swing
leg, is introduced. This function depends on the additional
parameters:

e ap > 0 represents the nominal step length angle and
e pPfiexion > 0 is the additional knee flexion required to
ensure ground clearance.

Note that zZ4g4es = 24 + upg in (21) respectively Zgges =
2 + up in (22) implements a “zero torque” control in the
ankle joint of the corresponding stance leg. Thereby, ug is an
offset on the “zero torque” which can be used to overcome
friction and input the energy required to sustain the gait.

D. Finite state machine

The gait is controlled by a finite state machine which
is triggered based on states of the plant at position level.
The output of the state machine are desired motor positions
Oues = 2z '(Z4es) Which are fed as desired values to the
motor PD controller (10) of Sect. III-B.

The state machine comprises two parts: step initiation
and continuous walking. The former part implements the
modally adaptive limit cycle control (18)—(20). This part is
responsible to input the energy required to perform the initial
step in a resonance like manner. The second part of the state
machine is depicted in Fig. 4. This part of the state machine
exploits the symmetry property

Zi (=) = 26X(5)
at the boundary 3 = —ayq of the left respectively right leg
single support manifold. Under the condition that ug = 0
at the transition between the single support manifolds, the
desired motor positions Oges = 27 '(Zges) are continuous
over the complete gait cycle, if the motor position of the
corresponding swing leg (i. e., Z4 respectively Zg ) is tracked
appropriately®. This can be shown by analyzing the finite
state machine that controls the walking gait cycle step-by-

step. Therefore, assume that the left leg is initially in stance
(cf. state on the bottom of Fig. 4):
o Left stance phase: the motion of B(05,05) evolves from
ag to —ap. When 8 (05, 5) hits the switching boundary
given by (05, 0s) = —«p, the desired motor positions

(24)

SNote that the requirement on the tracking of the swing leg motor
positions is rather weak, as the load on this joint is mainly due to its own
leg weight.

touchdown right

- right stance phase
B — Z4 B < —ap

Zright

2 des

retraction retraction

Zdes = const Zges = const

left stance phase
B < —ao
left touchdown left
des ,B — Zg

Fig. 4. Finite state machine to control the gait cycle of walking.

are held constant at their current value at the switching
instance.
o Right leg retraction: During this state

Qiges = Qo
Ydes = _h3,des
= Sleft/ Z3.des = PO
Zdes — =% = —Qp) = _
s des <5 ) Z4,des = Qo
Z5,des = po
Z6,des = —Q
(25)
holds. Note that p(3 = —ap) = 0 has been taken

into account (cf. (23)). The touchdown of the actual
(right) swing leg triggers the interchange of the leg
functionalities, i.e., B = —qg — Z4, where z; = «g
as can be seen in (25).

o Right stance leg: It holds

Qdes = QO
Ydes = _h3,des
- _right/ 3 ES,des = po
Zhes = Z4es (B =) = (26)
des Z4,des = Qo
25,des = pPo
Z,des = —Qg

at the entry time instance of this state.

By comparing (25) and (26) it can be directly seen that
the transition from the left to the right stance leg leads to
continuous desired motor positions, under the assumption of
ideal motor position tracking, i.e., Z4 = Zides and Zg =
267d656. The transition from the right to the left stance leg
behaves analogously. Therefore, we may conclude that under
the assumption of ug = 0, the desired motor positions are
continuous for the entire gait cycle.

Remark 1: The step length and consequently the locomo-
tion velocity can be controlled indirectly via the parameter
Qp.

Remark 2: The duration of the double support phase can
be increased by replacing the touchdown event by triggering

SNote that during the single support phase, the corresponding ankle joint
is controlled to “zero torque” and therefore the requirement of ideal tracking
is rather weak.



the transition from the retraction to the following single sup-
port phase based on the generalized modal force 7, = w’ T,
i.e., if 7y > €y is satisfied. This would lead to a motion along
the oscillation mode of the double support phase as discussed
in Sect. IV-B. Thereby, the above continuity properties of the
desired motor positions are maintained.

Finally, it should be noted that choosing the parameter
ug # 0 leads to a discontinuous switching of the desired
motor positions z4.s Which can be used to inject energy for
a motion along the single support manifold.

V. EXPERIMENTS

The goal of the experiments is twofold: first, we want
to show that our system displays intrinsic mechanical os-
cillation modes which can be exploited to initiate a step
and which are compatible with the proposed single support
phase manifold. Secondly, we aim at validating the proposed
dynamic walking control methodology on a real hardware
system.

The hardware platform which has been used for the
experiments is the DLR C-Runner shown in Fig. 1. It is
a planar guided (i.e., the upper body has two translational
and one rotational degree of freedom), human-scaled bipedal
robot with series elastic actuators. The total body mass is
62kg and the outstretched leg length is 0.8 m, where the
thigh and shank segment lengths are 0.4 m. Thereby, thigh,
shank, and foot have a segment mass of 5.46kg, 5.42kg,
and 1.31kg, respectively. Each of the hip, knee, and ankle
joints are actuated by a geared electrical motor including
a gearbox with transmission ratio of 80, reflected output
inertia of 1.6kg/m?, maximum output torque of 200 Nm,
and maximum output velocity of 5rad/s. The links are
actuated by these drive-units via linear springs with stiffness
500 Nm/rad, 700 Nm/rad, and 500 Nm/rad for hip, knee, and
ankle joint, respectively.

a) Experiment I: In the first experiment the system has
been excited to perform a natural oscillation in a double
support configuration using the modally adaptive limit cycle
controller of Sect. IV-B. When the oscillation had reached a
steady-state, a step based on the approach of Sect. IV-C has
been triggered manually by activating a corresponding torque
threshold. After performing a complete step, the limit cycle
controller was activated again and the whole procedure was
repeated. The horizontal motion of the upper body is depicted
in Fig. 5. This experimental result’ reveals that the system
displays a natural oscillation mode which is compatible with
the single support manifold and can be applied to initiate a
dynamic step.

b) Experiment 2: The second experiment shows the
continuous dynamic walking control introduced in Sect. I'V-
D. Thereby, the gait has been initiated by the modally
adaptive limit cycle controller of Sect. IV-B. The resulting
horizontal motion of the upper body is shown in Fig. 6.
Herein it can be seen that the dynamic walk approaches an
average velocity of about 1m/s. As depicted in Fig. 7, the

7See also the video of the experiment attached to this paper.
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Fig. 5. Phase plot of the horizontal upper body motion. Step initiating
modal oscillations and dynamic steps are presented. As the energy of the
modal oscillation can be exploited to perform the step, the compatibility of
the step and the natural dynamics of the system can be concluded.
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Fig. 6. Phase plot of the horizontal upper body motion. The forward
velocity of the upper body of the dynamic walking experiment on the C-
Runner hardware is shown over the position. It can be seen that an average
velocity of about 1 m/s is achieved

single support manifold parameter 3(6) is bounded by the
control parameter g which indicates the ability to use ag
for controlling the locomotion velocity. Furthermore, Fig. 8
shows the desired and actual motor positions in terms of
the bipedal task-oriented coordinates (15). Thereby, it can be
seen that the only discontinuity in the desired motor position
arises due to the energy injection ug < 0 along the single
support manifold. Additionally, it can be seen that our motor
position tracking assumption of Sect. IV-D is fulfilled to a
large extent. In summary, this experiment is a clear proof of
concept of the control methodology presented in this paper®.

VI. CONCLUSION

A methodology to control bipedal dynamic walking in
a robotic system with series elastic actuators is proposed.
The controller implements mainly feedback of control input
collocated variables and is therefore robust against unmod-
eled dynamics and noise. The main part of the controller
is a one-dimensional single support manifold implemented
on the motor side. The natural dynamics of the plant in the
double support phase is shown to be compatible with this

8A video showing the dynamic walking experiment is attached to the
paper.
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Fig. 7. Time evolution of the single support manifold parameter 3(8)

during the dynamic walking experiment on the C-Runner hardware. It can be
observed that 3(8) is bounded by the control parameter ccg which influences
the step length of the gait.

%AAAAA&

0.5 °

! 4
| \.//_\\J/—\\J

1

motor positions [rad]

-0.5

—1

11 12 13 14 15
time [sec]
Fig. 8. Desired and actual motor positions in terms of bipedal task-
oriented coordinates (15) of the dynamic walking experiment on the C-
Runner hardware. The desired values are down-sampled at 100 Hz. The
discontinuous switching for inducing energy along the single support
manifold can be observed for Z4 ges and Zg ges.

single support manifold in a sense that the modal oscillation
can be exploited to excite a motion along the single support
manifold. A rigorous proof of concept of the approach
is given by experiments on a human-scale bipedal robotic
hardware.
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