
Learning Deep Movement Primitives using Convolutional Neural
Networks

Affan Pervez, Yuecheng Mao and Dongheui Lee

Fig. 1: In a sweeping task, the position of the trash (colored
circles) can be considered as the task parameter, governing
variations in the demonstrations.

Abstract— Dynamic Movement Primitives (DMPs) are widely
used for encoding motion data. Task parameterized DMP (TP-
DMP) can adapt a learned skill to different situations. Mostly
a customized vision system is used to extract task specific
variables. This limits the use of such systems to real world sce-
narios. This paper proposes a method for combining the DMP
with a Convolutional Neural Network (CNN). Our approach
preserves the generalization properties associated with a DMP,
while the CNN learns the task specific features from the camera
images. This eliminates the need to extract the task parameters,
by directly utilizing the camera image during the motion
reproduction. The performance of the developed approach is
demonstrated through a trash cleaning task, executed with a
real robot. We also show that by using the data augmentation,
the learned sweeping skill can be generalized for arbitrary
objects. The experiments show the robustness of our approach
for several different settings.

I. INTRODUCTION

Programming by Demonstration (PbD) is an active re-
search area in robotics where a skill is acquired through
human demonstrations. The aim of learning is not only
the exact reproduction of the demonstrations, but also the
generalization to unseen scenarios. In PbD the teacher is
not assumed to have expert knowledge in robotics or pro-
gramming. This provides a great potential for industrial
applications, as it can help to reduce the setting up time
of an assembly line.

A Dynamic Movement Primitive (DMP) is a way to rep-
resent motor actions [15]. It can encode a discrete/rhythmic
movement. The only input to a DMP is a clock signal, for
which it generates the corresponding acceleration command,
for motion execution. A skill encoded by a DMP can be
further refined by using Reinforcement Learning (RL) [5].
External environmental variables can affect a motion. For
example in a trash cleaning task, the position of the trash
can be considered as an important factor, which can modify

All authors are with Human-centered Assisitve Robotics, Technical
University of Munich (TUM), Germany. Dongheui Lee is also with the
Institute of Robotics and Mechatronics, German Aerospace Center (DLR).
{affan.pervez,yuecheng.mao,dhlee}@tum.de

Feature
extraction soft-argmax

T Fully
connected

layers
F

DMP

clock signalCNN Section III.A.3

Section II

Camera

Rotation +
planar movement

Fig. 2: An overview of the proposed Deep-DMP (D-DMP)
architecture.

the behavior of the generated motions, as shown in Fig. 1.
DMP in its original form, does not consider such external
factors, which are referred as task parameters (T ) in this
work. For task specific learning, we firstly want to learn
from multiple demonstrations executed for different task
parameters. Secondly, for adapting the motion to a new task,
the task parameters should also be passed as an input along
with the clock signal.

Task specific variations of DMPs are considered in [2],
[9], [12], [16], [17]. A two-step learning process is adapted
in [2], [17]. In the first step, a mapping from task parameters
to the DMP parameters is learned. In the second step, the
inferred DMP parameters are used for motion generation.
The mapping in the first step can either be learned by locally
weighted regression [17], or by a function approximator such
as Gaussian process regression [2]. In a one-step learning
process, the mapping from task parameters to the forcing
terms of the DMPs is learned directly by using a suitable
function approximator, eliminating the need to follow the
two-step learning procedure [16]. In the task parameterized
DMP (TP-DMP) approach [12], learning can be performed
with a few demonstrations by using the Gaussian Mixture
Model (GMM) based direct encoding of the forcing terms.

The main limitation of the task parameterized DMP ap-
proaches is that the task parameters have to be provided
during the motion reproduction. This is usually done by using
the dedicated vision systems, specifically designed for the
targeted problems. For instance a blob detection algorithm
is used for tracking the position of a ball [5]. In [12]
markers are used for extracting positions of objects in the
environment. The use of such dedicated systems limits the



use of these approaches for real world scenarios. Levine et
al. have shown that Convolutional Neural Networks (CNNs)
can be used for generating motor actions, by extracting useful
features directly from camera images [8]. Their experiment
consists of learning robotic grasping from monocular images
by using RL. They used 800,000 grasp attempts executed
over 14 robotic manipulators. The amount of resources
needed and the learning time makes the applicability of such
an approach infeasible for real world scenarios. If an opti-
mizer can provide trajectories for solving the manipulation
task, then it can be used to guide the policy search of a
CNN to a good local optima and to speed up the learning
procedure [1], [7]. A drawback of [7] is that the task has to
be first formulated as an optimization problem and requires
the user to define a cost function for the executed actions.
These constraints limit the applicability of their approach to
complex tasks. A PbD approach based on a combination of
convolutional auto-encoders and a fully connected neural net-
work is presented in [18]. A shortcoming of their approach
is that it cannot achieve the generalization properties which
are typically associated with a DMP, for instance temporal
rescaling of the motion and the variation of the goal position.

In this work, we present a PbD approach which com-
bines a DMP and a CNN. By doing so, we preserve the
generalization aspects of the DMP model, while the task
specific features are automatically learned by the CNN. A
brief overview of the proposed approach can be visualized
in Fig. 2. In our approach, camera images are directly used
during motion reproduction. This eliminates the need to
provide task parameters during the motion reproduction. We
also show the robustness of our approach by evaluating its
performance for different objects, for extrapolating beyond
the demonstrated region, for temporal rescaling of the mo-
tion, for changing the goal position, for unseen object and
against disturbance in the images. Our approach can learn
from relatively few number of demonstrations and as the
model is learned through demonstrations, we do not need to
formulate the task as an optimization problem, as in [7].

II. MOVEMENT PRIMITIVES

A. Dynamic Movement Primitive

In this work we consider the DMP formulation presented
in [10]. Each degree of freedom (DoF) is encoded by a
separate DMP. A canonical system acts as a clock. The
different DoFs are synchronized by using the common clock
signal

τ ṡ = −αss (1)

The parameter s is usually initialized to one and it monoton-
ically decays to zero, τ is the temporal scaling factor while
αs determines the duration of the movement. The canonical
system drives the second order transformed system:

τ v̇ = k(g − x)− dv − k(g − x0)s+ skF(s) (2)
τ ẋ = v

where x0 and g are start and goal positions respectively.
The damping term d is set such that the system is crit-

ically damped, while k acts like a spring constant. The
learning of forcing term F(s) allows arbitrarily complex

movements. F(s) is defined as

K∑
i=1

ψi(s)ωi

K∑
i=1

ψi(s)

where ψi(s) =

exp(−hi(s− ci)2) are Gaussian basis functions with spread
hi, centers ci and adjustable weights ωi. To encode a move-
ment, we first register x(t) and its first and second derivatives
v(t) and v̇(t) respectively at each time step t = 0, . . . , T .
Then, for a suitable value of τ , we integrate the canonical
system and calculate the target value Ftar(s) for each time
step

Ftar(s) =
v̇τ − k(g − x) + dv + k(g − x0)s

sk

Learning is performed to minimize the error criterion J =∑
s (Ftar(s)−F(s))

2 which is a linear regression problem
and the weights ωi are learned with weighted least squares.

B. Task Parametrized (TP)-DMP

In the TP-DMP, the task specific variables are also passed
as an input along with the clock signal [12]. This means
that the forcing terms are now a function of clock signal and
the task variables, i.e. F(s,T ). The dependency between
the clock signal, the task parameters and the forcing terms
is encoded by using a Gaussian Mixture Model (GMM).
A GMM with K components is parameterized by θ(K) =

{πk,µk,Σk}Kk=1, where π1, . . . ,πK are mixing coefficients
with constraints πk > 0 and

∑K
k=1 πk = 1, µ1, . . . ,µK

are means and Σ1, . . . ,ΣK are covariance matrices. A data
scarcity problem arises when fitting the GMM in TP-DMP.
This problem is solved by using an Expectation Maximiza-
tion approach presented in [12]. After encoding data with a
a GMM, the forcing terms for the given clock signal and
task parameters is synthesized by using Gaussian Mixture
Regression.

III. PROPOSED APPROACH

A. Deep-DMP

As stated earlier, the forcing term of a DMP can be
modeled with any suitable function approximator. In this
work, we model it with a CNN. By doing so we preserve
all the useful properties associated with a DMP model,
i.e. temporal and spatial rescaling properties as well as

Fig. 3: Schematic of TP-DMP (above) and D-DMP (below).



Fig. 4: Selected real objects (left) for generalization and their
cropped images (right) for data augmentation .

the guaranteed convergence to a goal position, while the
generalization capabilities associated with feature learning
are exploited by using a CNN. Since we employ deep
learning, we call this formulation Deep-DMP (D-DMP).
Compared with TP-DMP, the camera images are directly
processed by the D-DMP, eliminating the need to extract
the task parameters during motion reproduction, as shown in
Fig. 3.

1) Data collection: Kinesthetic teaching is often used for
data collection in PbD [6], [13]. In kinesthetic teaching, a
teacher physically holds the robot’s end-effector for gen-
erating the required motion. Since we want to use camera
images, if a human is always present in the images during
demonstrations, a CNN can learn human specific feature.
Now during motion reproduction, if the human is not present
in the image, then it can result in a failure of the task during
reproduction phase [7], [8], [18]. Alternatively a human
can provide teleoperated demonstrations as in [11], [18].
Since generating teleoperated demonstrations can be a time
consuming and a tedious task for a human operator, we
use an already trained TP-DMP model for collecting the
demonstrations. For the task considered in this paper, see [12]
for details about data collection and training process of the
TP-DMP. The dataset consists of 50 motions executed for
different task settings. The entire data collection process by
using TP-DMP took less than one hour. Each motion has 480
samples, which contain the clock signals, the forcing terms
of the DMPs, the RGB images and the task parameters. We
select 45 motions (21600 data-points) for the training set
while the remaining 5 motions (2400 data-points) are used
for validating the learned model. This is lower than 800,000
grasp attempts in [7], at least 156 execution trails in [8]
and 24, 500 and 3500 data-points in training and validation
sets respectively in [18]. RGB images were captured with a
Kinect Xbox 360 camera. It has a resolution of 480 × 640
pixels (height×width). The left parts of the images contain
the robot’s base and are irrelevant for the task. We keep the
right 480 × 480 pixels of the images, as they are relevant
for the task and then resize them to 200 × 200 pixels for
computational efficiency.

2) Data augmentation: In this work, we consider the
position of an object in an image as a task parameter. Position
of objects are often important when performing manipulation
or reaching tasks. Here we show that if the task parameters
are defined as the position of an object, then by using the
proposed data augmentation approach, the learned CNN can

(a) Background (b) Addition (c) Replacement

Fig. 5: Data augmentation process.

generalize for various different objects. For TP-DMP, this
position is extracted by placing a marker on the object.
Our data augmentation process consists of first removing the
marker from the image. This is done by covering the marker
with a white patch of similar color as that of the table, as
shown in Fig. 5a. These marker-less images are now used as
the background images for data augmentation. Now the data
augmentation process is used for two purposes. Firstly for
pretraining the network to predict the position of the objects
in the images, by inserting the RGB image of a randomly
selected real object, at a randomly selected position, as
shown in Fig. 5b. Secondly for learning to generate the
motions for the real objects, by replacing the marker with
a real object in the image, as shown in Fig. 5c. The images
of the four objects that are being used for data augmentation
can be visualized in Fig. 4. With data augmentation, the
learned model generalizes for multiple real objects, without
any need of detecting their positions. The objects positions
have to be only provided during the training phase while
the learned CNN directly uses the camera images during the
motion reproduction, eliminating the need to extract the task
parameters.

3) Network architecture: The architecture of our CNN is
illustrated in Fig. 6. It consists of nine layers, namely the
input layer for image, three convolutional layers, a reduced
layer of feature maps, input to fully connected layers, two
fully connected layers and a linear output layer. The neural
network takes a RGB image and a clock signal as inputs and
predict the forcing terms of the DMPs. The input image has
120000 dimensions (200×200×3) as compared with a single
value of the clock signal. The image vector can dominate
over the clock signal due to its high dimensionality. To avoid
this domination, the clock signal is concatenated with the
extracted task parameters and then passed as an input to
the fully connected layers. This is similar to what Levine et
al. did with robot’s state in their approach [7]. In order to
avoid the vanishing gradient problem and for learning a good
feature representation, the convolutional layers are pretrained
to predict the object’s position in the image.

Smaller sized kernels as in [3] can capture fine details from
the image. Hence we use smaller kernels of size 3× 3, with
the stride length of 1 and SAME padding, as shown in Fig. 6.
After convolutional layers we use a variant of soft attention
mechanism called soft-argmax, which is introduced in [7].
The soft-argmax ’softpicks’ out the position or indices of
the maximum value within a matrix. It transforms a feature



Input image
200× 200× 3

conv 3× 3 stride 1
+

ReLU

200× 200

8

conv 3× 3 stride 1
+

ReLU

200× 200

16

conv 3× 3 stride 1
+

ReLU

200× 200

32

reduce mean

FC-32
+

ReLU

FC-32
+

ReLU

Output:
Forcing terms

x

y

clock signal

soft-argmax

Feature extraction

Fully connected layers

Task parameters

Fig. 6: Architecture of CNN.

map into a probability matrix, then the probability matrix
is element wise multiplied with the position matrices. The
position matrices for x and y directions are defined by Eq. (3)
and (4)

Mx = (


0 0 · · · 0
1 1 · · · 1
...

...
. . .

...
199 199 · · · 199

− 100.0)/100.0 (3)

My = (


0 1 · · · 199
0 1 · · · 199
...

...
. . .

...
0 1 · · · 199

− 100.0)/100.0 (4)

Now the output positions are calculated as x =∑
k,l

(softmax(F ) ◦Mx)k,l, y =
∑
k,l

(softmax(F ) ◦My)k,l

where ◦ denotes element wise product or Hadamard product,
k, l = [0...199] and F is a single feature map, which has to
be flattened before softmax, the result of softmax has to
be reshaped back to 200× 200.

Unlike [7], we add an additional reduce mean operator
before soft-argmax. The soft-argmax operator is executed
on the single reduced feature map, so that it outputs only
one position pair (x, y), which can be concatenated with
clock signal for further training. The reduce mean operator
is defined as F (i, j) = (

∑
n
Fn(i, j))/n where F denotes the

reduced feature map, Fn is a single feature map in the last
convolutional layer, n = [1...32], and i, j = [0...199] are the
indices of pixels. All activation functions are Rectified Linear
Unit (ReLU) in our neural network. The fully connected
layers are pretrained with the positions of the marker and

the clock signals as inputs and with the forcing terms as
outputs. Once both the convolutional layers and the fully
connected layers are pretrained, the pretrained weights are
updated further with end-to-end training.

We use Adam optimizer for updating the weights of the
CNN [4]. The first moment is set to be 0.9 and the second
moment is set to be 0.999. The epsilon is set to be 1e-8 for
numerical stability. The pixels intensities and the predicted
task parameters are rescaled within the interval [−1, 1). The
learning rate for pretraining convolutional layers of both
object with marker and the real objects is 0.001. The learning
rate for pretraining fully connected layers starts at 0.01 and
ends at 0.0001, and is decayed by half after every 20 epochs.
The learning rate for doing end-to-end training starts at 0.001
and ends at 0.0001. It is decayed by half after every 3 epochs.
The loss function for all training steps is the mean squared
error and the batch size for updating the weights is 100.
We trained our CNN by using TensorFlow v1.0 on GPU
GTX1060 6G and it takes about 4 hours to train one model.
The forward pass of the CNN takes about 20ms with python
2.7 on GTX1060 GPU. For avoiding the overfitting problem,
we validate our model after every 50 steps.

IV. EXPERIMENTS AND RESULTS

The proposed method is tested in a sweeping task. The
goal of this task is to generate robot motion for moving a
trash into the dustpan. The task parameters are defined as
the position of the trash in the image. The position of the
trash governs the movement of the robot’s end-effector. For
a new trash position, the robot should be able to generate a
trajectory for moving the trash to the collection point. Three
DMPs are learned, two for generating a planar motion and



Robot Camera

Client
DMP

Server
CNN

request: clock signal

response: forcing terms image

Fig. 7: Communication interface: interaction between DMP
model and CNN using Server-Client pattern on ROS.

one for encoding the rotary motion about the z-axis of the
end-effector, as shown by the blue arrows in Fig. 2.

A. Experimental setup

The experiments are conducted by using a KUKA light
weight robot IV+. An already trained TP-DMP is used for
collecting demonstrations for the D-DMP. For learning the
TP-DMP, four demonstrations are collected via Kinesthetic
teaching, by setting the robot to gravity compensation mode.
For recording the position of the trash, a marker is attached
on the object. The marker is tracked with Kinect RGB-D
camera by using Robot Operating System (ROS) wrapper for
Alvar, an open source augmented reality tag tracking library1.
By using ROS a Server-Client communication interface is
built between the CNN and the DMP as shown in Fig. 7.
The client PC (Personal Computer) on which the DMP model
is running has to control the robot in real time. In order to
avoid the computational burden on the client PC, the CNN is
executed on another high performance server PC. The server
PC receives the clock signal from the client PC. It then passes
the current image and the received clock signal to the learned
CNN, which then calculates the required forcing terms. The
predicted forcing terms are then sent back to the client PC.
Finally, the DMP uses the received forcing terms for the
motion execution.

B. Feature maps

An example of the feature maps after ReLU operation of
the three convolutional layers is shown in Fig. 8. Since we
do not decrease the size of feature maps, the feature maps
of each convolutional layers are human readable. Figure 8b
shows one of the feature maps after the third convolutional
layer. The target object (marker) has a strong activation in
the reduced feature map. Visually all feature maps look very
similar after the third convolutional layer and have only
minor differences. Although we can directly pass one of these
feature maps into the soft-argmax operator for predicting the
position of the object, we use the mean value of these feature
maps for making the prediction more robust.

C. Evaluation

Now we calculate the errors and accuracies of predicted
object’s positions in the training and the validation set. The

1http://wiki.ros.org/ar_track_alvar

Marker Real Objects
horizontal vertical horizontal vertical

Training Error 1.87 4.56 3.23 8.28
Accuracy 99.07 97.72 98.39 95.86

Validation Error 1.83 4.39 3.44 8.36
Accuracy 99.09 97.81 98.28 95.82

TABLE I: Errors (in pixel) and accuracies (%) of predicted
positions in image coordinate system.

unit of error is pixel and the accuracy is stated in percentage.
The (x, y) values are rescaled from range [−1, 1) to [0, 200)
for calculating the error in pixels. Mean absolute error is
calculated for the training set and the validation set. Errors
in horizontal and vertical directions are evaluated separately.
The resolution of the reduced feature map is 200 × 200,
so we use 200 pixels as reference value and calculate the
accuracy of predicted position by using Eq. (5). The errors
and accuracies of the pretrained networks for predicting the
positions of the marker and the objects are given in Tab. I.

Accuracy =
(
1− error/(200pixels)

)
× 100 (5)

In order to check the performance of our CNN on real
robot, the trained model is evaluated in different scenarios.
At first, we tested that our CNN has learned the correct
behavior from the collected dataset and can reproduce the
results in [12]. We evaluate our model with the marker
placed over the object. The successfully executed motion
with images at different time steps and their corresponding
reduced feature maps are visualized in Fig. 9a. The feature
maps have high activation at the marker. The red dot in the
feature maps represent the predicted task parameters, which
in our case is the object’s position in the image. Since the
TP-DMP can be used for generating the forcing terms for an
object with the marker, they are also being generated with
the TP-DMP, while the motion is being executed by the D-
DMP. Figure 9b shows the generated forcing term from the
two models, for motion along x-axis. We can see that the
graph of the predicted forcing terms from the D-DMP is
smooth and closely matches to the graph of the TP-DMP.

Now we run the robot with objects without markers. We
evaluate the performance of our approach for an object,
which is not present in the training data. Since the object
specific features are learned by the CNN, the learned skill can
be generalized for the objects that look similar to the objects
in the training data. The successfully executed motion for a
new object can be visualized in Fig. 10. The red rectangle in
the left most image in Fig. 10 depicts the range of the starting
positions of the trash in the collected dataset. It can be seen
in image sequences that the learned CNN can generalize for
real object, even when they are placed outside the range of
the training data.

By combining DMP with a CNN, we inherit the desirable
attributes associated with a DMP model. For instance Fig. 11
shows that the motion can adapt for a change in the dustpan
position, by changing the goal value g in Eq. (2). The speed
of the executed motion can be changed, by changing the



(a) Feature maps after first convolutional layer.

(b) One feature map after third convolutional layer. (c) Feature maps after second convolutional layer.

Fig. 8: Feature maps from the three convolutional layers.

(a) The second row represents the reduced mean feature map, with the red dots showing
the predicted marker position by the CNN.

(b) Generated forcing term for motion in
x-axis by the TP-DMP (red curve) and the
D-DMP (blue curve).

Fig. 9: Motion execution with a marker on the object.

Fig. 10: Motion execution for an object not used during the training. The red rectangle represents the bounding box of
the initial trash positions in the collected dataset. The object is placed outside the range of training data for evaluating the
extrapolation performance.

Fig. 11: Motion execution for a different goal position.

decay rate αs in Eq. (1) (see attached video for results).
We also evaluate the performance of our model against the

disturbance in the image, while changing the position of the

sponge in real time. The results are shown in Fig. 12. The
sponge is pulled and pushed by a human hand during the task
execution. The hand was never observed by the CNN in the



Fig. 12: Robust motion execution under perturnation (above). Corresponding reduced mean feature map (below).

training data and can be termed as a disturbance in the image.
The end-effector of the robot follows the changing position
of the sponge and neglects the disturbance in the image, by
successfully pushing the sponge into the dustpan. A strong
activation of the object of interest (sponge) can be visualized
in the extracted feature maps. Since the shape and color of
the hand is very different from the objects in the training
data, the performance of the CNN remains unaffected by its
introduction in the image.

V. CONCLUSION AND FUTURE WORK

This work proposes D-DMP, which is learned by model-
ing the forcing terms of a TP-DMP with a CNN. Existing
approaches for learning TP-DMP usually require special-
ized vision systems or markers for extracting task specific
variables. In contrary, task specific features are learned by
supervised learning in our approach. In our approach the
task parameters are only required during the training phase.
After learning, the camera image is directly used for motion
reproduction. We also show the pretraining of the convolu-
tional layers for extracting the task specific variables. This
reduces the effect of vanishing gradient problem as compared
with directly doing end-to-end learning of the CNN. Since
the features are learned, this eliminates the need to use any
markers. Additionally by applying the data augmentation,
our approach can easily generalize the learned skill for
various different objects. The generalization capability of our
approach is demonstrated by executing the task for a novel
object and against the background perturbations.

Our approach requires relatively fewer training data for
learning, as compared with other CNN based motor learning
approaches [7], [8], [18]. Applying RL for learning a motor
skill can require a lot of trials [8]. Thus the imitation strategy
proposed in this work can be used to initialize the network
parameters and for rapidly acquiring a motor skill, while the
skill refinement can subsequently be done by using RL [14].
In this work the goal position g is provided by the user.
Alternatively, it can be also predicted by the learned network,
along with the forcing terms of the DMPs.

REFERENCES

[1] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine, “Path integral guided policy search,” in IEEE International

Conference on Robotics and Automation (ICRA), 2017, pp. 3381–
3388.

[2] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion
synthesis and adaptation using a trajectory database,” Robotics and
Autonomous Systems, vol. 60, no. 10, pp. 1327–1339, 2012.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[4] D. Kinga and J. B. Adam, “A method for stochastic optimization,” in
International Conference on Learning Representations (ICLR), 2015.

[5] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE
Robotics & Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[6] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion
primitives using the motion refinement tube,” Autonomous Robots,
vol. 31, no. 2, pp. 115–131, 2011.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, 2016.

[9] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning parametric
dynamic movement primitives from multiple demonstrations,” Neural
Networks, vol. 24, no. 5, pp. 493–500, 2011.

[10] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
IEEE International Conference on Robotics and Automation, ICRA,
2009, pp. 763–768.

[11] A. Pervez, A. Ali, J.-H. Ryu, and D. Lee, “Novel learning from
demonstration approach for repetitive teleoperation tasks,” in IEEE
World Haptics Conference (WHC), 2017, pp. 60–65.

[12] A. Pervez and D. Lee, “Learning task-parameterized dynamic move-
ment primitives using mixture of gmms,” Intelligent Service Robotics,
pp. 1–18, 2017.

[13] M. Saveriano, S. i. An, and D. Lee, “Incremental kinesthetic teaching
of end-effector and null-space motion primitives,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015, pp.
3570–3575.

[14] M. Saveriano, Y. Yin, P. Falco, and D. Lee, “Learning control policies
using a simplified robot model,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

[15] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive Motion of
Animals and Machines. Springer, 2006, pp. 261–280.

[16] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in 13th IEEE-
RAS International Conference on Humanoid Robots (Humanoids),
2013, pp. 417–422.

[17] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific gen-
eralization of discrete and periodic dynamic movement primitives,”
Robotics, IEEE Transactions on, vol. 26, no. 5, pp. 800–815, 2010.

[18] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable folding task by humanoid robot worker using deep
learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, 2017.


