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Abstract— Forthcoming applications concerning humanoid
robots may involve physical interaction between the robot and
a dynamic environment. In such scenario, classical balancing
and walking controllers that neglect the environment dynamics
may not be sufficient for achieving a stable robot behavior. This
paper presents a modeling and control framework for balancing
humanoid robots in contact with a dynamic environment. We
first model the robot and environment dynamics, together with
the contact constraints. Then, a control strategy for stabilizing
the full system is proposed. Theoretical results are verified in
simulation with robot iCub balancing on a seesaw.

I. INTRODUCTION

Prospective applications for robotics may require robots to
step out on protected and well-known workspaces and phys-
ically interact with dynamic, human-centered environments.
In this context, a humanoid robot is required to balance,
walk, perform manipulation tasks and – even more important
– safely interact with humans.

The importance of controlling the robot interaction with
the environment calls for the design of torque and impedance
control algorithms, capable of exploiting the forces the robot
exerts at contact locations, for performing balancing and
walking tasks [1], [2], [3]. However, the applicability of
such controllers in a real scenario is often limited by the
assumption that the robot is in contact with a rigid, static
environment. From the modeling point of view, this results in
neglecting the environment dynamics, i.e. the robot is subject
to a set of purely kinematic constraints [4]. This assumption
may be a limitation in case the robot is walking on debris or
uneven ground. Different solutions that make use of adaptive
or robust controllers are available in literature [5], [6], [7],
[8]. There are also situations in which the environment
dynamics may be known a priori, e.g. interacting with a
wheeled chair, balancing on a moving platform or even
interacting with humans. This leads to the development of
control strategies that try to stabilize both the robot and the
contact dynamics [4], [9].

On the modeling side, the fixed base assumption may
be a strong limitation for a humanoid robot, capable – at
least theoretically– to move from place to place without
being physically attached to the ground. The floating base
formalism [10], i.e. none of the robot links has an a priori
constant pose with respect to an inertial reference frame,
is particularly well suited for modeling humanoid robots

*This paper was supported by the FP7 EU project CoDyCo (No. 600716
ICT 2011.2.1 Cognitive Systems and Robotics)

1 All authors belong to the iCub Facility department, Istituto Italiano di
Tecnologia, Via Morego 30, Genoa, Italy name.surname@iit.it

Fig. 1. iCub balancing on a seesaw.

dynamics. However, the control problem is complicated
by system’s underactuation, that forbids full state feedback
linearization [11].

At the control level, an efficient algorithm for balancing
and walking of humanoid robots is the so-called momentum-
based control [5], which often exploits prioritized stack-of-
tasks. In particular, the primary control objective is the stabi-
lization of centroidal momentum dynamics [12]. Momentum
control can be achieved by properly choosing the contact
forces the robot exerts at contact locations [2], [13], [14].
Robot joint torques are then used for generating the desired
forces. To get rid of the (eventual) actuation redundancy
associated with momentum control, a lower priority task is
usually added during the stabilization of the robot momen-
tum, whose main role is the stabilization of the so-called
robot zero dynamics [15].

In this paper, we propose a modeling and control frame-
work for balancing a humanoid robot on a seesaw board
(Fig. 1). Similar problems have been already addressed in
literature [9], [8]. In particular, in [9] the authors developed
a torque control strategy based on weighted control policies,
together with online and offline model adaptations, for bal-
ancing a humanoid robot on a moving platform. We follow
a similar approach, but we then design a different control
algorithm. In particular, the aim of our paper is to apply a
momentum-based control strategy in case of balancing in a
dynamic environment.

The remaining of the paper is organized as follows.
Section II recalls notation, robot modeling and a momentum-
based control strategy for balancing with rigid, static con-
tacts. Sections III–IV detail the modeling and control frame-
work designed for balancing in dynamic environments. Sim-
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ulation results on humanoid robot iCub are presented in
Section V. Conclusions and perspectives conclude the paper.

II. BACKGROUND

In this section, we provide a description of the modeling
and control framework developed in [14], [16] for balancing
a humanoid robot in a rigid environment.

A. Notation

• We denote with I the inertial frame of reference, whose
z axis points against the gravity, and with S a frame
attached to the seesaw board, whose origin coincides
with the seesaw center of mass.

• We make use of the subscript s to distinguish the seesaw
dynamic and kinematic quantities.

• The constant g denotes the norm of the gravitational
acceleration. The constants m and ms represent the
masses of the robot and the seesaw, respectively.

• We denote with S(x) ∈ R3×3 the skew-symmetric
matrix such that S(x)y = x × y, where × indicates
the cross product operator in R3.

• Given a matrix A ∈ Rm×n, we denote with A† ∈ Rn×m
its Moore Penrose pseudoinverse.

• ei ∈ Rm is the canonical vector, consisting of all zeros
but the i-th component that is equal to one.

B. Modeling robot dynamics

A robot is usually modeled as a set of n+ 1 rigid bodies,
namely links, connected by n joints with one degree of
freedom each. We assume that the robot has no links with
a priori fixed position and orientation with respect to the
inertial frame of reference, i.e. it is a free floating system.
Because of the above assumption, an element of the robot
configuration space can be defined as q = (IpB,

IRB, qj)
and belongs to the Lie group Q = R3 × SO(3) × Rn. It is
composed by the position and orientation of a base frame
B attached to a robot link w.r.t. the inertial reference frame,
and the joints positions qj . By differentiating q we obtain
the expression of system’s velocities ν = (I ṗB,

I ωB, q̇j) =
(vB, q̇j) ∈ R3 ×R3 ×Rn, where the angular velocity of the
base frame IωB is chosen such that IṘB = S(IωB)IRB.

It is assumed the robot is exerting nc distinct wrenches
on the environment. Applying the Euler-Poincaré formalism
as in [17, Ch. 13.5] results in the following equations of
motion:

M(q)ν̇ + C(q, ν)ν +G(q) = Bτ +

nc∑
k=1

J>Ckfk (1)

where M ∈ R(n+6)×(n+6) is the mass matrix, C ∈
R(n+6)×(n+6) accounts for Coriolis and centrifugal effects,
G ∈ R(n+6) represents the gravity term, B = (0n×6, 1n)>

is a selector of the actuated degrees of freedom, τ ∈ Rn is a
vector representing the internal actuation torques, and fk ∈
R6 denotes an external wrench applied by the environment
to the link of the k-th contact. The Jacobian JCk = JCk(q) is
the map between the system’s velocity ν and the linear and
angular velocity at the k-th contact. As described in [18, Sec.

5], it is possible to apply a coordinate transformation in the
state space (q, ν) that transforms the system dynamics (1)
into a new form where the mass matrix is block diagonal,
thus decoupling joint and base frame accelerations. Also,
in this new set of coordinates, the first six rows of Eq. (1)
are the centroidal dynamics1. As an abuse of notation, we
assume that system (1) has been transformed into this new
set of coordinates, i.e.

M(q) =

[
Mb(q) 06×n
0n×6 Mj(q)

]
, H = MbvC , (2)

with Mb ∈ R6×6,Mj ∈ Rn×n, H := (H>L , H
>
ω )> ∈ R6 the

robot centroidal momentum, and HL, Hω ∈ R3 the linear
and angular momentum at the center of mass, respectively.
The new base frame velocity is denoted by vC ∈ R6, which
in the new coordinates yielding a block-diagonal mass matrix
is given by vC = (ṗc, ωo), where ṗc ∈ R3 is the velocity of
the system’s center of mass pc ∈ R3, and ωo ∈ R3 is the
so-called system’s average angular velocity.

Lastly, we assume that the location where a contact occurs
on a link remains constant w.r.t. the inertial frame, i.e. the
system is subject to a set of holonomic constraints of the
form: JCk(q)ν = 0. The constraints equations associated
with all the rigid contacts can be represented as

J(q)ν =

 JC1(q)
· · ·

JCnc
(q)

 ν = J(q)ν = 0, (3)

where J =
[
J>C1 ... J>Cnc

]>
∈ R6nc×(n+6) is the con-

straints jacobian. By differentiating the kinematic constraint
(3), one obtains

Jν̇ + J̇ν = 0. (4)

In view of (1), the equations of motion along the con-
straints (4) are given by:

M(q)ν̇ + h(q, ν) = Bτ + J(q)>f (5a)
s.t.

Jν̇ + J̇ν = 0. (5b)

where h := C(q, ν)ν + G(q) ∈ R(n+6), while f =
(f1, · · · , fnc) ∈ R6nc are the set of contact wrenches – i.e.
Lagrange multipliers – making Eq. (4) satisfied.

C. Balancing control on static contacts

We recall now the torque control strategy developed in
previous publications [14], [16] for balancing a humanoid
robot with static contacts. It is a task-based control with two
tasks: the task with higher priority is the control of robot
centroidal momentum, while the secondary task is to stabilize
the system’s zero dynamics.

1In the specialized literature, the term centroidal dynamics is used to
indicate the rate of change of the robot’s momentum expressed at the center-
of-mass, which then equals the summation of all external wrenches acting
on the multi-body system [12].



First, observe that the contact constraints equations Eq. (4)
instantaneously relate the contact wrenches f with the con-
trol input, namely the joint torques τ . In fact, by substituting
the state accelerations from Eq. (5a) into Eq. (4), one has:

JM−1(J>f − h+Bτ) + J̇ν = 0. (6)

Writing explicitly the control torques from Eq. (6) gives:

τ = Λ†(JM−1(h− J>f)− J̇ν) +NΛτ0 (7)

with Λ = JM−1B ∈ R6nc×n; NΛ ∈ Rn×n is the projector
onto the nullspace of Λ, and τ0 ∈ Rn is a free variable. If
matrix Λ has rank greater than the dimension of f , one can
use τ to generate any desired contact wrenches f∗ by means
of Eq. (7).

1) Momentum control: recall now that the rate-of-change
of the robot momentum equals the net external wrenches
acting on the robot, which in the present case reduces to the
contact wrenches f plus the gravity wrench:

Ḣ(f) = J>b f −mge3, (8)

where H ∈ R6 is the robot momentum, while because of the
transformation applied in Eq. (2) matrix Jb ∈ R6nc×6 can be
obtained by partitioning the contact Jacobian J =

[
Jb Jj

]
.

In view of Eq. (8), and assuming that the contact wrenches
can be chosen at will, we can choose f such that:

Ḣ(f) = Ḣ∗ := Ḣd −KpH̃ −KiIH̃ (9)

where Hd is the desired robot momentum, H̃ = H − Hd

is the momentum error and Kp,Ki∈R6×6 two symmetric,
positive definite matrices. The integral of robot momentum
error, IH̃ is obtained as described in [19].

Observe that in case nc > 1 (e.g. balancing on two feet),
there are infinite sets of contact wrenches that satisfy Eq. (9).
We parametrize the set of solutions f∗ as:

f∗ = fH +Nbf0 (10)

with fH = (J>b )†
(
Ḣ∗ +mge3

)
, Nb ∈ R6nc×6nc the

projector into the null space of J>b , and f0 ∈ R6nc the
wrench redundancy that does not influence Ḣ(f) = Ḣ∗.
Then, the control torques that instantaneously realize the
contact wrenches f∗ are given by Eq. (7):

τ∗ = Λ†(JM−1(h− J>f∗)− J̇ν) +NΛτ0

2) Stability of the Zero Dynamics: we are now left to
define the free variable τ0, that may be used to ensure the
stability of the so called zero dynamics of the system [15]. A
choice of τ0 that ensures the stability of the zero dynamics
in case of one foot balancing is [19]:

τ0 = hj − J>j f + u0 (11)

where u0 := −Kj
pNΛMj(qj − qdj ) − Kj

dNΛMj q̇j , and
Kj
p ∈ Rn×n and Kj

d ∈ Rn×n two symmetric, positive
definite matrices. An interesting property of the closed loop
system (1)–(7)–(10)–(11) is recalled in the following Lemma.

Lemma 1 ([20]). Assume that Λ is full row rank. Then, the
closed loop joint space dynamics does not depend upon the
wrench redundancy f0.

This result is a consequence of the postural control
choice (11) and it is of some interest: it means that the
closed loop joint dynamics depends on the total rate-of-
change of the momentum, i.e. Ḣ , but not on the different
forces generating it. Hence, any choice of the redundancy f0

does not influence the joint dynamics, and we can exploit it
to minimize the joint torques τ in Eq. (7).

In the language of Optimization Theory, we can rewrite
the control strategy as the following optimization problem:

f∗ = argmin
f
|τ∗(f)|2 (12a)

s.t.

Af < b (12b)
Ḣ(f) = Ḣ∗ (12c)
τ∗(f) = argmin

τ
|τ − τ0(f)|2 (12d)

s.t.

J̇(q, ν)ν + J(q)ν̇ = 0 (12e)
ν̇ = M−1(Bτ + J>f−h) (12f)
τ0 = hj − J>j f + u0. (12g)

The constraints (12b) ensure the satisfaction of friction
cones, normal contact surface forces, and center-of-pressure
constraints. The control torques are then given by τ=τ∗(f∗).

III. MODELING ENVIRONMENT DYNAMICS

The closed loop system (1)–(7)–(10)–(11) exploits the
assumption that the location where a contact occurs on a link
remains constant w.r.t. the inertial frame, i.e. Jν = 0. There
are situations, however, in which the environment dynamics
cannot be neglected. In this case, Eq. (4) becomes:

Jν̇ + J̇ν = af .

where af ∈ R6nc represents the accelerations at the contact
locations. Our case study exemplifies this last situation: the
robot is balancing with both feet leaning on a seesaw board of
semi-cylindrical shape (Fig.1). In what follows, we present a
modeling and control framework derived from (1)–(7)–(10)–
(11) for two feet balancing on a seesaw.

A. Seesaw dynamics

The seesaw can be considered a single rigid body with no
a priori fixed position and orientation w.r.t. the inertial frame.
We also assume the seesaw is in contact with both the robot
feet and a rigid ground, exerting on them the reaction forces
and moments −f and the contact forces and moments fs,
respectively. A complete description of the seesaw dynamics
is given by the equations representing the rate of change
of seesaw momentum, i.e. Ḣs. In particular, we project the
rate of change of seesaw momentum in the seesaw frame S
previously defined, resulting in the following equations of
motion:

Ms
S ν̇s + hs = − J>r f + J>s fs (13)



where Ms ∈ R6×6 is the seesaw mass matrix, S ν̇s ∈ R6 is
the vector of seesaw linear and angular accelerations, hs ∈
R6 represents the Coriolis and gravity terms. The jacobians
Jr and Js are the map between the seesaw velocity in the
seesaw frame Sνs and the velocities at the contacts locations.
In particular, in the chosen representation the mass matrix
Ms is given by:

Ms =

[
ms13 03

03
SIs

]
and matrix SIs ∈ R3×3 is constant, thus simplifying the
formulation of seesaw dynamics. Further details on the
derivation of Eq. (13) can be found in the Appendix VII-
A. As an abuse of notation but for the sake of clarity let us
omit from now on the superscript S, e.g. Sνs = νs.

B. Modeling contact constraints

It is assumed that the robot feet are always attached to the
seesaw, resulting in the following set of constraints:

νfeet = Jrνs = Jν. (14)

Note that the above equation is coupling the seesaw and the
robot dynamics. By differentiating Eq. (14), one has:

Jν̇ + J̇ν = Jrν̇s + J̇rνs. (15)

Eq. (15) will substitute Eq. (4) in the formulation of the
system’s equations of motion. Lastly, we define the contact
point P as the intersection between the contact line of the
seesaw with the ground and its frontal plane of symmetry.
We assume that the seesaw is only rolling, and this implies
that the linear velocity of the contact point P is vp = 0.
Furthermore, let the seesaw frame be oriented as in figure
1. The shape of the (semi-cylindrical) seesaw constrains the
rotation along the y and z axis. We model all the above
mentioned constraints as follows:

Jsνs = 0, (16)

and differentiating Eq. (16) gives:

Jsν̇s + J̇sνs = 0. (17)

The shape of Jr ∈ R6nc×6, Js ∈ R5×6 and their derivatives
is described in the Appendix VII-B. Finally, the system
dynamics for the robot balancing on a seesaw is given by
the following set of equations:

floating base dynamics
Mν̇ + h = Bτ + J>f (18a)

seesaw dynamics
Msν̇s + hs = −J>r f + J>s fs (18b)

constraint: feet attached to the seesaw
Jν̇ + J̇ν = Jrν̇s + J̇rνs (18c)

constraint: seesaw is rolling
Jsν̇s + J̇sνs = 0. (18d)

The above equations are valid for the specific case of a
semi-cylindrical seesaw, but the approach we followed for

obtaining Eq. (18) is more general, and can be reused in case
the robot is interacting with different dynamic environments.

IV. THE BALANCING CONTROL STRATEGY

Given the effectiveness of control law (7)–(10)–(11) for
balancing in a rigid environment, it may worth trying to
extend this framework to the case of balancing on a seesaw.
First, we make use of Eq. (17) to relate the feet wrenches f
with the contact forces and moments fs. By substituting Eq.
(13) into (17), one has:

JsM
−1
s (J>s fs − hs − J>r f) + J̇sνs = 0. (19)

Writing explicitly fs from Eq. (19) gives:

fs = Γ−1(JsM
−1
s (hs + J>r f)− J̇sνs),

with Γ = (JsM
−1
s J>s ) . Now, substitute the above equation

into Eq. (13):

Msν̇s + h̄s = Asf (20)

where h̄s = (16 − J>s Γ−1JsM
−1
s )hs + J>s J̇sνs, while the

matrix multiplying the feet forces and moments is given by
As = −(16 − J>s Γ−1JsM

−1
s )J>r . It is worth noting that

matrix As is not full rank, but instead rank(As) = 1. This
is not surprising, in fact Eq. (17) implies the seesaw can
only roll, and therefore it has only 1 degree of freedom
left. Assuming the constraints Eq. (17) are always satisfied
for any (reasonable) value of fs, it means that the seesaw
dynamics can be stabilized by controlling, for example,
the seesaw angular momentum dynamics along the lateral
direction, and this can be done by using the feet wrenches
as a fictitious control input of Eq. (20). Hence, one may think
of controlling the whole system dynamics by means of the
following control objectives:
• control of the robot momentum together with the seesaw

angular momentum along the lateral direction by means
of feet wrenches f ;

• ensure the stability of the system’s zero dynamics as
before by exploiting joint torques redundancy.

Concerning the primary control objective, the matrix project-
ing f in the robot momentum and seesaw angular momentum
equations can be obtained from Eq. (8) and Eq. (20) and it is:

Af =
[
Jb A>s e4

]>
. However, we performed a numerical

analysis on matrix Af for different state configurations,
by means of singular value decomposition (SVD) method.
Numerical results point out that matrix Af is not full rank,
but instead rank(As) = 6. This implies that does not always
exist a set f∗ of feet wrenches that can generate any desired
trajectory for the given primary control task.

1) Control of robot momentum only: being not possible to
always control both the seesaw and the robot momentum dy-
namics, we first decide to control only the robot momentum
as primary task, and then verify numerically that the seesaw
angle trajectory still remains bounded within a limited range.
For the given task, f∗ is the same of Eq. (10):

f∗ = (J>b )†
(
Ḣ∗ +mge3

)
+Nbf0



2) Control of mixed momentum: another possibility is
trying to control a quantity which depends on both the robot
and the seesaw dynamics, for example the rate of change of
system’s momentum:

Ḣt = J>t fs − (ms +m)ge3 = J>t Atf + fbias (21)

where Eq. (21) is obtained as described in Appendix VII-
C. However, matrix Jt ∈ R5×6: hence, the maximum rank
of matrix J>t At is 5, and again it is not possible to always
ensure the convergence of the total momentum to any desired
trajectory by means of f . To overcome this problem, we
decide to control the linear momentum of the robot only,
together with the angular momentum of the whole system.
The motivation behind this choice is not only to have a full
rank matrix multiplying the feet wrenches, but it also exploits
the difference of magnitude between the robot mass (31Kg)
and the seesaw mass (4Kg), which implies the center of mass
of the overall system is actually close to the center of mass
of the robot.

Consider now the following partitions of robot and total
momentum:

H :=

[
HL

Hω

]
, Ht :=

[
HtL

Htω

]
where HL, Hω ∈ R3 are the linear and angular momentum
of the robot, whereas HtL, Htω ∈ R3 are the system linear
and angular momentum. We define the mixed momentum as
Hm =

[
HL Htω

]>
. Being Ḣm = Ḣm(f), we can choose

f such that:

Ḣ∗m := Ḣd
m −KpH̃m −KiIH̃m

(22)

where Hd
m is the desired mixed momentum, H̃m = Hm −

Hd
m is the momentum error and Kp,Ki ∈ R6×6 two

symmetric, positive definite matrices. It is in general not
possible to define an analytical expression for the integral
of the angular momentum [12], and it is not straightforward
to extend the results we presented in [19] to this new case.
Therefore, IH̃m

is of the following form:

IH̃m
=

[
m(xc − xdc)

03,1

]

where xc ∈ R3 is the robot center of mass position. The feet
wrenches f∗ that instantaneously realize the desired mixed
momentum rate of change are then given by:

f∗ = A†m

(
Ḣ∗m +

[
SLmge3

−Sωfbias

])
+Nmf0

where SL =
[
13 03

]
, Sω =

[
03 13

]
are selec-

tor matrices; the multiplier of feet wrenches is Am =[
JbS

>
L A>t JtS

>
ω

]>
and Nm is a null space projector.

3) Joint torques and zero dynamics: it is now possible to
apply the same procedure presented in II for relating the joint
torques τ with the desired feet wrenches f∗. By substituting
the state accelerations from Eq. (18a)–(20) into Eq. (18c),
and writing explicitly the control torques one has:

τ = Λ†(h̄− J̄f − J̇ν + J̇rνs) +NΛτ0 (23)

with h̄ = JM−1h − JrM
−1
s hs, and J̄ = JM−1J> −

JrM
−1
s As. The redundancy of joint torques is used for

stabilizing the robot posture, and therefore τ0 remains the
same of Eq. (11). The wrench redundancy f0 is still used
for minimizing the joint torques. As before, we can rewrite
the control strategy as an optimization problem:

f∗ = argmin
f
|τ∗(f)|2 (24a)

s.t.

Af < b (24b)
Ḣ(f) = Ḣ∗ (24c)
τ∗(f) = argmin

τ
|τ − τ0(f)|2 (24d)

s.t.

J̇ν + Jν̇ = J̇rνs + Jrν̇s (24e)
J̇sνs + Jsν̇s = 0 (24f)
ν̇ = M−1(Bτ + J>f−h) (24g)
ν̇s = M−1

s (J>s fs − J>r f−hs) (24h)
τ0 = hj − J>j f + u0. (24i)

where in case the primary control objective is the stabiliza-
tion of the mixed momentum trajectories, Eq. (24c) is of the
form: Ḣm(f) = Ḣ∗m.

V. SIMULATION RESULTS

We test the control solutions proposed in Section III by
using a model of the humanoid robot iCub [21] with 23
degrees-of-freedom (DoFs).

A. Simulation Environment

Simulations are performed by means of a Simulink con-
troller interfacing with Gazebo simulator [22]. The controller
frequency is 100 [Hz]. Of the different physic engines that
can be used with Gazebo, we chose the Open Dynamics
Engine (ODE). Furthermore, Gazebo integrates the dynamics
with a fixed step semi-implicit Euler integration scheme.
The advantage of using this simulation setup is twofold.
First, we only have to specify the model of the robot,
and the constraints arise naturally while simulating. Another
advantage of using Gazebo consists in the ability to test
directly on the real robot the same control software used
in simulation.

B. Robustness to external disturbances

We first perform a robustness test on the closed loop
system (18)–(24). The control objective is to stabilize the
system about an equilibrium position. After 20 [s] an external
force of amplitude 100 [N] is applied to the robot torso
along the lateral direction for a period of 0.01 [s]. Figure
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Fig. 2. Norm of robot linear momentum error while balancing.
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Fig. 3. Norm of robot and system angular momentum error while balancing.
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Fig. 4. Seesaw orientation. Even if not explicitly controlled, its trajectory
remains bounded while the robot is balancing.

2 shows the norm of robot linear momentum error for
both control laws. Analogously, Figure 3 depicts the norm
of robot and system angular momentum error when the
primary task is to control the robot momentum and the mixed
momentum, respectively. After the external force is applied,
both controllers are still able to bring the system back to the
equilibrium position. Figure 4 shows instead the behaviour
of the seesaw orientation θ. The blue line represent θ when
the control objective is to stabilize the robot momentum,
while the red line is when the primary task is to control the
mixed momentum. In both cases, the trajectory of θ remains
bounded even after the application of the external force, and
therefore both controllers are able to stabilize also the seesaw

0 10 20 30 40 50
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Fig. 5. Lateral component of robot CoM position. Both controllers are able
to track the desired CoM trajectory, but with mixed momentum control is
possible to achieve better results.

orientation, even if not explicitly controlled.

C. Tracking Performances

We then evaluate the two control laws for tracking a
desired trajectory of the robot center of mass. The reference
trajectory for the center of mass is a sinusoidal curve with
amplitude of 2.5 [cm] and frequency of 0.25 [Hz] along
the robot lateral direction. A dedicated gain tuning has been
performed on both controllers in order to achieve better
results. It is important to point out that the main scope of
this analysis is not a comparison between the controllers
performances, but rather to verify the stability of the closed
loop system for the given task. Figure 5 shows the lateral
component of the robot center of mass position during the
tracking. The black line is the reference trajectory. The red
line is the center of mass position obtained with the mixed
momentum control, and the blue line is obtained with the
robot momentum control. Both controllers are able to track
the desired trajectory. However, with the mixed momentum
control is possible to achieve better results, while the other
control strategy depicts poor tracking even after gain tuning.
A possible explanation is that in order to keep balancing on
the seesaw while tracking the CoM trajectory, the robot may
be required to have an angular momentum reference different
from zero. Trying to regulate the robot angular momentum
to zero may worsen the tracking performances.

VI. CONCLUSIONS

This paper proposes a modeling and control framework
for balancing a humanoid robot in dynamic environments.
In particular, the case study is the robot balancing on a
seesaw board. The system equations of motion and the
constraints are obtained following a general procedure, that
can be reused in case the robot is in contact with a different
object, or even a human. The control algorithm is redesigned
taking into account the seesaw dynamics, and two different
controllers are proposed. While both controllers show a good
response to external disturbances, the mixed momentum
control shows better tracking performances.

In this paper, no experimental results are presented. How-
ever, preliminary tests on the real robot iCub have been



performed, depicting some limitations of our control ap-
proach. For example, on real applications modeling errors
and network delays can strongly affect the performances.
Also, a proper estimation of parameters such as the seesaw
orientation and angular velocity plays a very important role
in the effectiveness of our control strategies. In order to
be able to move on the real robot, future works might be
focused on reducing the modeling and estimation errors,
together with the design of a control law capable of dealing
with model uncertainties, for example by means of adaptive
control algorithms.

VII. APPENDIX

A. Seesaw dynamics in frame S
Let us define with S[I] a reference frame whose origin is

at the seesaw center of mass, and with the orientation of the
inertial frame I. The rate of change of seesaw momentum,
when projected in this frame, is given by:

S[I]Ḣs = −msge3 − J̄>r f + J̄>s fs (25)

where the matrices J̄r and J̄s are defined in the next
subsection VII-B. Note that the mapping between frame S[I]
and the seesaw frame S is given by the relative rotation
between the inertial frame and the seesaw frame, i.e. IRs.
Therefore, the projection of the seesaw momentum S[I]Hs

into the seesaw frame S is given by:

S[I]Hs = IR̄s
SHs =

[
IRs 03

03
IRs

]
SHs. (26)

By differentiating Eq. (26), one has:

S[I]Ḣs = I ˙̄Rs
SHs +I R̄s

SḢs. (27)

Recall that SHs = Ms
Sνs, and that the derivative of a

rotation matrix is given by: IṘs = IRsS(Sωs), being Sωs
the angular velocity of the seesaw projected in the seesaw
frame. Also, in the seesaw frame the mass matrix Ms is
constant. Therefore, one has:

S[I]Ḣs = IR̄s(S̄(Sωs)Ms
Sνs +Ms

S ν̇s). (28)

with S̄(Sωs) a proper block diagonal matrix Finally, by
substituting Eq. (28) into (25), and multiplying both sides by
IR̄−1

s =I R̄>s , one is left with Eq. (13), where we define:

Jr = J̄r
IR̄s

Js = J̄s
IR̄s

hs = S̄(Sωs)Ms
Sνs +I R̄>s msge3

B. Derivation of matrices Jr and Js
Recall the vector of feet linear and angular velocities

expressed in the inertial frame:

Iνf =


Ivlf
Iωlf
Ivrf
Iωrf

 .

The constraint of having the feet attached to the seesaw
implies that Iωlf = Iωrf = Iωs. Also, one has:

Ivlf = Ivs − S(Ipsl)
Iωs

Ivrf = Ivs − S(Ipsr)
Iωs

where Ipsl, Ipsr represent the distance between the seesaw
CoM and the left and right foot, respectively. Then,

Iνf =


13 −S(Ipsl)
03 13

13 −S(Ipsr)
03 13

 Iνs = J̄r
Iνs

Analogously, the constraint of only rolling implies that the
velocity at the contact point P between the seesaw and the
ground is given by: Ivp = Ivs − S(Ipsp)

Iωs = 0, thus
implying Ivs = S(Ipsp)

Iωs. The variable Ipsp represents
the distance between the seesaw CoM and the contact point
P . Also, constraining the rotation along y and z axis implies
the second and third component of the seesaw angular
velocity are given by: e>2

Iωs = e>3
Iωs = 0. Then, one

has:  13 −S(Ipsp)
01,3 e>2
01,3 e>3

 Iνs = J̄s
Iνs = 0

The matrices Js and Jr are then obtained from J̄s and J̄r
as described in the previous subsection.

C. Total momentum rate of change

The system linear and angular momentum is obtained as
a combination of the robot and seesaw momentum:

Ht = tX
∗
cH + tX

∗
S[I]
S[I]Hs. (29)

For not burdening the notation, we dropped the superscripts
denoting the frames w.r.t. Ht and H are expressed. The
transformation matrices in the space of wrenches tX∗c and
tX∗S[I] are of the following form:

tX
∗
x =

[
13 03

S(Ipx − Ipt) 13

]
where Ipx =I pc for the robot momentum and Ipx =I pS[I]

for the seesaw momentum. Then, the derivative of Eq. (29)
is given by:

Ḣt = tẊ
∗
cH + tẊ

∗
S[I]
S[I]Hs + tX

∗
cḢ + tX

∗
S[I]
S[I]Ḣs.

Recall that the system’s center of mass position is related
to the robot and seesaw center of mass as follows: Ipt =
mIpc+ms

IpS[I]

m+ms
. Also, recall that S(x)x = 0. Then, it is

possible to verify that tẊ
∗
cH + tẊ

∗
S[I]
S[I]Hs = 0, and

therefore the rate of change of system’s momentum is:

Ḣt = tX
∗
cḢ + tX

∗
S[I]
S[I]Ḣs. (30)

By substituting now Eq. (8),(25) into Eq. (30), one has:

Ḣt = tX
∗
c(J
>
b f −mge3) + (31)

tX
∗
S[I](−msge3 − J̄>r f + J̄>s fs).



Observe that J>b and J̄>r , being the transformations mapping
the wrenches from the contact locations to the seesaw and
robot center of mass, are of the form: J>b =

[
cX∗l

cX∗r
]

and J̄>r =
[
S[I]X

∗
l
S[I]X

∗
r

]
. Thus f is simplified from

Eq. (30). Furthermore, one can verify that S(IpS[I] −
Ipt)msge3 + S(Ipc − Ipt)mge3 = 0. This is consistent
with the definition of Ḣt as the summation of all external
wrenches, i.e the contact forces fs and the gravity wrench.
By substituting fs into Eq. (30) by means of (19), we finally
obtain Eq. (21), where we define:

J>t = tX
∗
S[I]J̄

>
s

At = Γ−1JsM
−1
s J>r

fbias = Γ−1(JsM
−1
s hs − J̇sνs)− (ms +m)ge3.
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